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Weighted Averaging in Spectroscopic Studies
Improves Statistical Power

Jack J. Miller ,1,2* Lowri Cochlin,1y Kieran Clarke,1 and Damian J. Tyler1

Purpose: In vivo MRS is often characterized by a spectral signal-
to-noise ratio (SNR) that varies highly between experiments. A

common design for spectroscopic studies is to compare the ratio
of two spectral peak amplitudes between groups, e.g. individual
PCr/c-ATP ratios in 31P-MRS. The uncertainty on this ratio is often

neglected. We wished to explore this assumption.
Theory: The canonical theory for the propagation of uncertainty

on the ratio of two spectral peaks and its incorporation in the
Frequentist hypothesis testing framework by weighted averaging
is presented.

Methods: Two retrospective re-analyses of studies comparing
spectral peak ratios and one prospective simulation were
performed using both the weighted and unweighted methods.

Results: It was found that propagating uncertainty correctly
improved statistical power in all cases considered, which

could be used to reduce the number of subjects required to
perform an MR study.
Conclusion: The variability of in vivo spectroscopy data is

often accounted for by requiring it to meet an SNR threshold.
A theoretically sound propagation of the variable uncertainty

caused by quantifying spectra of differing SNR is therefore
likely to improve the power of in vivo spectroscopy studies.
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INTRODUCTION

Typically, in vivo magnetic resonance spectroscopy (MRS)
studies aim to determine an underlying biological differ-
ence between groups of subjects by comparing quantities
of interest that are computed from spectra acquired from
multiple individuals. For example, the ratio of the ampli-
tude of a small molecule spectral peak to a concentration
standard is commonly computed per individual, such as
the phosphocreatine to ATP (PCr/ATP) ratio in cardiac 31P
spectroscopy (1), or the 13C-bicarbonate to [1-13C]pyruvate
ratio in hyperpolarized 13C MRS (2). Additionally, MRS
studies are typically characterized by a highly variable
signal-to-noise ratio between individuals and over time,
resulting in acquired data that is of variable quality. Most
spectroscopic quantification algorithms such as AMARES
(3), VARPRO (4), or Bayesian methods (5,6) return an esti-
mate of the measure of uncertainty in the resultant fitting
of spectral peaks: AMARES returns the Cram�er-Rao Lower
Bound (CRLB) of amplitude uncertainty directly (7,8); for
Bayesian methods such a measure of uncertainty would be
the width of the posterior probability distribution function
at the end of the algorithm (9). It is often the case that this
intrinsic variability of spectral data is taken into account
by imposing a quality minimum on the acquired spectra;
for example, by requiring the signal-to-noise ratio of an
acquired spectrum to be above an arbitrary threshold, and
then subject only the population of data that are ‘good
enough’ to further analysis (10).

We hypothesized that the correct propagation of uncer-
tainty throughout the analysis of spectroscopy data would
improve accuracy, precision, and statistical power. Brief-
ly, a simple, straightforward and canonical method to
propagate uncertainty from spectroscopic quantification is
presented, and illustrated with numerical simulations.
The statistical framework we propose is broadly similar to
that used in other physical sciences (11). A retrospective
analysis of existing data was then performed based on pub-
lished work in two distinct biological settings that have
been extensively validated by other techniques. In all
cases, the analysis proposed allowed the same conclusion
to be drawn with greater certainty, or, alternatively, would
necessitate fewer subjects in each group be scanned in
order to perform a study of identical statistical power. The
method presented is additionally broadly applicable.

THEORY

Fitting algorithms, such as AMARES, typically return an
estimated parameter of interest for an individual spectral
line in an individual’s MRS spectrum (such as its frequen-
cy location, or amplitude), together with a measure of the
uncertainty on this measurement, usually the Cram�er-Rao
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Lower Bound on its variance. As spectroscopic estimates
are obtained by measurements based on a large number of
discrete points, and the noise in MR experiments is
approximately white, it is appropriate to consider each
one of these estimates as random variables, drawn from a
normal distribution with mean defined by the value of the
estimator and variance defined by its estimate of uncer-
tainty. Strictly, noise in MR is white in both the real and
imaginary parts; therefore, magnitude data is Rician dis-
tributed, rather than normally distributed, and therefore
one has to consider whether the quantity returned by a
spectral peak fitting algorithm is constrained to be greater
than zero, e.g. by returning magnitude-only information.
The two distributions are the same in the high SNR limit,
practically where SNR> 2 (12). The approximation of nor-
mality (taken subsequently here) is therefore valid in
either this SNR limit, if the fitting algorithm used returns
quantities that can be negative, or if it considers only real
or imaginary data.

