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Abstract

Genome-wide association studies (GWAS) have been performed for many psychiatric disorders and revealed a complex

polygenic architecture linking mental and physical health phenotypes. Psychiatric diagnoses are often heterogeneous, and

several layers of trait heterogeneity may contribute to detection of genetic risks per disorder or across multiple disorders.

In this review, we discuss these heterogeneities and their consequences on the discovery of risk loci using large-scale genetic

data. We primarily highlight the ways in which sex and diagnostic complexity contribute to risk locus discovery in schizo-

phrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorder, posttraumatic stress disorder,

major depressive disorder, obsessive-compulsive disorder, Tourette’s syndrome and chronic tic disorder, anxiety disorders,

suicidality, feeding and eating disorders, and substance use disorders. Genetic data also have facilitated discovery of clinically

relevant subphenotypes also described here. Collectively, GWAS of psychiatric disorders revealed that the understanding of

heterogeneity, polygenicity, and pleiotropy is critical to translate genetic findings into treatment strategies.
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Introduction

Genome-wide association studies (GWAS) are powerful

tools for risk allele and gene discovery when applied to
complex traits.1 The resulting data enable investigation
of biological mechanisms, pathways, tissues, and cell
types relevant for phenotype etiology,2–4 evolutionary
pressures shaping genetic risk for a trait in the general
population,5–9 and correlation and causal inference
between traits.10–15

In psychiatry, GWAS have uncovered a high degree of
polygenicity underlying mental illnesses and related com-
plex phenotypes.8,16–35 Polygenicity describes the contri-
bution of many single nucleotide polymorphisms (SNPs)
with relatively small effect sizes to phenotype develop-
ment. This phenomenon is ubiquitously observed in psy-
chiatric disorders and comorbid phenotypes, as evidenced
by the detection of tens to hundreds of genome-wide sig-
nificant (GWS) linkage disequilibrium (LD) independent
loci.1 Additionally, omnigenic models of complex traits
suggest that highly interconnected gene regulatory

networks influence trait etiology through a set of core

genes and their associated regulatory elements and mem-

bers of similar protein pathways.36

Though rare and structural variation contribute to

the genetic liability of psychiatric disorders,37–39 the

magnitude and ubiquity of GWAS data limit the scope

of this review to common genetic variation. Here, we

discuss GWAS-based methods for interrogating the eti-

ology of psychiatric disorders. Next, we describe the

polygenic nature of psychiatric disorders and how genet-

ic and phenotype heterogeneity may affect our ability to

detect risk loci for these traits. Finally, we briefly discuss
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future directions for the field of psychiatric genomics,

including the advantage of large GWAS consortia and

biobanks for exploring phenotype heterogeneity using

genetic data.

GWAS for Detecting the Polygenic

Architecture of Psychiatric Disorders

The primary goal of human genetics is to identify risk

and protective factors for disease. Many aspects of
human health and disease pose a challenge toward this

goal. Complex traits lack a single gene with large enough

effects to study in singularity with generalizable findings.

Conversely, GWAS of complex traits have revealed large

degrees of polygenicity underlying mental health (i.e.

psychiatric disorders, behavior, personality traits,

social science traits, and brain region measurements).1

GWAS are hypothesis-generating experiments that

detect relationships between allele frequency and cate-

gorical or quantitative phenotypes.40,41 The results of

GWAS are typically displayed as a Manhattan plot

with base-pair positions ordered per chromosome on

the x-axis and significance (–log10(association p value))

on the y-axis, creating a densely populated plot mimick-
ing the Manhattan skyline.

A successful GWAS requires a well-considered phe-

notype. Three diagnostic classification systems for psy-

chiatric disorders are used worldwide.42 The Diagnostic

and Statistical Manual of Mental Disorders (DSM, cur-
rently the 5th edition) was developed by the American

Psychiatric Association and is used primarily to guide

clinical practice and mental health research. The

International Classification of Diseases (ICD) was devel-

oped by the World Health Organization (WHO) and is

used by clinicians for charting patient diagnosis of both

physical and mental health conditions.43–45 The applica-
tion of each system varies widely throughout the world,

where DSM is widely used in the United States in con-

trast to the predominance of ICD in Europe.42 While

there is a high degree of overlap between these systems,

there is clinical heterogeneity, for example, in classifying

some psychiatric outcomes.46,47 Phenotype heterogeneity

may alter the sample allele distribution leading to (i)
false negatives (i.e. true differences in allele frequency

are masked) or (ii) false positives (i.e. allele frequency

differences due to unbalanced phenotype distribution).48

The Research Domain Criteria (RDoC) paradigm com-

pliments DSM and ICD classification systems by assess-

ing clinical phenotypes hypothesized to more closely

map onto underlying biological systems (e.g. neuroim-
aging data49 and brain circuit activity50). RDoC-based

approaches offer an alternative to heterogeneous diag-

nostic systems, by permitting assessment of negative and

positive valence, cognitive systems, sensorimotor

systems, social processing systems, and/or arousal and
regulatory systems across persons affected by different
disorders, as well as healthy comparison subjects.
Psychiatric disorders are often diagnosed based on a
heterogeneous combination of symptom counts (i.e. an
individual endorses a subset of symptoms but may not
meet all criteria) as well as meeting full diagnostic crite-
ria. These features also may be assessed for lifetime prev-
alence or, for example, last month prevalence. Note that
herein we summarize findings from large studies of psy-
chiatric disorders assessed with different instruments
and considering different diagnostic criteria.

