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ABSTRACT Chemotaxis has been associated with the pathogenicity of bacteria in
plants and was found to facilitate bacterial entry through stomata and wounds.
However, knowledge regarding the plant signals involved in this process is scarce.
We have addressed this issue using Pseudomonas syringae pv. tomato, which is a fo-
liar pathogen that causes bacterial speck in tomato. We show that the chemorecep-
tor P. syringae pv. tomato PscA (PsPto-PscA) recognizes specifically and with high af-
finity L-Asp, L-Glu, and D-Asp. The mutation of the chemoreceptor gene largely
reduced chemotaxis to these ligands but also altered cyclic di-GMP (c-di-GMP) levels,
biofilm formation, and motility, pointing to cross talk between different chemosen-
sory pathways. Furthermore, the PsPto-PscA mutant strain showed reduced virulence
in tomato. Asp and Glu are the most abundant amino acids in plants and in particu-
lar in tomato apoplasts, and we hypothesize that this receptor may have evolved to
specifically recognize these compounds to facilitate bacterial entry into the plant. In-
fection assays with the wild-type strain showed that the presence of saturating con-
centrations of D-Asp also reduced bacterial virulence.

IMPORTANCE There is substantive evidence that chemotaxis is a key requisite for
efficient pathogenesis in plant pathogens. However, information regarding particular
bacterial chemoreceptors and the specific plant signal that they sense is scarce. Our
work shows that the phytopathogenic bacterium Pseudomonas syringae pv. tomato
mediates not only chemotaxis but also the control of pathogenicity through the per-
ception of the plant abundant amino acids Asp and Glu. We describe the specificity
of the perception of L- and D-Asp and L-Glu by the PsPto-PscA chemoreceptor and
the involvement of this perception in the regulation of pathogenicity-related traits.
Moreover, a saturating concentration of D-Asp reduces bacterial virulence, and we
therefore propose that ligand-mediated interference of key chemoreceptors may be
an alternative strategy to control virulence.
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Chemosensory pathways are widely distributed among bacteria and exert a key role
in signal transduction processes associated with the response to environmental

cues (1–3). The core of a chemosensory pathway is formed by a complex composed of
a chemoreceptor, or methyl-accepting chemotaxis protein (MCP), the CheA histidine
kinase, and the CheW adaptor protein. In the canonical pathway, signal binding to the
chemoreceptor ligand binding domain (LBD) creates a molecular stimulus that modu-
lates CheA autophosphorylation activity, which in turn alters the transphosphorylation
activity of the response regulator CheY. In the case of a chemotaxis pathway, phos-
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phorylated CheY (CheY-P) binds to the flagellar motor, causing ultimately chemotaxis
(4–7). Although most chemosensory pathways appear to be involved in chemotaxis (8),
other pathways were found to be associated with type IV pilus-based motility or the
control of cyclic di-GMP (c-di-GMP) and cAMP second messenger levels (9–12).

Typically, the specificity of a chemotactic response is determined by signal recog-
nition at the chemoreceptor LBD. Although chemoreceptors employ more than 80
different LBD types, at the structural level, they fall into two major families, namely,
domains with parallel helix architecture (4HB, HBM, NIT, PilJ, and CHASE3) or domains
with a central curved �-sheet (sCACHE, dCACHE, PAS, and GAF) (3). First relationships
between LBD types and the nature of their cognate ligands are emerging (2, 3, 13).

The presence of chemosensory signaling genes in a bacterium depends on bacterial
lifestyle (14, 15). Overall, approximately one-half of all bacteria were found to harbor
chemosensory signaling genes (8). These species possess on average 14 chemoreceptor
genes (8, 15). Similar estimates on chemoreceptor gene numbers have been obtained
for human and animal pathogens (16). However, in marked contrast are plant patho-
gens, of which approximately 90% possess chemosensory signaling genes and on
average 33 chemoreceptor genes, which is well superior to the bacterial average (16).
The abundance of chemosensory signaling genes in phytopathogenic bacteria is
consistent with the observation that the inactivation of chemotactic signaling causes in
most cases a drop in virulence (17–20). It was concluded that chemotaxis is an
important trait in early stages of infection, enabling bacterial entry into plants through
natural openings like stomata or through wounds (16).

Despite their abundance and importance in the infection process, there is a paucity
of information on the signals recognized by phytopathogen chemoreceptors. In Dick-
eya dadantii 3937, chemoattraction and chemorepellence to sugars, amino acids, and
plant hormones like jasmonic acid have been associated with virulence (21). In Ralstonia
solanacearum, chemotaxis to malate and aerotaxis were identified as being necessary
for optimal virulence (19, 22). Furthermore, chemotactic behavior toward several
compounds has been described for Pseudomonas syringae (23, 24) and Xanthomonas
campestris (25). However, the role of particular chemoreceptors in the interaction with
the host has so far been little investigated.