This work details the propagation of the CRLB uncer-
tainty throughout typical analyses performed in MR stud-
ies through weighted averaging. Note that the Cram�er-Rao
Lower Bound on the variance of an estimated parameter is
exactly that: a lower bound on the uncertainty on a spectral
peak estimator. Whilst the ‘true’ uncertainty on the quanti-
ty of interest may be higher, the use of the CRLB as a
weight is attractive, as (a) it is readily obtainable directly
from commonly used spectral quantification algorithms;
and (b) it represents the minimum uncertainty in spectral
estimates of the data considered; no unbiased estimator
can outperform it. Owing to the reciprocal relationship
between this uncertainty and its subsequent weighted
expression, it is therefore appropriate to consider the
CRLB as a ‘worst-case’ scenario for the impact that a partic-
ular data point would have on the estimates of the popula-
tion as a whole. As the estimation of the CRLB is
computationally straightforward and routine in the con-
text of spectral fitting, and well understood by the commu-
nity to be increased if spectral quality is poor, we propose
that its use as a weight is therefore wholly appropriate.

As the overall absolute detected magnitude of spectral
peaks is highly dependent on experimental conditions
such as the coil-subject distance, it is often desirable to
calculate functions of the measured data, such as the
ratio of the amplitude of two different spectral peaks, or
the sum of several uncertain peaks. In general, such peak
amplitudes within a spectrum may be correlated with
coefficient r 2 ½0; 1�, the determination of which is ulti-
mately an experimental question: q can be obtained from
the Fisher information matrix for the fitting procedure in
question Fij (from which the CRLB itself is derived asffiffiffiffiffiffiffiffi

F�1
ii

q
), as rij ¼ F�1

ij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�1

ii F�1
jj

q
between peak amplitudes i

and j (13).
In general, there is no exact expression for functions of

normally distributed random variables, and numerical
(Monte Carlo) simulations have to be performed to deter-
mine the shape of the resulting distribution.

Ratios

In the special, but common, case of two random variables,
it is often under-appreciated that the resulting distribution

is in general not normal, but rather described by a ratio

distribution, with a width that is reduced if the variables

are correlated (14,15). Analytic forms for the width of this

distribution can be computed either exactly or under the

approximation that uncertainty is small.

Small Errors

Consider two peaks from an individual spectrum, estimat-

ed to be of magnitude x and y with associated quantifica-

tion uncertainties rx and ry. If sx=x � 1 and sy=y � 1,

and neither x nor y are close to zero, then the distribution

of their ratio is very well approximated by the normal dis-

tribution with mean m ¼ x=y (16). In this case, the width of

the distribution (and hence the uncertainty on x/y for sub-

ject i) is approximately

si �
x

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx

x

�2

þ sy

y

� �2

� 2r
sx

x

sy

y

s
: [1]

Equation [1] can be derived from the multivariate Taylor

series expansion for the function f ðx; yÞ ¼ x
y, and reduces

to the common ‘errors in quadrature’ form commonly

encountered if q¼ 0. The case where the error on measure-

ment is large compared to the measurement made (i.e.

where sx=x or sy=y are not much less than one) is more

complex, and discussed subsequently.

Large Errors

Alternatively, consider the case where the estimated error

on a peak amplitude in an NMR spectrum is large, and

where the estimated sx=x is not � 1 (i.e. approximately

0.1 or greater). If we consider the ratio of two peaks where

the error is large, the resulting quantity has a Gaussian

ratio distribution, described by Fieller, Hinkley and others

(15,17). We propose that the returned CRLB from the quan-

tification of each peak can be treated as exactly defining a

normal probability density function (PDF) for the quantity

of interest for that peak. The resulting distribution for the

ratio w ¼ ðx � Nðmx ; sxÞÞ=ðy � Nðmy ; syÞÞ where x and y
have a correlation coefficient q, has (15) an analytic PDF

f(w) defined in the appendix.
In general, this distribution is unimodal, not symmet-

ric, and approaches the Cauchy distribution (also known

as the Briet–Wigner distribution) as lx and ly tend to

zero, and rx, ry tend to one. The Cauchy distribution

does not have a defined mean or variance. An illustrative

example of the analytic form of the Ratio PDF is provid-

ed in Figure 1, which shows both f(w) (as given by Eqs.

[A1] to [A5]), and the approximate normal quantity as

given by Eq. [1]. If both means are far from zero, and the

uncertainty in measurements is small, the quantity

described in Eq. [1] asymptotically tends to Eq. [A1].

Note that it is far easier to numerically evaluate the

approximate form Eq. [1] as opposed to Eqs. [A1] to [A5],

which frequently equate to the product of exponentially

large and small quantities and hence issues arising from

finite numerical precision cannot be neglected.
Note additionally that the ratio distribution f(w)

defined above may be decidedly non-normal, but that

the central limit theorem ensures that the arithmetic
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mean of such ratio samples will be normally distributed
in the limit that the number of samples becomes large,
independent of this skew.