Large-scale GWAS have been used to understand
many aspects of psychiatric disorders beyond risk locus
detection. Analysis of GWAS after locus discovery is
often termed “post-GWAS” analysis. Post-GWAS anal-
yses are commonly used to follow-up risk locus discovery
with additional sophisticated interpretation of GWAS
signals. Some of these analyses are briefly described
here. First, observed-scale heritability based on GWAS
data (SNP-h2) reflects the contribution of common genet-
ic information (rather than environmental or rare genetic
factors) to the trait (Figure 1). This phenotype attribute
may be conflated in case-control study designs by enrich-
ment of cases relative to the general population preva-
lence. SNP-h2 also may be biased by residual
population stratification from (i) higher than expected
relatedness among samples or (ii) phenotype definition
heterogeneity. It is understood that different functional
classes of the genome disproportionately contribute to
the SNP-h2. SNP-h2 estimates may then be partitioned
to identify enrichment or depletion of certain functional
classes of the genome such as enhancers, promoters, epi-
genetically regulated regions, and evolutionarily con-
served regions. Another frequently-used post-GWAS
method is genetic correlation whereby the per-SNP effects
on one trait are regressed against the per-SNP effects of a
second trait. The genetic liability for two traits may be
positively, negatively, or not correlated. More sophisticat-
ed analytic tools also shed light on, or take advantage of,
the polygenicity of psychiatric disorders, including
(i) polygenic risk scoring (PRS, i.e. regressing weighted
sum of per-SNP effects from one trait against another),
(ii) Mendelian randomization (i.e. evaluating causality
between phenotypes using genetic information as instru-
mental variables), (iii) functional annotation, fine-
mapping, and co-localization to untangle polygenicity
and prioritize casual risk loci, and (iv) structural equation
modeling (i.e. identifying latent factors connecting pheno-
types based on their genetic similarities).

Schizophrenia

Schizophrenia (SCZ) is a severe psychiatric disorder
affecting 1% of the worldwide population.51 Due to
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the high morbidity and mortality, it is also known as the

“cancer of mental illness.”52 SCZ is diagnosed based on

“positive” and “negative” symptoms. The former

include hallucinations and delusions, while the latter

involves avolition and withdrawal.53,54 Additionally,

SCZ cases often present with cognitive dysfunction and

deficits in executive function.55 Twin- and family-based

studies demonstrated that individuals related to SCZ

cases have an increased lifetime disease risk, ranging

from 50% for monozygotic twins to 2% for first cous-

ins.56 Genome-wide studies based on high-throughput

technologies have revolutionized our understanding of

the genetic predisposition to SCZ. In 2014, the

Psychiatric Genomics Consortium (PGC) conducted a

GWAS in 36,989 SCZ cases and 113,075 controls,18

identifying 128 independent associations spanning 108

loci and proving that SCZ architecture is highly poly-

genic. In an updated PGC analysis including �60,000

SCZ cases,57 more than 250 GWS risk alleles have

been identified, and an SCZ PRS showed that case-

control group means differ by over 2/3 of a standard

deviation (0.686; p¼ 1.1� 10–254). Simulations of differ-

ent degrees of polygenicity across complex traits showed

that SCZ could be affected at least 20,000 causal loci.58

Among the SCZ-associated loci, the strongest associa-

tion was observed in the major histocompatibility com-

plex region.59 This appears to be due to structurally

diverse alleles of the complement component 4 (C4)

