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Abstract: The saliva of hematophagous arthropods contains a group of active proteins to counteract
host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins
have significant impacts on modulating pathogen transmission, immunogenicity expression, the
establishment of infection, and even disease severity. Recent studies have shown that several salivary
proteins are immunogenic and antibodies against them may block infection, thereby suggesting
potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied
for their therapeutic potential as vaccine candidates or to control the transmission of human vector-
borne pathogens and immune responses against different arthropod salivary proteins.
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1. Introduction

Vector-borne diseases account for more than 17% of all infectious diseases globally,
with dengue fever via dengue virus (DENV) as the most prevalent arthropod-borne virus or
arbovirus [1,2]. The main control strategies to decrease vector-borne diseases are based on
vector control, which aims to prevent or decrease exposure to infective bites. This strategy
includes the use of a wide range of tools from personal protective equipment, physical
devices (i.e., bed nets), and insecticides [3,4] to insecticide/larvicide use [5]. However,
the sustainability of vector control is an issue and previous studies suggest that this
intervention alone might be insufficient to decrease the annual burden [6–8]. Alternative
disease control methods such as vaccines and specific therapies are urgently needed.

Vaccines represent a viable alternative to protect the public against infection, and in
the case of vector-borne diseases, there are several options commercially available. We
call these vaccines “classic vaccines” because they protect the vertebrate host from getting
the disease. A second group of vaccines is called transmission-blocking vaccines (TBVs)
(reviewed in detail by Bakhshi et al., 2018, and Londono-Renteria et al., 2016) [9,10]. The
objective of TBVs is to prevent the survival of pathogens in the arthropod host by “blocking”
transmission (Figure 1). Currently, there are no commercially available TBVs (Table 1).

However, several vaccines are currently available to prevent disease in humans.
At least two vaccines against yellow fever (YFV) have been proved safe for human use
since 1938 they are described in Table 1 [11]. Also, a vaccine against DENV, Dengvaxia,
was licensed in 2016 in select countries, but controversies surrounding the phenomenon
of possible vaccine-induced immune potentiation of more severe illness in children have
halted their use in naïve populations [12]. Vaccines against Japanese encephalitis virus
(JEV) were developed in the 1930s and are currently available as a live attenuated vaccine,
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the SA14–14–2 JE vaccine, which was approved by the WHO for use in national immuniza-
tion programs in Asia and IXIARO, and has also been licensed since 2009 for use in several
countries including the US and Canada [13,14]. However, there are a significant number of
vector-borne diseases without vaccine options and substantial research efforts are currently
focused on identifying suitable targets to expand the number of vector-borne diseases that
could be controlled through vaccination campaigns [15,16].
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Figure 1. Vaccine options to prevent vector-borne disease transmission. Transmission blocking 
vaccines (TBVs) are administered to the vertebrate host to induce immune responses that will later 
block pathogen development in the arthropod vector during or after the blood feeding. “Classic” 
vaccines are designed to prevent vertebrate infection and disease after exposure to an “infective” 
bite (figure created with BioRender.com.) (accessed on 4 March 2021). 

However, several vaccines are currently available to prevent disease in humans. At 
least two vaccines against yellow fever (YFV) have been proved safe for human use since 
1938 they are described in Table 1 [11]. Also, a vaccine against DENV, Dengvaxia, was 
licensed in 2016 in select countries, but controversies surrounding the phenomenon of 
possible vaccine-induced immune potentiation of more severe illness in children have 
halted their use in naïve populations [12]. Vaccines against Japanese encephalitis virus 
(JEV) were developed in the 1930s and are currently available as a live attenuated vaccine, 
the SA14–14–2 JE vaccine, which was approved by the WHO for use in national immun-
ization programs in Asia and IXIARO, and has also been licensed since 2009 for use in 
several countries including the US and Canada [13,14]. However, there are a significant 
number of vector-borne diseases without vaccine options and substantial research efforts 
are currently focused on identifying suitable targets to expand the number of vector-borne 
diseases that could be controlled through vaccination campaigns [15,16]. 
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chimeric vaccine 
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Yellow fever virus YF-VAX 2001 >95% Live attenuated yellow fe-
ver virus strain 17D-204 

[11,18] 

Yellow fever virus STAMARIL 1986 
Comparable to 

YF-VAX 
Live attenuated yellow fe-
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Japanese Encepha-
litis virus IXIARO/JESPECT 2009 99.3% Live attenuated SA-14-14-2 [13,20] 
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protective immunity by targeting pathogen invasion and survival mechanisms, thereby 

Figure 1. Vaccine options to prevent vector-borne disease transmission. Transmission blocking vaccines (TBVs) are
administered to the vertebrate host to induce immune responses that will later block pathogen development in the
arthropod vector during or after the blood feeding. “Classic” vaccines are designed to prevent vertebrate infection and
disease after exposure to an “infective” bite (figure created with BioRender.com) (accessed on 4 March 2021).

