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MRI is used for screening, initial diagnosis and follow-up of brain metastases.

Multiparametric MRI protocols encompass an array of image sequences to depict

key aspects of metastases morphology and biology. Given the recent safety concerns

of Gd-administration and the retention of linear Gd-agents in the brain, non-contrast

sequences are currently evaluated regarding their diagnostic value for brain imaging

studies. Susceptibility weighted imaging has been established as a valuable clinical and

research tool that is heavily used in clinical practice and utilized in diverse pathologies

ranging from neuroinflammation, neurovascular disease to neurooncology. We review

the value of SWI in the field of brain metastases with an emphasis on its role in early

diagnosis, determination of the primary tumor entity, treatment monitoring and discuss

therapy-associated changes that can affect SWI. We also review recent insights on the

role of “isolated SWI signals” and the controversy on the specificity of SWI for the early

detection of brain metastases.
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INTRODUCTION

Brain metastases (BM) are highly relevant in solid cancer patients and contribute significantly
to overall morbidity and mortality (1). MR imaging is the gold standard for early diagnosis and
treatment monitoring of BM patients (2). Treatment of BM is mainly based on neurosurgical
resection and radiotherapy with a limited role for systemic chemotherapy due to low efficacy (3, 4).
Recent immunotherapeutic trials have shown promising results in a subset of BM patients and
are currently tested in clinical practice (5, 6). All such therapeutic regimes require regular and
standardized MRI follow-up for disease monitoring to detect changes in the tumor micromilieu
(TME) that occur during therapy.

In general, brainmetastases imaging has threemajor goals: (a) early detection, (b) determination
of the primary tumor entity, and (c) tumor monitoring, including differentiation between tumor
progression and treatment related effects. Susceptibility weighted imaging (SWI) can contribute
to all three challenges and this review will highlight these different aspects. SWI has been first
described in 1997when it was introduced for venous imaging (7). After the original description SWI
has been widely used in clinical and preclinical studies (8–10). In clinical practice SWI is used for
the detection of iron, hemorrhage andmicrobleedings (11–14) but has also been widely investigated
in the field of neurovascular disease (15), for clot detection in stroke (16), in neurooncology (17, 18),
neurotrauma (19), and autoimmune disease (20–23). Also neurosurgical applications of SWI have
been recently reviewed (24).
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ORIGIN OF THE SWI CONTRAST

The SWI signal originates from varying intrinsic susceptibilities
that are present between voxels and get out of phase at
longer echo times, leading to signal loss in the respective
voxel. Susceptibility is altered by paramagnetic and diamagnetic
materials such as deoxygenized hemoglobin within veins,
tissue calcifications or iron depositions. Susceptibility is further
introduced through the distortion of the magnetic field, e.g. at
tissue boundaries or by metal implants. A thorough derivation of
the physics behind SWI is beyond the scope of this article and has
been covered by previous reviews (25).

In brief, for the generation of SWI, phase images are
high-pass-filtered and transformed to a phase mask which is
then multiplied on the magnitude image to increase contrast
(25). It is important to note that the resulting image contrast
depends on the manufacturer and the post-processing used:
In a right-handed system, paramagnetic phase signals (like
hemosiderin and deoxyhemoglobin) are depicted as dark voxels
while diamagnetic phase signals (like calcifications) are shown
as bright voxels. In a left-handed system, the images produced
follow the inverse greyscale.

Newer developments in SWI include quantitative
susceptibility mapping (QSM) and susceptibility tensor imaging
which allow the quantitative measurement of the susceptibility
in a given voxel (26–31). Recently, the minimum size of
histo-pathologically confirmed microhemorrhages that can be
depicted by clinical SWI were established (32). In this work,
MR-positive microbleeds were typically found to correspond
to histopathological hemorrhages of 3.6 mm3 whereas MR
false-negative microbleeds were found to be significantly smaller
in size with an average volume of 0.3 mm3 on histopathology.

SWI FOR BRAIN TUMOR IMAGING

In the brain tumor field SWI has been recently reviewed for
glioma imaging (17). It is important to note that recent studies
have shown that SWI can aid in glioma grading because of its
sensitivity for (micro-)hemorrhages and the microvasculature
itself that correlates with tumor grade (33). In particular,
several authors found that the amount and extent of SWI
artifacts correlated well with the grading of gliomas with more
artifacts being correlated to higher tumor grade and increased
neoangiogenesis (34–36). This could further be confirmed by
quantification of intratumoral SWI patterns using fractal image
analysis (37).

For monitoring of brain metastases multiparametric
anatomical imaging is performed in the routine clinical setting
(38). Further advanced sequences including chemical exchange
saturation transfer imaging (CEST), magnetization transfer
(MT) imaging and MR spectroscopy (MRS) have also been
assessed regarding their clinical value and have recently been
reviewed (39). In the context of neurooncology MT imaging
could differentiate glioblastoma from brain metastasis (40).
Interestingly, magnetization transfer imaging showed subtle
changes also in the normal appearing white matter of the
contralateral site that did not show obvious changes on standard

MRI sequences (41), indicating that MT imaging might be more
sensitive to detect subtle, tumor-induced changes. CEST was
shown to enable the detection of radiotherapy induced apoptosis
(42, 43). MRS has been used to differentiate radiation necrosis
from tumor progression albeit with limited specificity (44).