genes that lead to a greater expression of C4A in SCZ

cases.60 Human C4 protein is localized to neuronal syn-

apses, dendrites, and axons, and, in animal models, C4

appears to mediate synapse elimination during postnatal

development.60 Although these previous findings sup-

port the role of increased synapse pruning in SCZ path-

ogenesis, a subsequent study in human postmortem

brains showed that only the smallest dendritic spines

are lost in deep layer 3 primary auditory cortex of

SCZ, while larger dendritic spines are retained.61 While

mechanistic studies are essential for understanding how

genetic associations contribute to disease, genome-wide

studies using polygenic instruments can shed light on

genetic heterogeneity in relation to phenotypic heteroge-

neity across SCZ cases. Comparing SCZ and bipolar

disorder (BD), it was possible to identify shared risk

loci, as well as loci associated that distinguish the two

disorders, and to characterize polygenic composition of

multiple underlying symptom dimensions.16 Another

SCZ characteristic is the negative association with

Figure 1. Test statistics from large-scale GWAS of psychiatric disorders (PMIDs provided) shed light on heritability and polygenicity. The
orange bars represent the LDSC (linkage disequilibrium score regression) intercept, which indicates the presence of potential biases in the
association analysis. The purple triangles represent the genomic inflection factor, which reflects the polygenicity of the trait when no
inflation is present. The full black circles represent the SNP-Heritability. Where these statistics were not included in the associated
manuscripts, they were calculated with LDSC using the 1000 Genomes Project European LD reference panel. For case-control pheno-
types, SNP-h2 is plotted on the liability scale.
SNP: single nucleotide polymorphism.
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cognitive ability and educational attainment.62 Genome-
wide analyses showed that there is a positive genetic cor-
relation between the liabilities to SCZ and educational
attainment.63 This apparently “paradoxical” result is not
due to possible confounders (e.g. LD or assortative
mating) but suggests the presence of two potential SCZ
subphenotypes: one resembling high intelligence and
BD, while the other is a cognitive disorder that is inde-
pendent of BD.64

Bipolar Disorder

BD is characterized by frequent mood swings between
depressive and manic phases. The lifetime prevalence of
BD is approximately 2.4% worldwide with twin-h2 of
80%.65 GWAS of BD have suggested a highly polygenic
architecture so far comprising of 30 distinct loci associ-
ated with BD susceptibility.66 The most replicated risk
genes are ankyrin 3 (ANK3) and calcium voltage-gated
channel subunit alpha1 C (CACNA1C). Variants of
these genes have been associated with white matter and
total brain volume, thus implicating brain size as an
intermediate phenotype. BD exists in two well-
documented clinical subtypes: BD-I and BD-II.66,67

BD-I is distinguished from BD-II by extreme manic epi-
sodes experienced by those affected.68,69 The SNP-h2 of
BD-I and BD-II have been estimated at 35% and 25%,
respectively, with a 78% genetic overlap.70 This genetic
overlap suggests many shared biological mechanisms
contributing to each BD subtype but also suggests spe-
cific characteristics of the biological underpinnings of
BD subtypes. For example, there was significantly great-
er relationship between (i) SCZ PRS and BD-I relative
to BD-II and (ii) major depressive disorder (MDD) PRS
and BD-II relative to BD-I.66,67,70–72 To date, the molec-
ular mechanisms underlying these differences have yet to
be robustly identified, but it is clear that studying BD as
a single disorder may inflate heterogeneity and reduce
power to detect the polygenic burden responsible for
BD subtypes.

Attention Deficit Hyperactivity Disorder

Attention-deficit hyperactivity disorder (ADHD) is one
of the most common psychiatric disorders affecting
youths in the United States.73 ADHD is characterized
by inability to focus, impulsivity, age-inappropriate
hyperactivity, and increased rates of antisocial, anxiety,
mood, and substance use disorders (SUDs). The lifetime
ADHD prevalence ranges from 2% to 12%74 with twin-
h2 estimates between 74% and 80%.75 A GWAS of
20,183 ADHD cases and 35,191 controls identified 12
GWS risk loci for ADHD and significant differences in
SNP-h2 and risk locus detection between sexes.19,76–78

Males are two to seven times more likely to be diagnosed

with ADHD than females and largely dominate the sam-
ples included in current GWAS.78,79 Several hypotheses
have been proposed for this sex difference. First is the
scenario that female ADHD is associated with a differ-
ent set of variants as compared with male ADHD.80,81

Another hypothesis is that females are more resilient to
developing ADHD and require a higher genetic burden
to present relevant diagnostic symptoms.82,83 Though
ADHD in males and females are highly genetically and
phenotypically correlated,78,82 GWAS are only begin-
ning to elucidate the differences in genetic liability to
ADHD across sexes. So far, there is minimal evidence
that polygenic risk for ADHD contributes to, or shares
underlying biology with, different co-occurring condi-
tions or behaviors unique to each sex.84 To date, there
have been no GWS findings for ADHD in females
though this may be attributed to decreased sample size
and lower population prevalence. ADHD PRS has
shown positive associations with educational and cogni-
tive outcomes,85 body mass index,84 neuroticism,86 exter-
nalizing behaviors (e.g. smoking, aggression,
impulsivity, risk-taking),82,84,85,87 and interpersonal
communication behaviors.88 In addition to sex differen-
ces, ADHD is one of the most heterogeneously diag-
nosed psychiatric disorders with over 116,200
diagnostic combinations according to DSM-IV and
DSM-5 criterion counts. Additionally, not all criteria
are required to make an ADHD diagnosis such that
two individuals with ADHD may not share any diagnos-
tic criteria resulting in a level of diagnostic heterogeneity
that may confound risk locus effects in genetic studies of
ADHD.89 For example, the commonly implicated DAT1
underlying ADHD psychopathology has only robustly
been implicated in ADHD cases without conduct-related
diagnostic criteria.75,90