Table 1. List of current licensed vaccines against arboviruses.

Pathogen Vaccine Name Year Licensed Efficacy Component References

Dengue virus Dengvaxia
(CYT-TDV) 2015 25–59%

Live attenuated
tetravalent

chimeric vaccine
[17]

Yellow fever virus YF-VAX 2001 >95%
Live attenuated

yellow fever virus
strain 17D-204

[11,18]

Yellow fever virus STAMARIL 1986 Comparable to
YF-VAX

Live attenuated
yellow fever virus

strain 17D-204
[19]

Japanese
Encephalitis virus IXIARO/JESPECT 2009 99.3% Live attenuated

SA-14-14-2 [13,20]

Current vaccines contain “pathogen-derived” molecules and are designed to induce
protective immunity by targeting pathogen invasion and survival mechanisms, thereby
blocking their replication in the host. However, most pathogens transmitted by arthropods
are deposited under the vertebrate skin along with the arthropod saliva during blood feed-
ing [21]. Saliva is composed of a wide range of molecules whose objective is to counteract
the vertebrate hemostasis and facilitate blood uptake [22]. Salivary proteins can be cata-
loged into three main groups—anticoagulants, vasodilators, and immunoregulators—but
some proteins may have redundant functions, all to increase the chances of successful meal
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acquisition [23]. Recently, there has been an increasing interest in different options for
vaccines against vector-borne diseases. These options include identifying salivary proteins
associated with potentiating pathogen survival and disease progression. These vaccines
will contain “mosquito-derived” molecules.

Compelling evidence suggests that arthropod salivary proteins induce profound
changes in immune responses in the vertebrate host both locally (at the feeding site)
and systemically [24], eventually providing a vehicle for pathogen transmission [25–27],
and pathogens usually take advantage of the immunomodulatory properties of the vec-
tor saliva to successfully establish infection [22,28]. These salivary proteins also induce
significant humoral and cellular immune responses in the host [24,29]. There is evidence
that protective immunity against vector-borne diseases may not only be directed against
the pathogen, but also against the vector salivary components [30,31]. Thus, an increased
number of studies are focused on identifying key salivary proteins from the main vectors
of human disease and characterizing their potential as vaccine candidates (Table 2). This
study focused on the recent arthropod salivary proteins that have been identified as poten-
tial vaccine candidates for humans to prevent arboviruses transmitted among humans by
Aedes aegypti mosquitoes and other pathogens transmitted by ticks.

Table 2. List of salivary proteins studied as potential vaccine candidates.

Pathogen Protein Species Function Phase References

Zika virus NeST1 Aedes aegypti

Prevents early
changes in

inflammatory
milieu.

Pre-clinic [32]

Zika virus AgBR1 Aedes aegypti

Prevents early
changes in

inflammatory
milieu.

Pre-clinic [33,34]

Zika virus LTRIN Aedes aegypti
Binds and inhibits
the lymphotoxin-β

receptor (LTβR)
Pre-clinic [35]

Dengue virus CLIPA3 Aedes aegypti

Disrupts
extracellular

matrix allowing
virus

dissemination

Pre-clinic [36]

Dengue virus D7 Aedes aegypti
Inhibits DENV

infection in vitro
and in vivo.

Pre-clinic [37]

Dengue virus Aegyptin Aedes aegypti

Blocks
collagen-induced

platelet
aggregation

Pre-clinic [38]

Dengue and Zika
virus AaVA-1 Aedes aegypti

Increases viral
replication in

macrophages and
dendritic cells.

Pre-clinic [39]

Mosquito
transmitted

diseases
AGS-v Anopheles gambiae

Increases
vaccine-specific

IgG antibodies and
cellular responses

Phase 1 [40]
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2. Arthropod Salivary Protein Candidates for Vaccines

Since the presence of mosquito saliva in the skin has profound effects on pathogen
replication and immunomodulation, leading to disease progression [29,36], several salivary
proteins have been characterized as potential vaccine candidates [41]. The rationale is that
blocking the enhancing effect of such salivary proteins may block infection. In this regard,
several proteins are currently being studied for their potential to block infection in the
vertebrate host.