Several approaches to computing confidence limits on
the ratio distribution have been historically proposed. Such
confidence intervals are not guaranteed to exist as lx and ly

tend to zero, reflecting the arbitrarily large increase in
uncertainty arising from division by a number arbitrarily
close to zero. Fieller’s theorem allows for the computation
of confidence limits on the ratio distribution, and can be
derived from geometric arguments about the density of
probability, and states that the lower and upper confidence
limits (LB, UB) on the ratio w ¼ x=y are given by (16,17)

ðLB;UBÞ ¼
1

m2
y � t2

qs2
y

�
ðmymx � t2

qsxyÞ6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mymx � t2

qsxy

� �2

� m2
y � t2

qs2
y

� �
m2

x � t2
qs2

x

� �r �
; [2]

provided that lx is not expected to be close to zero, and
where sxy ¼ r sxsy . Formally, t2

q is the t-statistic at the
chosen significance level a, i.e. the value of the inverse
cumulative t probability distribution function with n – 1
degrees of freedom at q ¼ 1� a

2. In the context of spec-
troscopy performed on a large number of points, the esti-
mation of uncertainty is free from sampling effects and it
is appropriate to take n!1, such that the t-distribution
tends to the normal one. If the variances are small and
the denominator is “far” from zero, this expression is

quantitatively similar to the familiar expression for the
uncertainty on a ratio, Eq. [6] (17).

It is proposed that the width of the confidence interval
defined above, UB � LB, at “1s”, i.e. with q ¼ 1� Erf 1ffiffi

2
p
� �

is an appropriate weight to use for subsequent calcula-
tions provided that lx is not expected to be close to zero.
This choice of q provides, tq¼ 1 as n!1 by definition,
and both upper and lower bounds derived are illustrated
in Figure 1. As a consequence, an appropriate weight s0i0
to consider for subsequent estimation of population
properties of the mean can be constructed and simplified
at “1s” considerably, to form

si ¼ UB � LB

¼ 2

m2
y � s2

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

xs2
y þ m2

ys2
x � 2mxsxymy � s2

xs2
y þ s2

xy

q
: [3]

Given the weight specified above, the rest of the analysis
of such data would then proceed from Eq. [5] onwards.

Sums

In contrast to the ratio of peaks as discussed above, the
uncertainty on a sum or difference of a set of uncertain
spectral peaks is analytically straightforward, as the sum
of normally distributed variates is itself normal. There-
fore, given a set X1; X2; X3; . . . ¼ Xi of spectral peaks

with means mx; my ; mz; . . . ¼ mi and CRLBs s2
x; s2

y ;

s2
z ; . . . ¼ s2

i , it can be shown that the sum a1X1 þ a2X2

þa3X3 þ . . . ¼
Xn

i¼1
aiXi (for some real numbers ai) is

normally distributed with mean
Xn

i¼1
aimi and variance

s2
X1þX2þX3þ... ¼

Xn

i¼1

a2
i s2

i þ 2
Xn

i<j
1�j�n

�
aiajCovðXi;XjÞ

�
: [4]

In the case where n¼ 2, this variance simplifies to the
form s2

xþy ¼ a2
1s2

x þ a2
2s2

y þ 2a1a2rsxsy . Such sums are
commonly encountered in MRS where the ai above are
often equal to unity, e.g. when summing choline and cre-
atine from a set of several peaks in proton spectroscopy,
or providing a total ATP measure from the a-, b- and
c-ATP peaks in phosphorus spectroscopy. Should it then
be required to take ratios to this uncertain sum, the
derived uncertainty and mean should then themselves
be treated as returned estimates for an individual peak,
and the analysis proceed as for the ratio sections above.

Population Comparisons

An elementary statistical result (derived in the Online
Supporting Information) is that an unbiased estimator for
the mean (�r ) of the population of these uncertain functions
of measurements are given by the weighted sum

�r ¼

Xn

i

mi

s2
iXn

i

1

s2
i

; [5]

and the variance of the population, given the uncertainty
on each measurement, is best estimated by

FIG. 1. The PDF for the ratio of two normally distributed random

variables, with mx ¼ 1; sx ¼ 0:2; my ¼ 2; sy ¼ 0:5 and correlated
with r ¼ 0:5. Plotted here on common axes are the PDFs from the

normal approximation (purple) given in Eq. [1], and the true analyt-
ic form stated in Eq. [A1] et passim (blue). The median for both
distributions is the ratio of means (i.e. 1

2), but the means are dis-

tinct at 0.5 and 0.525. The orange boxes show a histogram of
counts (n ¼ 104) from the division of two normally distributed ran-

dom variables generated with the parameters as given. The
choice of values here is illustrative of a ‘moderately pathological’
case, where the normal approximation is clearly not appropriate,

and should be contrasted to the ‘highly pathological’ case where
mx ¼ my ¼ 0 and sx ¼ sy ¼ 1 (i.e. a Cauchy distribution where no

mean and variance exist) and the ‘physiological’ case where both
means are far from zero compared to r. Dotted black lines denote
the lower and upper bounds ðLB; UBÞ at the “1s” level, derived

through the use of Fieller’s theorem as stated in Eq. [2].
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�s2
r ¼

Xn

i

1

s2
i

 ! Xn

i

1

s2
i

 !2

�
Xn

i

1

s2
i

� �2
 !�1Xn

i¼1

ðmi � �r Þ2

s2
i

;

[6]

where n is the number of measurements made. Hence, giv-

en two populations of such ratios of measurements, r1 and

r2 with n1 and n2 elements in each, it is often desirable to

perform statistical tests between the groups. The weighted

expressions Eqs. [5] and [6] are hence the appropriate

quantities to use in such comparisons. For example, in

order to perform the standard unequal variance t-test

(Welch’s t-test) one can compute the quantity

t ¼
�r 1 � �r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

r1

n1
þ �s2

r2

n2

s ; [7]

which approximately follows a t-distribution with

d ¼
�s2

r1

n1
þ �s2

r2

n2

� �2

ð�s2
r1=n1Þ2=ðn1 � 1Þ þ ð�s2

r2=n2Þ2=ðn2 � 1Þ
[8]

degrees of freedom. Therefore, in the Frequentist hypothe-

sis testing framework, we can reject the null hypothesis

that the two populations considered have the same mean if

p ¼ 2� 1� ptðjtj; dÞð Þ [9]

is less than some chosen significance level (e.g., 0.05),

where ptðjtj; dÞ is the cumulative t-distribution function.