Autism Spectrum Disorder

Autism spectrum disorder (ASD) is the term used to
describe a group of pervasive neurodevelopmental dis-
orders characterized by impairment in social and com-
munication skills often accompanied by repetitive and
restrictive behaviors.23 Clinical manifestation of ASD
is highly heterogeneous with the majority of ASD indi-
viduals receiving a diagnosis during early childhood and
adolescence.91–95 Heterogeneity in ASD may manifest as
intellectual capabilities ranging from severe disability to
high intelligence quotients96 or the type of social cogni-
tion impaired (i.e. person-perceptive versus people-
perceptive social skills).97,98 Clinically, specific ASD
diagnoses tend to be defined based on the degree of intel-
lectual ability in the affected. Asperger’s syndrome, for
example, represents some of the least severe cognitive
impairments along the autism spectrum.99,100 Because
ASD manifests as a spectrum of phenotypes, grouping
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individuals into ASD cases versus controls may intro-
duce heterogeneity even though cases cluster together
on the primary phenotype level. It has been demonstrat-
ed that reducing this spectrum phenotype heterogeneity
only modestly improves genetic homogeneity in contem-
porary studies with large ASD sample sizes.96 ASD
affects 1% to 1.5% of the population, and males are
diagnosed more often than females.101 Similar to
ADHD, the hypothesis of a female protective effect
exists for ASD whereby females may require a greater
genetic burden to develop symptoms.101 There is evi-
dence that testosterone levels of males relative to females
may contribute to increased vulnerability to etiological
factors in ASD cases102,103 and putatively defines mech-
anistic factors inducing heterogeneity detectable by
large-scale genetic studies. These sex differences have
recently been implicated in investigation strategies of
empathizing-systemizing and automatizing-systemizing
theories of ASD heterogeneity.97,98,104–106 The polygenic
risk for ASD has been associated with cognitive abili-
ty,107 various changes in DNA methylation at birth,108

and gray matter volume in healthy and psychiatric
patients.109 Studies of the relationship between genetic
risk for ASD and other human health and disease phe-
notypes have revealed interesting findings. First, ASD
genetic risk indeed predicts ASD severity; however,
ASD PRS do not cleanly stratify individuals into more
clinically severe ASD symptom criteria.107,110 This
observation suggests that though phenotypic ASD sub-
types exist, they may not appropriately stratify ASD for
genetic studies.96 Second, the genetic risk for ASD in
ASD unaffected individuals (i.e. unaffected individuals
carrying ASD) associates with features of healthy
neurodevelopment.98,106

Posttraumatic Stress Disorder

Posttraumatic stress disorder (PTSD) affects individuals
who have experienced, witnessed, or been confronted
with an event involving actual or threatened danger.
This required environmental component of PTSD
makes it unique among DSM-5 disorders without such
required etiologies. Diversity among traumatic experi-
ence adds substantial heterogeneity to PTSD cases,
and this diversity can be detected with GWAS.27,30

Given the abundance of PTSD in veteran populations,
exposure to combat-related experiences has garnered
much attention. Two large studies of PTSD estimated
SNP-h2 of 2% to 5% in the PGC international meta-
analysis and 6.4% to 10.1% in the Million Veteran
Program (MVP).30 These cohorts represent different
trauma exposures with MVP comprised mostly of
males exposed to military combat and PGC comprised
of international sex-balanced PTSD cases exposed pri-
marily to civilian traumas. Traumatic events vary by sex,

demography, and socioeconomic status. Males have
higher rates of overall trauma exposure, yet females
are more likely to develop PTSD following similar
trauma, resulting in approximately doubled lifetime
PTSD prevalence in U.S. females (8%) relative to
males (4.1%).111,112 Furthermore, sexual trauma is
more prevalent among females, and males are more
likely to experience nonsexual assaults, death/injury,
and military combat. Specific traumas also appear to
convey different magnitudes of risk for PTSD.113 Sex
differences are reflected in sex-stratified GWAS where
the SNP-h2 of PTSD in males was no different from
zero regardless of ancestry and the SNP-h2 of PTSD in
females was 8% to 18% with African ancestry individ-
uals demonstrating the highest SNP-h2 estimates.27,114

Additional heterogeneity of PTSD can be seen among
the responses to trauma evaluated for PTSD diagno-
sis.22,30 Including the PTSD symptom criteria of reexper-
iencing, avoidance, negative emotional symptoms, and
hyperarousal, there are 636,120 possible combinations
by which a person may be diagnosed with PTSD.115

Several loci (localizing near genes MAD1L1, TCF4,
and TSNARE1) have been implicated across symptoms,
lending support for these loci as putative targets for
PTSD treatment. Lastly, there is considerable heteroge-
neity in the longitudinal course of PTSD, with distinct
trajectories of symptom onset, severity, and remission
that may be in part related to trauma context, sex,
access to care, and other unmeasured influences.116,117

Future work in PTSD genetics will surely begin address-
ing how differences in genetic risk also influence PTSD
trajectory and prognosis.