The Ae. aegypti Bacteria-Responsive protein 1 (AgBR1) is identified using serum from
mice chronically exposed to Ae. aegypti bites and is associated with inflammation and
neutrophil recruitment in the skin following a blood meal [34]. Recent studies demonstrate
that neutrophil recruitment is key in the initiation of a cascade of events leading to the
recruitment of virus target cells [27]. Interestingly, AgBR1 antiserum decreases inflam-
mation in the skin, and antibodies against this protein suppress viral dissemination and
induce protection against the lethal Zika virus (ZIKV) infection [34,42]. They also reduce
the initial viral load of West Nile virus (WNV) following exposure to an infectious blood
meal taken by Ae. aegypti [33]. Another Ae. aegypti salivary protein acting on neutrophils
and inflammation is Neutrophil Stimulating Factor 1 (NeSt1) [32]. Passive immunization
against NeSt1 decreases pro-inflammatory cytokines such as interleukin-1β and CXCL2
and prevents macrophages from infiltrating the blood feeding site, thereby decreasing
ZIKV [32].

A recent study by Sun and collaborators (2020) [39] described an Ae. aegypti venom
allergen-1 (AaVA-1) found to activate autophagy in dendritic cells and monocytes, promot-
ing DENV and ZIKV virus transmission. AaVA-1 is specifically expressed in the salivary
glands of female Ae. Aegypti. In the vertebrate host, AaVA-1 competes with a leucine-rich
pentatricopeptide repeat (PPR)-containing protein (LRPPRC), which is an autophagy an-
tagonist on mitochondria. The study also suggests that AaVA-1 may play a regulatory
role in other immune responses, and the knockdown of AaVA-1 resulted in the greatest
reduction in ZIKV and DENV [39], suggesting AaVa-1 as a potential vaccine candidate.

Several other proteins in Ae. aegypti saliva are known to enhance virus replication. The
CLIPA3 protein, with serine protease activity, has been shown to disrupt the extracellular
matrix, enabling DENV dissemination in vivo [36]. A 34kDa salivary protein was found to
inhibit type I interferon (IFN), inhibit antimicrobial peptide (AMP) expression, and increase
DENV replication in human keratinocytes [43]. This protein is found in significant amounts
in Ae. aegypti saliva, and studies show that it is immunogenic, inducing significant levels
of antibodies correlated with the intensity of exposure to mosquito bites [44,45]. These
salivary proteins may also be suitable vaccine candidates, but further investigation on the
effect of specific antibodies against them is needed.

To date, the only mosquito salivary-based vaccine currently in phase 1 trial is the
Anopheles gambiae saliva vaccine (AGS-v), a synthetic peptide-based vaccine composed
of four peptides (32–44 amino acids in length) predicted to be T-cell epitopes of proteins
contained in An. gambiae salivary glands, but conserved across Anopheles, Aedes, and
Culex mosquitoes [40,46]. Immunized individuals showed a significant increase in vaccine-
specific total IgG antibodies and IFN-γ. The study determined that AGS-v was well
tolerated, and, when adjuvanted, immunogenic, suggesting that the vector-targeted vaccine
administration in humans is safe and could be a viable option for the increasing burden of
vector-borne disease [40,41].

Several studies suggest there are salivary proteins present in the saliva of vectors
that have detrimental effects on pathogen survival. The D7 salivary protein family is
widespread among blood-sucking dipterans and represents one of the most abundant
groups of proteins in arthropod saliva [47,48]. D7 are known platelet aggregation inhibitors
that bind biogenic amines and eicosanoids [49]. We recently identified a D7 Long (D7L)
(AAEL006424) salivary protein from Ae. aegypti mosquitoes that were highly abundant
in salivary fractions that inhibited DENV replication [37]. Our studies demonstrated that
this D7L protein was able to physically bind DENV virions and inhibit infection in vitro
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and in vivo [37]. Our preliminary studies also suggested that IgG antibodies against this
D7L protein may be present at significantly higher levels in people with an active DENV
infection [50]. In accordance with these results, a recent study showed that immunization
against a D7L salivary protein from Culex mosquitoes increases disease severity with WNV
in mice infected through a mosquito bite [51]. It is possible that antibodies against specific
D7 with antiviral properties enhance virus infection. However, in an in silico analysis by
Sankar et al. (2017) [52], two B-cell and T-cell epitopes were identified from a D7L and
D7 short form (D7S). They postulate that immunity against these proteins decreases the
efficiency of the blood meal process and could lead to protection against arboviruses [52].
Another Ae. aegypti salivary protein with a potent antiviral effect is aegyptin, a salivary
protein known to block collagen-induced platelet aggregation [38]. Mice inoculated with
aegyptin show a significant decrease in DENV replication [38,53]. It is also possible that
antibodies against the D7L and aegyptin may inhibit their antiviral effect and promote
virus transmission to the vertebrate host [37,50]. Therefore, further studies are needed to
test these assumptions in vivo and in vitro.