Summary

This process assumes that different groups of multiple

individuals undergo MRS in order to obtain spectra, of

varying quality between experiments, that have more

than one peak. Ultimately, the biological quantity of

interest is often approximated by the ratio of two peak

amplitudes, or ratios to their sum. As graphically sum-

marized in Figure 2, the proposed process is as follows:

	 For each individual i in each group, quantify the

measured spectrum and obtain estimates of peak

amplitudes xi and yi together with associated uncer-

tainties rx and ry (Fig. 2a).
	 Compute the corresponding individual quantity of

interest, fiðxi; yiÞ which for the sake of illustration

here is mi ¼
def

xi=yi (Fig. 2b).
	 Compute also the corresponding uncertainty on li,

denoted ri from either Eq. [1] or (3) depending on

the magnitude of x, y, rx and ry. (Fig. 2b) Note that

corresponding expressions for functions of peaks

other than x/y can be readily obtained. For example,

the distribution calculator Caladis (http://www.cala-

dis.org) has been developed with the explicit aim of

graphically illustrating these phenomena in a biolog-

ical setting (18,19).
	 Hence, take the obtained two sets of measurements

of quantities of interest in either group, e.g. arbitrari-

ly called fmA
1 ; sA

1 ; . . . ;mA
nA
; sA

nA
g and fmB

1 ; sB
1 ; . . . mB

nB
;

sB
nB
g for two groups A and B (with nA and nB members

in each), and compute summary statistics for each

group: the means of the groups �rA and �rB as per Eq. [5],

and their variance, �s2
A and �s2

B, as per Eq. [6] (Fig. 2c).

	 Finally, perform appropriate statistical tests between

the groups as required. As an example, an unequal

variance t-test (also known as Welch’s t-test) is

described in Eqs. [7] to [9].

METHODS

Simulations

Two populations each containing n¼ 300 spectra were

simulated consisting of two peaks, nominally called

“PCr” and “ATP”. One population was nominally

“healthy” in which the population PCr/c-ATP peak ratio

was taken to be 2=1:025 � 1:95, and one nominally

“diseased’, where PCr/c-ATP was 2=1:25 ¼ 1:6. These

values correspond approximately to reported values of

the human PCr/c-ATP in healthy individuals and those

with dilated cardiomyopathy (20). Additionally, two

simulated sets of six of 31P cardiac MRS spectra were

generated with chemical shift separations corresponding

to 11.7 T, as an illustrative example of the effect of

weighted averaging on a typical study by recapitulating a

normal experimental situation. The linewidth of reso-

nances were constant, and set appropriately based on

measured values from previous experiments at 11.7 T

(where c-ATP linewidth 67 6 15 Hz, PCr linewidth

48 6 16 Hz; values mean 6 standard deviation, n¼ 6).
For each spectrum, a varying amount of white noise

was added to the time domain real and imaginary FID.

The amplitude of noise added was itself normally dis-

tributed, and was intended to reflect experiment-to-

experiment variability in SNR. Expressed as a percentage

of the maximum time domain signal intensity for each

individual spectrum, the noise level n was distributed as

either n � Nðm ¼ 15 %; s ¼ 5%Þ, to provide an example

of highly uncertain data, or as n � Nðm ¼ 1%; s ¼ 0:25

%Þ to provide an example of higher quality spectra. As a

result, 1206 spectra were generated in total: “healthy”

and “diseased” populations with broadly good or bad

SNR.
After generation, spectra were individually quantified

using a custom MATLAB implementation of the

AMARES algorithm (3,21). Estimates for both peak

amplitudes and measures of uncertainty on those esti-

mates were stored, and were analyzed as outlined in the

Theory section above, under the either the “small errors”

or “large errors” regime as appropriate. Spectra were

simulated and quantified in MATLAB. All statistical

analysis was carried out in R (22).
Summary statistics and histograms were generated

from the two populations of spectra obtained. A

“bootstrapping” analysis was performed on the simulat-

ed populations, in which samples were drawn uniformly

and the mean, median and weighted mean estimated.