Major Depressive Disorder

MDD is the unceasing depressive or low mood lasting for
more than two weeks accompanied by disturbances in
weight, circadian rhythms, elevated negative emotions,
and self-debilitating thoughts. The lifetime prevalence of
MDD in the United States is approximately 20.6%,118

and twin-h2 is estimated between 30% and 40%.119

MDD is associated with socioeconomic burden and all-
cause mortality and is thus a leading cause of disease
burden worldwide.120 Phenotypic heterogeneity of MDD
is primarily driven by sex differences; the lifetime preva-
lence of MDD in females is 26.1% and in males is
14.7%.118 To date, GWAS have identified many loci con-
ferring risk for MDD, the largest of which (N¼ 807,553
individuals) detected 102 MDD risk loci.24,32,121–123

Though effective sample sizes continue to increase, SNP-
h2 estimates converge between 8.7% and 8.9%.24

Heterogeneity in MDD may be evident by the presence
of five DSM-IV diagnostic criteria and lower SNP-h2 esti-
mates in males versus females.124 Furthermore, many of
the single-item criteria for an MDD diagnosis (e.g.
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“nerves, anxiety, tension or depression,” and “self-
reported depressive symptoms with associated
impairment” items in the UK biobank) overlap with
multi-item diagnostic instruments for other disorders
such as BD and SCZ.24,121,125 These shared diagnostic cri-
teria may reduce accuracy of PRS in stratifying MDD
individuals and introducing heterogeneous genetic associ-
ations. It is important to note that MDD, like other psy-
chiatric disorders, exists as a spectrum rather than clear
case-control distinction, and the reduction of MDD into
such a binary classification system may introduce hetero-
geneity among case and control categories.

Obsessive-Compulsive Disorder

Obsessive-compulsive disorder (OCD) is characterized by
recurrent, intrusive, or unwanted thoughts, images, or
impulses that provoke anxiety and actions to ameliorate
that anxiety. OCD cases display concerns about contam-
ination, responsibility for harm or injury, unacceptable
thoughts that are often sexual and/or religious in nature,
and symmetry, completeness, and the need for things to be
“just right.” Compulsive behaviors to neutralize anxiety
include excessive cleaning/hygiene, repeated checking, or
other ritualized thoughts and behaviors. The lifetime prev-
alence of OCD is 1% to 3%,126,127 and twin-h2 is estimat-
ed to be 48%.128 To date, OCD GWAS have not detected
any GWS risk loci, but genetic data estimate SNP-h2 at
28%.129 There are notable sex differences observed in clin-
ical presentations of OCD, with males comprising roughly
two thirds of childhood-onset cases and reporting a higher
incidence of obsessions related to religious/sexual thoughts
and symmetry themes.127,130 Females are more likely to
present with late-onset OCD and report higher rates of
precipitating events (e.g. pregnancy and childbirth), exac-
erbation of symptoms with hormonal events, and higher
rates of comorbid eating disorder.127,130 Obsessive themes
among females with OCD tend to center around
hygiene.127 Large-scale GWAS of OCD in sex-stratified
cohorts failed to detect significant SNP-h2 in males but
estimate significant SNP-h2 in females (30%). Sex-
stratified OCD GWAS are underpowered to formally
test the genetic correlation between them; however, per-
SNP effect sizes tend to positively associate. One study
suggested that SNP-h2 may vary across different age
groups with greater SNP-h2 estimates in OCD of younger
individuals (h2¼0.43) versus older individuals (h2 not sig-
nificant).131 OCD has received considerable attention due
to its relationship with other psychiatric disorders. In a
familial co-aggregation study, first-degree relatives of
OCD patients had more than double the risk for BD (rel-
ative risk (RR) confidence interval (CI)¼ 2.68–3.04),
MDD (RR CI¼ 2.58–2.67), ASD (RR CI¼ 2.10–2.71),
ADHD (RR CI¼ 2.07–2.32), and SCZ (RR CI¼ 1.86–
2.09).132 Exploring how OCD relates to these other

psychiatric disorder revealed overlapping exomes and

polygenic risk between OCD and SCZ and identified

DMN3 as one suggestive link between the two
disorders.133

Tourette’s Syndrome and Chronic Tic

Disorder

Tourette’s syndrome (TS) is typically diagnosed before

18 years of age and requires two or more motor and at

least one phonic tic lasting more than one year.134 The

related diagnosis, chronic tic disorder (CTD), requires
the presence of two or more of either motor or phonic