One important question to ask now is why are people within endemic areas producing
immune responses against mosquito saliva still becoming infected by the pathogens? The
answer mainly relies on previous studies that suggest there are differences in the protein
content of saliva from infected versus uninfected mosquitoes [54,55]. Although people
may be exposed to significantly higher numbers of uninfected bites, the response against
each immunogenic salivary protein is not the same as discussed previously. Thus, more
studies are needed to elucidate natural immune responses against salivary proteins of the
major vectors in people who have been chronically exposed versus those with seasonal
or temporary exposure and correlate those studies to foresee how saliva-based vaccines
would protect against arboviruses in each population.

3. Tick Salivary Proteins and Pathogen Transmission

The study of salivary proteins to control viral disease is more advanced in mosquitoes
than in ticks. However, several salivary proteins contained in tick saliva have been studied
as potential candidates to avoid tick feeding on a host or to prevent a pathogen from
establishing an infection (Table 3). Lyme disease is the most common vector-borne disease
in North America and Europe and can lead to serious health complications [56,57]. Probably
the most notorious saliva–pathogen interaction studied in ticks involves the Ixodes scapularis
salivary protein 15 or Salp15, named after its 15-kDa calculated molecular mass, which
has been related to the transmission of Borrelia burgdorferi s.s., the causative agent of
Lyme disease [58]. Salp15 expression is increased in infected ticks during feeding, and it
binds directly to the spirochetes through the Outer Surface Protein C (OspC), protecting
the pathogen from antibody-mediated killing [58,59]. Salp15 also inhibits CD4+ T-cell
activation by binding to the CD4 coreceptor of mammalian T-cells, thereby inhibiting
receptor ligand-induced early cell signaling [57]. Recent studies suggest that antibodies
against Salp15 protect mice from suffering Lyme disease [60]. Another salivary protein
whose name is based on the calculated molecular mass and also secreted by I. ricinus is
known as Salp25D, a glutathione peroxidase homolog acting as a potent antioxidant in
tick saliva [61,62]. Salp25D is highly immunogenic and associated with a decrease in tick
infestation in immunized mice [62].

Another protein in the saliva of I. ricinus is the Tick Salivary Lectin Pathway Inhibitor
(TSLP), which prevents the complement system from killing the bacterium [63]. The other
salivary protein is the Tick Histamine Release Factor (tHRF), which has been related to the
blood-feeding of the vector and facilitates the transmission of Borrelia spp. to the host—this
was proven from trials with mice immunized with recombinant tHRF proteins and an
altered blood-feeding process was observed in ticks, showing another good candidate for
a vaccine based on blocking transmission [64]. Pre-clinical studies with these proteins in
mouse models suggest they may represent good candidates for vaccines to interrupt the
transmission cycle of Lyme disease [63,65].
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Rhipicephalus microplus, the cosmopolitan species known as the Asian blue tick,
is associated with the transmission of Babesia bigemina, Anaplasma marginale, Anaplasma
platys, and Ehrlichia spp. [66]. An anti-tick vaccine based on a constructed transcriptome
from all stages of R. microplus salivary glands displayed four salivary proteins named
Rm39, Rm180, Rm239, and Rm76 in their recombinant forms, which showed significant
activity in silico and then were used in vaccine preparations to test in cattle if these proteins
could induce immunity against R. microplus ticks feeding at all stages of development. The
study shows that the four recombinant proteins induced significant antigen-specific IgG
antibody responses, especially a small amount of specific IgG1 antibodies that recognized
epitopes after continuous immunization episodes, leading to a decrease in tick infestation
during the blood meal process after multiple expositions at tick feeding sites [67,68].