This process allows for the estimation of the sampling

distribution of these estimators, and illustrates the effect

of weighted averaging.
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Additionally, for the illustrative example and subse-

quent re-analyses, the Hedges’ g
 effect size for the dif-

ference between these two groups was computed as

outlined previously (23), i.e. as

g
 ¼
C n1þn2�2

2

� �
C nAþnB�3

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAþnB�2

2

q �rA � �rB

s

; [10]

where CðxÞ is the gamma function, �r denotes the popula-
tion mean of the ratio quantity of interest, and s
 is the

estimated pooled standard deviation of the two groups

with nA and nB members in each, defined as

s
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnA � 1Þ�s2

A þ ðnB � 1Þ�s2
B

nA þ nB � 2

s
; [11]

with �s the estimated population variance. Power was

computed by the ‘pwr’ package in R. (24) for both the

conventional unweighted and the weighted population

estimates of �r and �s.

FIG. 2. An overview of the proposed analysis method. a: Not all NMR spectra are acquired equal. For an individual NMR spectrum,
quantification algorithms, such as AMARES, therefore return both an estimated parameter for a peak of interest, such as its amplitude xi

or yi, together with an estimate of that uncertainty rx or ry. It is often the case that experiments are planned in which differences in fðx;
yÞ are investigated between two groups of subjects, such as the ratio of peak amplitudes x/y (which here is visible hyperpolarized bicar-
bonate/pyruvate). b: Therefore, it is necessary to consider the uncertainty r in the resulting quantity, which has an expected value l.

One therefore obtains two biologically separate populations of both measurements and uncertainties. Therefore, one can compute esti-
mates for the mean and standard deviation of these measurements, as illustrated in c for the example case of the SHR study data.

Here, the location of both the mean and standard deviation are shown together with the data for both the conventional analysis method
(red) that ignores uncertainty, and the proposed technique (blue). The length of the horizontal red or blue bar on the population denotes
its estimated standard deviation (s.d.), with the centre dot denoting the (weighted) mean. Note the apparent reduction in population vari-

ability obtained due to the propagation of measurement uncertainty, which would in turn improve statistical power.
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Retrospective Analysis

Hyperpolarized Spectra

The authors of a previously published study using hyperpo-
larized [1-13C]pyruvate MRS to investigate myocardial
metabolism in the spontaneously hypertensive rat (SHR)

were contacted, and provided original data for re-analysis.
As described in Dodd et al. (25), 13C spectra were obtained
every second following the injection of hyperpolarized
[1-13C]pyruvate into SHR rats who possess a series of genet-
ic mutations that result in a spontaneously hypertensive

phenotype, and from a set of age and sex matched wild-
type controls. For each rat, the ratio of the 13C-bicarbon-
ate to [1-13C]pyruvate amplitudes of the summed hyper-
polarized spectra was considered to be an appropriate

normalized measure of pyruvate dehydrogenase (PDH)
flux, and was computed by the simple ratio of amplitudes
as quantified by AMARES after summation of the spectral
data over time. Such analyses are appropriate, as the
metabolite (here 13C-bicarbonate) to [1-13C]pyruvate ratio
computed in this fashion has been shown to be linearly
proportional to the biological rate constant of interest
(kPyr!Bic) (26). In the study of Dodd et al., the apparent rate
of 13C-bicarbonate production was increased by 85% in the
hypertensive animals compared to controls, corresponding
to an inborn genetic up-regulation of PDH activity. This
increase was subsequently verified through extensive ex
vivo biochemical techniques to determine PDH activity and
protein expression of PDH regulatory enzymes that
occurred with the development of cardiac hypertrophy.

FIG. 3. The distribution of apparent peak ratios for the two populations of uncertain spectra simulated under the “large errors’ regime.
Note that the distribution is not symmetric, and accordingly the mean, median and weighted mean differ from the ‘ground truth’ values

used to generate the spectra. The sampling distribution of each estimator is also shown, as obtained through a bootstrap analysis of
the simulated data.

Weighted Averaging in Spectroscopy Studies 2087



For the reanalysis, temporally summed spectra were

quantified by AMARES and were analyzed as outlined

in the Theory section, under the “small errors” regime.

The validity of the assumptions detailed were tested;

despite the variability in SNR inherent in hyperpolarized

MRS, the ratio of peak uncertainties to amplitudes was

typically less than 10�2. Statistical power was addition-

ally computed as specified previously in Eqs. [10] and

[11], with the effect size inferred for both analysis tech-

niques from all available spectra.

Human 31P Cardiac MR Spectra

Similarly, in order to provide an appropriate example of

phosphorus spectra of varying SNR, the authors of a pre-

viously published study investigating the cardiac PCr/

ATP ratio of diabetic patients were contacted, and

provided data for re-analysis. As described in Levelt
et al. (27), 31P spectra were obtained from the mid-
ventricular septum of 31 patients with type two diabetes
mellitus (T2DM, as diagnosed according to World Health
Organisation guidelines) and matched controls through a
Chemical Shift Imaging spectroscopic sequence with out-
er volume suppression to prevent spectral contamination
from skeletal muscle, blood and hence reduce inter-
subject variation (28). Subjects were scanned under two
conditions: at rest, and during exercise in the scanner
bore provided by leg motion and knee flexion resisted by
sets of 2.5 kg weights. Spectra were acquired on a 3 T
Siemens Tim Trio according to the principles of the Dec-
laration of Helsinki, with approval from the UK NHS
Health Research Authority Research Ethics Committee
(REC Ref. 13/SW/0257). Levelt et al. additionally further
characterized the hearts by quantifying oxygen