tics, but not both. TS has a prevalence of 0.3% to 0.8%

and occurs more frequently in males, at a ratio of

approximately 3.5:1,135 with similar prevalence reported

for CTD.136,137 Though males tend to be diagnosed
more often than females, females experience greater

day-to-day burden of more severe tics.138–140 The largest

GWAS of TS (N¼ 14,307) identified a single GWS var-

iant and 39 suggestive associations.33 Estimates of TS
SNP-h2 range from 21% to 58%,33,131 with twin-h2 esti-

mates up to 60%.131 TS PRS were predictive of clinical

status in independent samples, with probands from mul-

tiplex families showing higher loading than those from
simplex families.33,141 Individuals with CTD have elevat-

ed TS PRS relative to controls. Childhood neurodeve-

lopmental disorders (e.g. ADHD, ASD, OCD, and TS/

CTD) share elevated rates of comorbidity as well as

shared subphenotypes (e.g. executive functioning,
impulse control, intrusive thoughts, repetitive behaviors,

and rigid adherence to routines), which pose challenges

for both clinical subphenotyping and for understanding

genetic effects. TS PRS have been associated with (i) the
presence, but not chronicity of tics and (ii) the severity of

symptoms associated with comorbid conditions.142

Much of the heterogeneity associated with TS and

CTD stems from the relationship between TS/CTD
and OCD and ADHD. Two TS subphenotypes have

been detected, the symmetry subphenotype and disinhi-

bition subphenotype, which have distinct genetic archi-

tectures not fully understood due to strict adherence to

DSM-based diagnoses.143 The symmetry subphenotype
was positively predicted by TS (but not OCD or ADHD)

PRS, while the disinhibition subphenotype was predicted

by OCD (but no other) PRS. In a cross-trait gene-based

study of OCD and TS, CADM2, LY6G6F, MEGT1, and
APOM were identified as GWS loci but were not

detected in other pairwise neurodevelopmental disorder

gene-based analyses142 To disentangle and specify genet-

ic relationships among these disorders, future studies
may benefit from (i) the incorporation of shared inter-

mediate phenotypes (ii) post hoc conditioning of analyses

to remove shared or nonspecific effects, and (iii)
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investigating molecular mechanism involving identified
gene targets shared and differentially expressed between
TS and other psychiatric disorders (e.g. OCD).143

Anxiety Disorders

Anxiety disorders in DSM-5 include separation anxiety,
selective mutism, specific phobias, panic disorder, ago-
raphobia, and generalized anxiety disorder (GAD).
The lifetime prevalence of anxiety is estimated at
31%.144,145 Twin studies suggest anxiety disorder
twin-h2 of 42%.146 Anxiety disorders are quite heteroge-
neous, and many subtypes are ubiquitously more prev-
alent in females.147 GAD is perhaps the most thoroughly
investigated by large-scale GWAS. GAD is defined as
the presence of excessive anxiety and worry about a vari-
ety of topics, events, or activities, typically lasting more
than six months. The excessive worry associated with
GAD is often to the point where the affected cannot
control themselves. Physical symptomology often
varies between cases and may include edginess, impaired
concentration, empty mindedness, irritability, muscle
aches, and sleeplessness.148–150 Recent GWAS of GAD
in >200,000U.S. military veterans identified risk loci
shared between GAD and SCZ and BD.25 Collectively,
the polygenic architecture of GAD-2 (a two-item GAD
symptom criterion checklist) significantly overlapped
with MDD, neuroticism, and PTSD.25 Though signifi-
cant overlap exists between various measures of anxiety
disorders (anxiety case-control,151 GAD-2,25 and GAD-
7152), these overlaps are not perfect, suggesting that the
distribution of anxiety symptoms in study cohorts may
be readily detected in the associated genetic data.
Anxiety disorders demonstrate substantial heterogeneity
based on age of the ascertained cohort.153,154 Two anx-
iety disorders, separation anxiety and selective mutism,
were once thought to be exclusively childhood disorders,
but it is now accepted that children and adults may
receive these diagnoses. There also is evidence that envi-
ronmental heterogeneity, such as childhood maltreat-
ment, moderate polygenic risk in genetic studies of
anxiety disorders.155–157

Suicidality

Worldwide, more than 1 million people complete suicide
every year making it the 10th leading cause of death in
the United States (12.6 deaths per 100,000).158 Nonfatal
suicidal behaviors also are a consistent emotional and
economic burden. Suicidal ideation, plans, gestures,
attempts, and completed suicides represent a continuum
of suicidal behavior. There is one death by suicide for
every 25 attempts,159 and some of attempts are severe
enough to require medical attention and may have long-
lasting sequelae. Having a psychiatric disorder is a major

risk factor for suicidal behaviors and individuals affected
by a mental illness may represent at least 90% of the
people who have died by suicide.160 However, most
people with mental disorders do not die by suicide,
and the risk of suicide is 5% to 8% for several mental
disorders.161 According to the stress-diathesis model, the
risk for suicidal acts is determined a stressor (such as
psychiatric illness) and a diathesis, such as a tendency
to experience more suicidal ideation and be more likely
to act on suicidal feelings.162 Twin, family, and adoption
studies identified a 30% to 50% h2 which appears to be
partially independent from psychiatric disorders.163