SWI FOR DIFFERENTIATION OF THE
UNDERLYING TUMOR ENTITY

As SWI provides an image contrast that is different from
conventional spin echo MR sequences, the susceptibility
information can reveal additional features of the tumor
microenvironment. The concept of “intratumoral susceptibility
signals” (ITSS) was introduced as a semiquantitative parameter
that is comprised of “low-signal tubular structures or dot-like
structures with or without conglomeration within a tumor” (45)
that are indicative of tumor microbleedings or neovessels and
indicate highly malignant lesions.

Using this approach, it was shown that metastases could be
differentiated fromGBMdue to higher ITSS numbers in GBM, as
well as high-grade gliomas from lymphomas and non-tumorous
brain lesions (46).

However, the exact grading-scheme remained relatively
reader-subjective, so further efforts were made subsequently
to achieve a more objective, less reader-dependent measure.
Percentage-wise quantification of ITSS using binarized mask of
the SWI map compared the three most common metastatic
entities in the brain, namely bronchial carcinoma (BC),
mamma carcinoma (MC), and malignant melanoma (MM) (47)
(Figure 1). This approach could discriminate MM from MC
[area under the receiver operating characteristic curve (AUC)
of 0.96] or BC (AUC of 0.81) while there was no clear cut-off
between MC and BC. Specifically, only 1/20 MC patients showed
more than 8% ITSS in contrast to 10/15 patients with MM. This
indicates that different brain metastatic entities have different
growth behavior, neoangiogenesis induction and aggressiveness,
which can be inferred by SWI.

An important addition to this observation was made by
Franceschi et al. who reported a correlation of ITSS and
metastatic size (49): while micrometastases (i.e., <0.1 cm3)
only rarely showed ITSS (10/342), ITSS drastically increased
in macrometastases (i.e., >0.1 cm3, in 410/610 metastases). In
this latter subpopulation, a higher propensity of ITSS in MM
compared to MC was confirmed (76.9 vs. 55.6%).

SWI FOR INITIAL DIAGNOSIS OF BRAIN
METASTASES

While SWI thus appears as a promising imaging contrast to
contribute to the determination of the primary tumor entity
in BM, it remained controversial if SWI is helpful for initial,
early diagnosis of BM. This seems even more important in
light of the recent discussions on the significance of gadolinium
depositions in brain tissue following the exposure to gadolinium-
containing contrast agents (50). This question was addressed in
a recent work on the diagnostic performance of different MR
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FIGURE 1 | Differentiation of brain metastases by ITSS. Examples of patients with MC, BC and MM. (Upper) Contrast enhanced T1-weighted images (ce-T1).

(Middle) Contrast enhanced susceptibility weighted images (SWI). Insets: Delineation of the enhancing lesion on ce-T1 images and corresponding ROI on SWI.

(Lower) Percentagewise ITSS quantification with corresponding binarized ITSS map. No ITSS (0%) in MC, minor ITSS (18%) in BC and subtotal ITSS (90%) in MM.

Adapted from Radbruch et al. (48).

sequences in the early detection of melanoma brain metastases
(38): In this work on a large retrospective cohort of more
than 1200 patients, diagnostic sensitivity was compared between
six different MR sequences, including SWI. The authors found
that SWI did not reach the diagnostic sensitivity of contrast-
enhanced T1-weighted imaging (64.7 vs. 99.7%). Interestingly,
SWI also showed a lower sensitivity compared to FLAIR
imaging (77.0%) but could outperform T2-weighted imaging
(61.0%), non-contrast enhanced T1-weighted imaging (56.7%)
and DWI (48.4%).

While data on other brain metastatic entities is currently
lacking, it appears reasonable to assume that current SWI
will not replace contrast-enhanced T1-weighted imaging for
the early detection of metastatic brain disease because the
underlying effects, namely the accumulation of paramagnetic
ions and microbleedings, appear later than the early
disruption of the blood brain barrier—which is delineated
by ce-T1w-imaging.