Parasitoses, such as babesiosis and theileriosis (also known as Piroplasmosis), are im-
portant diseases in agriculture, and several salivary proteins from tick vectors are currently
under study to evaluate their potential to avoid pathogen transmission or reduce the num-
ber of arthropods feeding in the host, leading to a reduced risk of diseases. In this regard,
a calcium-binding protein known as calreticulin, which is a multifunctional protein present
in almost all animal cells, is secreted by ticks into their hosts [69]. This has been a point of
interest for some researchers trying to determine if the secretion of calreticulin during the
feeding process is linked to modulating the parasite-host interaction. Evidence suggests an
important role of calreticulin in host immunosuppression and anti-hemostasis during the
blood meal process [70]. Additionally, a study on calreticulin from Haemaphysalis qinghaien-
sis, the vector of Babesia spp., and Theileria spp. in the Asian continent, is named HqCRT.
Sheep vaccinated with its recombinant version suggest that the protein is immunogenic
and recognized by specific antibodies in the sheep serum and induces a significant increase
in tick mortality after blood feeding [71]. Other calreticulin proteins from species affecting
livestock are found in larvae and engorged female salivary gland extracts of Haemaphysalis
longicornis (rHlCRT) and R. microplus (rBmCRT) [72].

Tick-borne encephalitis virus (TBEV) is the most important vector-borne virus infection
in Europe and Northern Asia [73]. The major vectors of TBEV are I. ricinus (associated
with the European TBEV subtype) and I. persulcatus (associated with the Northern Asia
TBEV subtypes) ticks [74]. Cement proteins are secreted by ticks to attach the mouthparts
to the host during blood feeding. A 15kDa protein called a 64-tachykinin-related peptide
(64TRP) was identified as a cement protein in Rhipicephalus appendiculatus ticks, increasing
the transmission of TBEV. Another study suggests that antibodies against this protein
confer protection against TBEV transmitted by I. ricinus in a mouse model [75]. Some
studies suggested that vaccination with 64TRP increased antibody titers and induced the
infiltration of white blood cells in immunized mice [75,76]. The 64TRP was also found to
increase CD4+ and CD8+ T lymphocyte, thereby conferring antiviral protection and delayed
hypersensitivity response [75]. In hamster, guinea pig, and rabbit models, 64TRP may
present a dual-action against TBEV by impairing attachment and feeding at feeding sites
and cross-reacting with the midgut antigens, resulting in the early mortality of engorged
I. ricinus ticks after feeding [75,76].

Table 3. List of salivary proteins studied as potential vaccine candidates.

Pathogen Protein Species Function Phase References

Tick Borne
Encephalitis virus 64TRP Rhipicephalus

appendiculatus

Disrupts the skin
feeding site and then
specific anti-64TRP

antibodies cross-react
with midgut antigenic

epitopes.

Pre-clinic [75,76]
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Table 3. Cont.

Pathogen Protein Species Function Phase References

Lyme disease SALP15 Ixodes scapularis

Inhibition of CD4+
T-cell activation by
binding to the CD4
coreceptor of host
T-cells, inhibiting

receptor
ligand-induced early

cell signaling.

Pre-clinic [58,77]

Lyme disease SALP25D Ixodes scapularis

Detoxified reactive
oxygen species at the

tick–bacteria–host
interface that provides
a survival advantage

to B. burgdorferi.

Pre-clinic [62,64]

Lyme disease TSLP Ixodes scapularis
Protects B. burgdorferi
from the complement

system.
Pre-clinic [78]

Lyme disease tHRF Ixodes scapularis

Facilitates the
transmission of

Borrelia spp. to the
mammalian host.

Pre-clinic [64]

Babesiosis and
Theileriosis HqCRT Haemaphysalis

qinghaiensis

Induces host good
humoral response

against ticks feeding
process.

Pre-clinic [71,79]

Babesiosis and
Theileriosis HlCRT Haemaphysalis

longicornis

Induces host good
humoral response

against ticks salivary
extracts.

Pre-clinic [72]

Babesiosis and
Theileriosis rBmCRT Rhipicephalus

microplus

Induces host good
humoral response

against ticks salivary
extracts.

Pre-clinic [72]

Anaplasmosis Sialostatin Ixodes scapularis

Affects the formation
of inflammasomes

promoting host
infection

.Pre-clinic [80,81]

4. Natural Antibody Responses against Arthropod Salivary Proteins and Disease

The design and implementation of proper tools for the evaluation of vaccines’ efficacy
need to be set in place when designing the vaccines. These tools are needed to accurately
measure the exposure to specific disease vectors and to calculate disease risks to guide
public health policy after the implementation of new or improved vaccines against vector-
borne diseases. We believe it is important to determine mosquito feeding intensity through
measuring IgG antibodies against specific salivary proteins as a means of determining how
much exposure to mosquito bites a person has suffered after vaccination.