FIG. 4. The distribution of apparent peak ratios for the two populations of spectra simulated under the “small errors” regime, with high

SNR. In contrast to the large errors case, the distribution is more symmetric, and accordingly the sampling distribution of all estimators
is less tightly spread.
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availability (through BOLD) and myocardial perfusion at

rest and during adenosine stress, the presence or absence

of coronary arterial disease through contrast enhanced

CT, and cardiac function through an extensive number

of CMR studies. It was found that the diabetic heart was

energetically impaired, with a poor myocardial perfusion

reserve, a decrease in oxygen consumption, and a

decrease in myocardial PCr/ATP ratio, with a reported

mean PCr/ATP ratio of 1:7460:26 at rest compared to

1.54 6 0.26 during exercise (mean 6 SEM).
For the subsequent reanalysis, it was only possible to

obtain data with permission for reuse from 22 of the 31

T2DM patients considered in the initial study, and

from 28 matched controls corresponding to the initial

rest arm of the study. Spectra were quantified with

AMARES, with the estimated returned CRLB on peak

amplitudes used as outlined in the Theory section,

under the “small errors” regime. As the ratio of PCr/

total ATP was considered by Levelt et al., the uncer-

tainty in quantification on each of the three ATP peaks

was propagated appropriately, by canonical expressions

obtained via multivariate Taylor series expansion simi-

lar to Eq. [1] (i.e. “in quadrature”). Statistical power

was additionally computed as specified previously in

Eqs. [10] and [11], with the effect size inferred for both

conventional, unweighted and weighted techniques

from all available spectra.

RESULTS

Simulation

As illustrated graphically in Figure 3 for large errors,
and Figure 4, the weighted mean of each population of
spectra considered was closer to the “true” value initial-
ly constructed in the simulation than either the mean or
median of the group, reflecting the underlying asymmet-
ric shape of the ratio distribution. As can be analytically
expected, this effect is much less pronounced in the case
where the quantification error is smaller. For the dis-
eased population with large errors, the mean, median,
and weighted mean peak ratio values were 1.68, 1.56
and 1.60 compared to the “ground truth” value of 1.6.
Under the small errors regime, these values were 1.61,
1.61 and 1.60 respectively. For the “healthy” population
with large errors, these values were 2.19, 2.01 and 1.95
in comparison to the ‘ground truth’ value of 1.95; under
the “small errors” regime these estimates were 1.97, 1.97
and 1.94 respectively. The sampling distribution of these
quantities was also substantially less broad for the
weighted mean in the population considered, when com-
pared to the median or mean. The weighted mean, there-
fore, appears to recapitulate the quantity of interest in
uncertain spectroscopy experiments.

For the representative parameter values chosen in the
illustrative simulation, the difference known a priori
between groups was recapitulated more effectively by

FIG. 5. a: Simulated PCr/ATP ratios togeth-
er with population estimates of the mean

(filled circle) and standard deviation (hori-
zontal line) for both the weighed (blue) and

unweighted (red) analysis methods, togeth-
er with data points (black). A reduction in
the estimated population standard devia-

tion is reflected by the use of the weighted
method. b: Simulated statistical power for

distinguishing the difference in PCr/ATP for
the two populations of n1 or n2 subjects,
shown as a function of n1 and n2 for both

conventional (solid contours) and weighted
analysis methods (broken contours).

Reflecting the decrease in estimated vari-
ance, the use of a weighted analysis
improves apparent statistical power.
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correctly propagating uncertainty. The unweighted mean
and standard deviation of the ‘healthy’ and ‘diseased’
groups were 1.80 6 0.21 and 1.56 6 0.18 respectively,
compared with weighted estimates of 1.84 6 0.04 and
1.57 6 0.03, which is graphically illustrated in Figure 5a.
Note that the value of the mean of these samples is distinct
from that of the population as a whole. Accordingly, the P
value returned from a t-test between the two groups was
P¼ 0.051 when data were given equal weight, or 0.024 if
uncertainty was propagated as proposed.

As a direct consequence of the dramatic decrease in the
estimated variance, the g
 effect size obtained based on the
data increased, from 1.519 to 1.703. Accordingly, it was
possible to estimate the power of this hypothetical study as
a function of the number of subjects in either group, n1 or
n2, and a contour plot of statistical power as a function of n1

and n2 for both weighted and unweighted analyses methods
is shown in Figure 5b. The weighted analysis method
increased power for all n1 and n2, with a maximum increase
of 0.098 when n1 ¼ 5; n2 ¼ 6 or vice versa. Therefore,
neglecting variation in these observed effect sizes, a hypo-
thetical study powered to 90% at the 0.05 significance level
would require 10 individuals per group using unweighted
analysis, or 8 per group with weighted averaging.