SWI IN MELANOMA BRAIN METASTASES

Among malignant entities to metastasize to the brain, malignant
melanoma plays a special role with regard to susceptibility
effects. While SWI signal loss can relatively easily be attributed
to (micro-)hemorrhage in other entities, melanin itself in MM
may lead to susceptibility effects due to paramagnetic metal
scavenging which is known to cause non-contrast-enhanced

T1w-hyperintensity (51). This would imply that susceptibility-
related signal losses could potentially indicate metastatic lesions
which are not detectable in standard sequences. This was
first reported by Gaviani et al. on T2∗-weighted imaging in
three malignant melanoma patients (52). However, later studies
analyzing the fate of isolated cerebral SWI artifacts in larger
patient cohorts over time could not confirm the hypothesis that
such “isolated SWI signals” would eventually evolve into overt
brain metastases (53, 54). Indeed, these studies showed that SWI
signal losses without corresponding signal changes on standard
sequences remained constant over time. On the other hand, it was
reported that T1w-hyperintense melanotic metastases did not
exhibit a higher frequency of SWI signal losses as compared to
amelanotic metastases and the radiological presentation between
cases could vary considerably (Figure 2A). Additionally, in
another recent study significant differences in the susceptibility
between melanotic and amelanotic brain metastases as measured
by QSM could also not be demonstrated; nor could a correlation
to T1-weighted signals be found, further underpinning that
melanin per se does not account for a detectable paramagnetic
effect in vivo (55) (Figure 2B).

SWI IN THE ASSESSMENT OF
TREATMENT RESPONSES

Interestingly, Schwarz et al. found a significantly higher
prevalence of isolated SWI artifacts among patients with
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FIGURE 2 | Melanoma metastases and susceptibility. (A) Imaging findings in melanotic and amelanotic brain metastases. T1 pre-Gd-contrast (i), post-Gd-contrast

administration (ii), and SWI (iii) images are shown for melanotic (A) and amelanotic (B) brain metastasis. (C) Examples of metastases with melanotic and amelanotic

imaging features in a single patient. Adapted from Schwarz et al. (54). (B) Scatter plot showing the relation of susceptibility values (χ) and normalized T1w signal of

melanoma metastases (p = 0.87). The line represents a linear fit. From Straub et al. (55).

FIGURE 3 | Therapy related changes of SWI. Example images of a melanoma metastasis before (i, ii) and after radiotherapy (iii, iv). The punctuate contrast

enhancement in the right frontal lobe (i) disappears after stereotactic radiotherapy (iii), being consistent with radiological remission. The SWI signal drop remains as a

remnant of the preexisting metastasis (iv). Adapted from Schwarz et al. (54).

brain metastases as compared to melanoma patients without
metastatic brain disease (54). Of those patients, only patients
after radiotherapy showed an increased number of such artifacts
indicating that these findings did not constitute vital tumor tissue
but may rather represent either non-specific microbleedings
or radiotherapy-related parenchymal damage (56) which are
both well-known phenomena in patients after radiotherapy of
the brain (57). As a third explanation of these findings the
authors proposed the possibility of posttherapeutic remnants
of former metastatic lesions because in cases of radiological
remission of treated metastases, only an isolated SWI artifact
persisted (Figure 3).

As many patients suffering from BM either receive stereotactic
or whole-brain radiotherapy, it is crucial during tumor
monitoring to differentiate between “pseudoprogression”
following successful treatment and true recurrence of the disease
(58, 59). Although not applied to brain metastases so far, R2∗-
mapping, another susceptibility-related imaging approach (60)
has recently been introduced as a promising imaging marker

to differentiate pseudoprogression from progressive disease in
glioblastoma multiforme (61). The authors reported a rim of
high R2∗ values with an accompanied SWI-hypointensity as
indicative of pseudoprogression as well as a ratio of R2∗ in the
contrast-enhancing to the non-contrast enhancing lesion close
to 1. Conversely, a ratio of >1.3 was found in patients with true
progression. According to this quantification a correct diagnosis
was achieved in 9/9 patients. Similarly, promising results were
reported in a preclinical model by the same group (62).

POTENTIAL FUTURE APPLICATIONS:
TEXTURE ANALYSIS AND RADIOMICS

A number of methods have recently been introduced to
extract multiple image features from MRI data to create high
dimensional signatures of a given tumor. Such features of varying
complexity can then, via a dedicated model, be used to predict
certain target variables, in most cases histopathological or clinical
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parameters possibly having an impact on treatment decisions
and prognosis. This multi-step process is broadly referred to as
“Radiomics” (63–65).

Expanding the input parameter space by adding
complementary contrast with new information may provide
new features and lead to a higher classification accuracy and
reliability. SWI has just started to be incorporated into such
models proving that it can indeed provide complementary
discriminators, e.g., in the differentiation of glioblastoma
and solitary brain metastases (66). It needs to be determined
in future studies to which extent SWI will play a role for
these applications.

SUMMARY AND OUTLOOK

SWI is a valuable image sequence that utilizes phase information
to produce an image contrast different from standard anatomical
MR sequences. It therefore provides complementary tissue
information to further characterize brain lesions like brain
metastases. While it does not appear to be usable as a sole
image modality in metastatic brain disease lacking sensitivity
and specificity, it can contribute important supplementary
information on the underlying tumor entity and during
treatment monitoring. In the future, quantitative susceptibility

mapping may further refine tumor MR signatures, which could
be used in texture and radiomic analysis to non-invasively
support early detection and treatment monitoring of metastatic
brain disease.
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