GWAS have just started to investigate suicidal behaviors
in relatively large cohorts.67,164–167 These analyses were
conducted on cohorts with different characteristics
including general population, military personnel, and
individuals affected by psychiatric disorders. Although
few risk loci were identified, a consistent genetic overlap
has been observed between MDD and suicidal behav-
iors.67,164–167 A recent multivariate genome-wide interac-
tion study detected that genetic risk for suicidal
behaviors is partially moderated by multivariate gene
interactions linking comorbid substance dependences
with suicidal ideation.168 This suggests that the pheno-
typic heterogeneity among individuals experiencing sui-
cidal behaviors increases the genetic complexity of these
traits. Genome-wide approaches have the potential to
disentangle the diverse characteristics observed among
individuals experiencing suicidal feelings and commit-
ting a suicidal attempt. However, much more informa-
tive cohorts are needed to achieve a comprehensive
understanding of the molecular basis of suicidal
behaviors.

Feeding and Eating Disorders

Eating disorders are classified as abnormal eating epi-
sodes occurring intermittently or frequently and lasting
for more than threemonths. DSM-IV recognized three
primary diagnoses: anorexia nervosa (AN), bulimia ner-
vosa (BN), and eating disorders not otherwise specified
(called EDNOS; diagnosed by omission of symptom cri-
teria for AN and BN). The prevalence rates of eating
disorders are affected by socioeconomic status.
Females experience higher prevalence than men, non-
Hispanic populations of European descent tend to
have higher prevalence than individuals of other ethnic-
ities, and there is some evidence that family income may
contribute to eating disorder prevalence.169 Psychiatric
comorbidities are common among eating disorder cases,
including MDD, anxiety, and OCD.170 The twin-h2 of
eating disorders varies from 40% to 60%.171 The SNP-h2

of eating disorders (cases included AN and BN;
N�14,000) was 20% in early studies of this class of
disorders.172
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Anorexia Nervosa

AN has a prevalence of 0.8% and is characterized by
restricted eating, weight loss, difficulties maintaining an
age- or height-appropriate body weight, and distorted
body image. Genetic studies have mostly focused on
AN likely due to the higher population prevalence com-
pared to other eating disorders. The most recent and
largest GWAS of 76,644 individuals detected eight risk
loci using diagnostic criteria from DSM-III to DSM-5.
The study reported SNP-h2 of approximately 11% and
relatively high genomic lambda (1.22) but appropriate
LD intercept which collectively provide evidence of
high polygenicity. Partitioning the SNP-h2 for mouse
model cell types identified spiny and pyramidal neurons
of the hippocampus, which are responsible for feeding
behavior and impetus. Additionally, reported genetic
correlation of AN with psychiatric disorders and meta-
bolic dysregulation parallels epidemiologically observed
comorbidities.31

Bulimia Nervosa

BN is characterized by cycles of bingeing and caloric
compensatory behaviors, such a vomiting, and its prev-
alence is 0.28%.169 While GWAS have provided much
needed resolution of genetic liability to AN, the genetic
liabilities of BN, and other eating disorders are less clear.
Larger sample sizes will indeed be required to detect
genetic correlations, SNP-h2, and underlying biology
associated with BN such that therapeutic and diagnostic
interventions may be developed.171

Substance Use Disorders

SUDs are characterized by uncontrolled desire for exces-
sive substance intake and inability to reduce the frequen-
cy of consumption. According to the WHO, there are
more than 180-million drug users worldwide.173 DSM-5
has expanded SUD definition to include gambling dis-
orders and combines the concepts of substance abuse
and dependence, though there is evidence of shared
and specific genetic effects for these traits.174

Commonly studied substances include alcohol, stimu-
lants (e.g. amphetamines and cocaine), tobacco, and
opioids.175 Phenotypic heterogeneity in SUDs stems
from various drug seeking patterns, environmental fac-
tors, pharmacokinetic and pharmacodynamic processes,
and psychiatric comorbidities.173 The characterization of
behavioral and psychiatric traits related to the use and
abuse of addictive substances in large cohorts remain
challenging due to several factors, such as the hypothe-
sized differences in recreational versus prescription use
and abuse and the societal stigma associated with use of
certain substances over others. These barriers are being
overcome through large consortium and biobank efforts,

but studies of some substances (e.g. opioids and cocaine)

remain underpowered to make robust conclusions about

underlying biology.