Retrospective Analysis

Hyperpolarized 13C Spectra

Accounting for the variability in the acquired hyperpolar-
ized spectral data as proposed above improved statistical
power, reduced the estimated biological variation of the
population and did not appreciably change its estimated
mean. As graphically illustrated in Figure 6a, the numeri-
cal effect of weighted averaging was small, largely reflect-
ing relative homogeneity in weights. Weighted averaging
reduced the population variance in SHR animals from 2:1
�10�4 to 2:0� 10�4, and in control animals from 1:4
�10�4 to 1:2� 10�4. The mean changed slightly, from
0.053 to 0.057 in control animals, and from 0.094 to 0.096
in SHR animals. Using the weighted method reduced the
observed apparent variability in each population; the coef-
ficient of variation (defined as Cv ¼ �sr=�r ) was reduced
from 15.36% (without incorporating uncertainty) to
14.88% (with the outlined analysis) for the SHR rat data,
and from 21.24 to 20.79% for controls. As a direct conse-
quence, the statistical power of the study would be
improved had the weighted method been used through-
out, with a maximal increase in power of 0.05 between the
two methods occurring at n1 ¼ n2 ¼ 3, as can be seen in

FIG. 6. a: Bicarbonate-to-pyruvate ratios

for the two populations of SHR and control
rats. As in Figure 5a the weighted method

reduced the apparent population variability
(denoted by horizontal lines) and slightly
adjusted the estimates of the mean (filled

circles). b: A contour plot denoting the esti-
mated power of SHR study via the weight-

ed (broken lines) and unweighted (solid
lines) analysis methods as a function of the
number of animals in each group. Similarly,

paralleling the simulation shown in Figure
5b, the use of weighted averages

increased statistical power by a maximum
of 0.05.
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the contour plot of statistical power (Fig. 6b). Hence, the
known biochemical difference in PDH flux in the SHR rat
was detected with a P value of 1:1� 10�6 when error was
propagated as described here, compared to 5:1� 10�5

assuming the data had equal weight.

Human 31P Cardiac Spectra

As illustrated in Figure 7a, propagating uncertainty

throughout the analysis lead to a reduction in the estimated

population variation, and did not substantially change its

estimated mean. The estimated mean 6 standard deviation

PCr/ATP ratio of T2DM patients at rest was found to be

1:74760:268 using equal weight, or 1:73060:249 propagat-

ing uncertainty, corresponding to a reduction in r on the

order of �7% (ðsunweighted � sweightedÞ=sweighted � 7%), and

a change in the mean of less than 1%; hence Cv reduced

from 15.3 to 14.4%.
In contrast, the estimated mean 6 standard deviation

cardiac PCr/ATP of matched controls at rest was found

to be 2:04360:401 conventionally; using the weighted

method produced population estimates of 2:06360:384,

again resulting in a small (<0:25%) alteration to the

position of the mean but a 4% reduction in r, and a

corresponding change in the Cv from 19.6 to 18.6%.

Consequently, the estimated effect size and hence sta-

tistical power of the study improved, with a change in g


from 0.884 to 0.985 between the two methods, as is illus-

trated in Figure 7b. As a corollary, the P value obtained

from an (unpaired, Welch’s) t-test between the two

groups reduced from 0.0031 to 0.00058 by the use of

weighted averaging. Additionally, a proposed study

investigating this difference with power 0.9 at a signifi-

cance level of 0.05 would require 28 individuals in each

group with the unweighted analysis method, or 23 using

weighted averaging.

DISCUSSION

These short illustrative examples have demonstrated the

practical need to propagate uncertainty in in vivo spec-

troscopic studies in which the quantification error on

peak amplitudes should be used. The analysis approach

proposed here effectively allows for the reduction of

measurement uncertainty in the estimation of variation

of the population being studied, leading to a reduction

in the estimated variance of simulated PCr/ATP data,

and yielded gains in two representative, and very dis-

tinct, biological examples. Accounting for variation in

spectral data with weights inferred from quantification

uncertainty, therefore, represents a conceptually

FIG. 7. a: Obtained estimated cardiac PCr/
ATP ratios for T2DM patients and matched
controls, together with estimates of the

population mean and standard deviation by
both conventional and weighted

approaches. The estimated biological vari-
ation in the population is reduced by the
use of weighted averages; correspondingly,

the estimated effect size is changed, and
statistical power increases (b), leading to a
notable reduction in the number of subjects

required at the 90% power level, as
illustrated.
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straightforward way to improve the estimation of the val-
ue of a parameter in the population from which those
measurements were obtained.

In vivo MRS suffers from inherent SNR limitations, and
the analysis of spectra possessing low or variable SNR
remains an important issue. The competing requirements of
scan-times short enough to be tolerable for subjects and yet
providing sufficient SNR to quantify small metabolite peaks
will fundamentally lead to spectral data that has varying,
comparatively low, SNR. Low SNR corresponds to greater
quantification errors, and directly affects the shape of the
resulting distribution of values obtained. In the case of 31P,
low SNR has resulted in a broad range of published values
for many quantities, such as the healthy cardiac PCr/ATP
ratio as determined by 31P MRS, which is widely regarded
to be “around two” (29). As originally noted by Paul Bot-
tomley in 1992 (30), this variability has led historically to
reproducibility problems whereby systematic biases and
poor spectral quantification pipelines led independent
groups to experimentally support diametrically opposed
conclusions in the early 1990s. It is for this reason that max-
imum acceptable linewidth criteria and SNR thresholds
(typically of 10) are commonly proposed (31).