A significant number of salivary proteins are immunogenic and induce antibody
responses that correlate with the intensity of exposure to mosquito bites [82,83]. These
antibody responses are mainly the IgG type, with the IgG4 subclass being the most promi-
nent [84–86]. Significantly higher levels of IgE antibodies are present in people with allergic
reactions against arthropod saliva [85,86]. Studies indicate that saliva from both mosquitoes
and ticks contain immunogenic proteins [83,87,88]. Our study using A. americanum SGE
showed significant changes in antibody levels between seasons. Specifically, we observed
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a significant decrease in IgG antibodies in the fall compared to those shown by the same
volunteers in the summer [87]. IgM antibodies are also elicited against these salivary
proteins and our studies showed that IgM antibodies against whole salivary gland extract
(SGE) correlated with IgG antibody levels against DENV [88]. However, they have a low
correlation with bite exposure intensity or risk of suffering a disease [89,90].

Antibodies against an arthropod’s saliva are short-lived [40,87,89], diverse, and not
equally produced against all salivary proteins [91]. Thus, only a few individual proteins
have been evaluated as markers for vector-bite exposure [91,92]. As previously discussed,
the 34kDa protein is highly immunogenic and there is currently one Ae. aegypti peptide
derived from this protein, the Nterm-34kDa, that has been evaluated as a proxy to quantify
exposure to Aedes bites (Table 4). The level of IgG antibodies against the Nterm-34kDa
is positively correlated with the intensity of exposure [44,45], but the correlation with
disease status or active arbovirus infection is under study. The salivary protein 34k2
from Ae. albopictus has also presented a significant correlation with exposure to mosquito
bites [93].

Table 4. Natural antibody responses against arthropod salivary proteins.

Spp. Salivary Protein Antibody Response References

Aedes aegypti 34kDa IgG [92]

Aedes albopictus 34k2 IgG [93]

Aedes communis 36kd IgE, IgG4 [85,86]

Aedes aegypti D7 IgG [50]

Aedes caspius SGE IgG [83]

Aedes aegypti SGE IgG, IgM [84,88]

Interestingly, antibody responses against arthropod salivary proteins may vary ac-
cording to factors such as age or seasonality [50,87,89]. Several studies suggest that the IgG
responses to mosquito salivary proteins may serve as surrogate biomarkers for exposure to
mosquito bites and as an indirect marker for disease risk in travelers and individuals living
in endemic areas, since IgG antibodies decrease significantly in the absence or in the event
of a decrease in exposure to mosquito bites after vector control interventions [88,90]. Other
studies have also shown that people living in houses where Ae. aegypti larvae are found
present significantly higher IgG antibody levels against the SGE of this mosquito species
than people whose houses are mosquito-free. Further studies later suggested that the level
of IgG antibodies against salivary proteins are also correlated with socioeconomic status
and the presence of disease, possibly because mosquito presence in households could be
associated with factors such as access to running water, water storage, and access to public
waste systems [94].

5. Conclusions

Salivary proteins from the main arthropod vector of human pathogens may represent
viable alternatives to increase the efficacy of vaccine candidates against vector-borne
diseases. Some of these proteins may even represent an alternative to tackle several
pathogens sharing the same vector or vectors within the same family or subfamily. Other
salivary proteins can also be used as biomarkers of exposure, which is useful in measuring
the efficacy of salivary-based vaccine candidates by allowing the direct measurement
of exposure to vector bites and the risk of disease in vaccinated versus unvaccinated
populations. The therapeutic efficacy and potential of salivary proteins has created a new
scientific development that can be used in vaccine development to tackle viruses and
vector-related diseases affecting humans and their environment (Figure 2).
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antibodies against specific vector salivary proteins are found in people exposed to bites and pre-
senting disease. (B) These antibody levels can be used to design risk maps and to identify vector-
human-contact “hot spots” within a community. With the proper model, changes in antibody lev-
els can be used to predict epidemics before they occur. (C) The identification of “hot spots” may 
reduce intervention cost by directing efforts to areas where more human contact rates are ob-
served protecting the entire community (figure created with BioRender.com and 
MindtheGraph.com) (accessed on 4 March 2021). 
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