Alcohol

Individuals with alcohol use disorder (AUD) had high

comorbidity with other psychiatric disorders, while alco-

hol consumption has a much lower genetic correlation

with psychiatric disorders.176 AUD is measured by

dependence on extreme alcohol consumption and has a

twin-h2 of 50%.177 SNP-h2 for alcohol dependence aver-

ages around 10%. GWAS for alcohol dependence using

DSM and alcohol consumption with the AUD

Identification Test converge on variants in the alcohol

metabolizing gene ADH1B and other genes (GCKR,

SLC39A8, FTO, ADH4, SIX3, and DRD2) with shared

biological functionality. Only half of the genes overlap

between alcohol consumption and AUD suggesting dis-

tinct etiologies between consuming/using alcohol and

being dependent on its effects.178

Nicotine

Smoking cigarettes, whose primary substance is nicotine,

is a complex phenotype ranging from initiation, consis-

tent pattern, dependence, termination, and reversion.

The family-h2 for nicotine dependence is measured to

be 75%.179 GWAS have consistently replicated a

region on chromosome 15 consisting of CHRNA3,

CHRNA4, and CHRNA5 which explain 4% to 5% of

the variance in smoking-related phenotypes. These

results are analogous to other SUDs, drawing attention

to biological heterogeneity varying with the severity of

dependence.174,180,181

Opioids

Like AUDs, assessing differences between opioid use

and dependence proves essential to understanding the

polygenic architectures of these traits.20 A recent study

comparing opioid-exposed versus unexposed controls

detected SNP-h2 of 28%.174 A study conducted in

10,544 OUD cases and 72,163 opioid-exposed controls

from the MVP cohort identified OPRM1 Asn40Asp

(rs1799971) as a significant risk locus, also showing

genetic correlation with multiple substance use traits

and psychiatric illnesses and possible causal effects on

OUD risk from tobacco smoking, major depression,

neuroticism, and cognitive performance.34

Cannabis

The family-wise h2 of cannabis use is 45%, and recent

GWAS of 184,765 individuals reported SNP-h2 of 11%.

Genetic risk for cannabis use was positively genetically
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correlated with MDD and SCZ, risk-taking behavior,
and neuroticism.182 Age at cannabis initiation also
appears to be moderately heritable, and the significant
association with ATP2C2 is consistent with the role of
calcium signaling mechanisms in the propensity to can-
nabis use.183 In a GWAS of cannabis dependence, there
is a consistent overlap with potential genetic factors con-
tributing to major depression and SCZ.184

Conclusions and Future Directions

GWAS have contributed major advances to our under-
standing of the polygenic architecture of psychiatric dis-
orders. However, the phenotypic and genetic
heterogeneity described herein contribute to complicate
the translation of genetic data into clinical practice. For
example, sex differences are ubiquitous across psychiat-
ric disorders but are only recently being investigated
with genome-wide methods. Unfortunately, stratifying
by sex drastically reduces sample size for a GWAS, but
large-scale genomics consortia are rapidly collecting suit-
able sample sizes to make these analyses more feasible
and reliable. Until then, the community may consider
focusing attention on several additional sex-specific
topic areas including X-chromosome studies and regula-
tory/expression studies of risk loci. X-chromosome asso-
ciation studies are still relatively novel and require
additional consideration of dosage differences between
sexes but hold great potential for uncovering differential
disorder risks in males and females.185–187 Furthermore,
regulatory mechanisms have been identified as likely
contributors to the sex differences in many disorders,
but these processes remain vastly underinvesti-
gated.188–190 These studies will be particularly informa-
tive for understanding how genes discovered by GWAS
are expressed in each sex.

We have summarized how phenotypic heterogeneity
greatly influences genetic heterogeneity in psychiatry.
The RDoC paradigm may help considerably reduce
this heterogeneity by focusing on biologically tractable
processes, measurements, and/or mechanisms rather
than diagnoses dependent on multi-item symptom
checklists.49 It is important to note that some of the
existing GWAS of psychiatric disorders likely already
incorporate some aspects of RDoC (e.g. (a) hyperar-
ousal and reexperiencing symptoms of PTSD diagnosis22

and (b) studying hallucinations as a representative symp-
tom of psychotic disorders191).

GWAS of psychiatric disorders have elucidated thou-
sands of risk loci contributing to disease etiology and
generated countless testable hypothesis addressing psy-
chiatric disorder heterogeneity, comorbidities, and cross-
species interactions (e.g. microbiome-brain interactions).
GWAS data, and therefore the resulting post-GWAS
analyses, may be influenced by phenotype and sample

heterogeneity which both have document effects on

detection of the polygenic architecture of a trait. It is

well understood that the polygenicity of a disorder in

one population may not reflect the polygenicity of the

same disorder in an external population. This observa-

tion means that findings from well-studied European

populations may not, and indeed do not,192

translate effectively to non-Europeans and supports a

discipline-wide effort to close this gap by studying psy-

chiatric disorder polygenic architectures in other

populations.
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