The importance of rigorous statistical analysis of metab-
olite ratios is far from unrecognized in MRS; Bottomley
himself notes that “[. . .] one expects to see random scatter
in measurements of metabolite concentrations or ratios
that is commensurate with the particular [SNR] of the moi-
eties in question”, and that “If the error is truly random, a
careful statistical analysis of many such measurements
from different study groups (preferably blinded) can reveal
a significant scientific or even clinically useful finding”
(30). Despite this early message, quantification uncertainty
is not usually propagated accurately when metabolite
ratios are considered, although weighted averaging is rou-
tinely used in other physical sciences. Additionally, note
that the problem of combining uncertain data from differ-
ent subjects is directly analogous to that of recombining
multi-coil spectroscopy data, for which it is well known
that the use of weights that are the square of the estimated
SNR in each spectrum are optimal (32). The method pro-
posed here is directly analogous to using such techniques
at the population level.

A valid criticism of using weighted averages in in vivo
spectroscopic studies is that it is not necessarily the case
that the least certain data are the least accurate: a noise-
less measurement of a systemically flawed experiment is
given greater weight in the above analysis than that of a
noisy, but unbiased, one. There are many factors affect-
ing the scan-to-scan SNR in MR spectroscopy, such as
coil placement and loading differences between subjects.
A priori, it therefore seems plausible that a reduction in
the acquisition SNR occurs on physical grounds, and
does indeed represent an experimental deviation of that
particular measurement from the mean. It is worthy of
note, however, that the ratio distribution is a five-
parameter distribution and changes in peak ratios can
occur due to changes in either the numerator or denomi-
nator: owing to the difference in quantification uncer-
tainty, these two scenarios are distinct, but could be
estimated analytically given parameter values. Likewise,
the distinctly non-normal shape of the ratio distribution

with highly uncertain peaks would indicate that caution
should be used when performing parametric statistical
tests between populations.

The difference in behavior of sets of weighted averages
from analysis of the same data using the unweighted
mean are well known, and are often encapsulated in sce-
narios such as Simpson’s paradox, originally framed as a
problem in which the gender bias in a university’s
admission process could be misrepresented in either
direction by the inappropriate use of unweighted aver-
ages (33). In MR, it is proposed that the appropriate ‘data
driven’ approach is to trust the information contained in
the variability of data, and consider weighted analysis,
potentially in addition to the conventional, unweighted
approach. For the biological examples considered here,
the reduction in estimated variance by the use of weight-
ed averages is at the very least consistent with this
assumption. Note that the selective elimination of spec-
tra with low SNR has recently been shown to lead to
bias in the context of population NMR studies, via the
distortion of the sampling distribution (34) which this
technique may potentially ameliorate, particularly when
the distribution of quantities considered is approximate-
ly normal (i.e. peak sums, or ratios where the distribu-
tion is approximately normal).

Whilst emerging techniques, such as hyperpolariza-
tion, offer a way to improve the inherent SNR limitations
of magnetic resonance, small variations in the timing of
experiments can have a large impact in the resulting
quality of the data acquired, leading again to the consid-
eration of this problem in a different context. As infor-
mation regarding reproducibility is of great importance
to the design and analysis of clinical studies, ensuring
that experiments are statistically maximally empowered
is of great value. In the above example analyses, under
ideal circumstances the use of weighted averages would
allow for an increase of �5 to 10% in statistical power.
In a preclinical setting, this increase could be directly
traded for a reduction in the number of experimental
animals required to reach the same conclusion. Properly
propagating uncertainty is therefore ethically favored. In
clinical settings, an increase in power and the ability to
appropriately include spectra that do not meet an arbi-
trary SNR threshold would both likely decrease the
amount of scan time required by any individual study,
potentially improve patient compliance, and therefore
present the potential for a significant economic saving.

CONCLUSIONS

It is proposed that the study-level adoption of methods
that incorporate estimates of uncertainty, such as
described here, will allow the maximal use of data that
has been acquired with varying precision. The proposed
analysis is conceptually and computationally simple and
offers immediate value to existing data, as illustrated by
a retrospective analysis undertaken on previously pub-
lished results. Weighted versions of several (but by no
means all) common statistical techniques are readily
available in numerous popular programming languages,
and most spectral quantification algorithms return esti-
mates of uncertainty on their results. The improved
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statistical power provided by the correct use of weighted
averaging may help reveal small biological differences
between populations of measurements, or avoid false
conclusions.
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APPENDIX

The analytic form of the ratio distribution (i.e. the distri-
bution of the ratio of two normally distributed random
variables) is not straightforward, and is analytically pro-
vided as a function of the ratio, w ¼ x=y where x and y
have a correlation coefficient q, by the expression:
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where ErfðzÞ denotes the Gaussian error function,

ErfðzÞ ¼ 2ffiffiffi
p
p
R z

0 e�t2
dt, and w ¼ x�Nðmx ;sxÞ

y�Nðmy ;sy Þ.
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