We have addressed this issue here using P. syringae pv. tomato DC3000 as a model.
This strain has 49 chemoreceptors and four copies of the core chemosensory signaling
proteins, suggesting the existence of 4 chemosensory pathways (26).

P. syringae pv. tomato is the causal agent of bacterial speck in tomato (27, 28). The
main virulence determinant in this bacterium is the type III secretion system (T3SS) and
the type III effector proteins (T3Es) (27). P. syringae pv. tomato is a saprophyte found in
plant debris, soil, and leaf surfaces but is a weak epiphyte compared with other P.
syringae strains (29). Therefore, mechanisms of adaptation and response to favorable
conditions are central to ensure bacterial entry into the plant and concomitantly for
disease development (30). Knowledge of these mechanisms is scarce, although it is
known that motility contributes to bacterial entry through stomata during the first
stages of the infection (31, 32). Biofilm formation is also associated with bacterial
adaptation to environmental stress such as that generated by the interaction of P.
syringae with plants (33). As in other bacteria, motility and biofilm formation are
inversely regulated in P. syringae pv. tomato (34, 35), and pathogenicity was found to
be associated with increased motility and a low degree of cell aggregation (36).

Out of 49 P. syringae pv. tomato chemoreceptors, 36 showed the canonical topol-
ogy, with a periplasmic LBD flanked by two transmembrane (TM) regions, typical for
sensing extracytoplasmic signals. Among them, the very large majority of chemore-
ceptor LBDs are of the parallel helix type (4HB, HBM, Nit, and PilJ), and only a few form
the curved �-sheet (sCACHE and dCACHE) (Fig. 1).

Nine chemoreceptors possess one or multiple PAS domains of cytosolic location that
are likely to be involved in the sensing of cytosolic signals, such as the redox state or
oxygen (37). Four other chemoreceptors are membrane bound but lack LBDs, and it is
hypothesized that they respond to physicochemical stimuli like temperature or osmotic
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pressure. None of the P. syringae pv. tomato chemoreceptors have been characterized.
However, the P. syringae pv. tomato chemoreceptors PSPTO_2480, PSPTO_1061, and
PSPTO_2448 (Fig. 1) are homologous to the amino acid receptors PscA, PscB, and PscC
of P. syringae pv. actinidiae (38) and PctA, PctB, and PctC of Pseudomonas aeruginosa
(39–41). dCACHE LBD-containing amino acid chemoreceptors show a wide phyloge-
netic distribution and were identified, for example, in Halobacterium salinarum (42),
Bacillus subtilis (43), Vibrio cholerae (44), Sinorhizobium meliloti (45), and Campylobacter
jejuni (46), pointing to an important biological role of this chemoreceptor type (47).

In this work, we have determined the ligand profile of P. syringae pv. tomato PscA
(PsPto-PscA) and showed that it exerts a double function, namely, in mediating
chemotaxis and in modulating c-di-GMP levels, causing alterations in biofilm develop-
ment. This receptor was found to play a key role in the infection process, and receptor
saturation with its cognate ligands is proposed as an alternative strategy to control
virulence.

RESULTS
PsPto-PscA binds L-Asp, D-Asp, and L-Glu. To identify the ligands recognized by

PsPto-PscA, the individual LBD was expressed in Escherichia coli and purified from the
soluble protein fraction using affinity chromatography. PsPto-PscA-LBD was then sub-
mitted to thermal shift assays in which alterations in thermal stability following ligand
binding are monitored (48). The method permits the determination of the Tm (melting
temperature) value, and ligand-induced Tm increases of more than 2°C are considered
significant. The Tm of the ligand-free protein was 37.6°C, and significant Tm increases
were observed for L-Asp, D-Asp, L-Glu, and N-phthaloyl-L-glutamate, while no Tm in-
crease was observed for any of the other proteinogenic amino acids or for D-Ala, D-Asn,
D-Glu, D-Lys, D-Ser, or D-Val (Table 1 and Fig. 2).

To derive the thermodynamic binding parameters, the protein was analyzed by
isothermal titration calorimetry (ITC). The titration of PsPto-PscA-LBD with the L- and

FIG 1 Chemoreceptor repertoire of P. syringae pv. tomato. LBDs were annotated according to the Pfam database
(https://pfam.xfam.org/). The receptor studied is highlighted in boldface type.
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D-enantiomers of Asp and L-Glu produced significant exothermic heat changes that
diminished as titration proceeded (Fig. 3). Data analysis revealed that L- and D-Asp
bound to PsPto-PscA-LBD with the same affinity of 1.2 � 0.1 �M (Table 1), whereas
L-Glu bound with a slightly lower affinity (KD [equilibrium dissociation constant] �

3.4 � 0.1 �M). No binding heats were observed for N-phthaloyl-L-glutamate (Fig. 3).
Since ITC permits visualization of only high-affinity binding events, it cannot be
excluded that this compound binds to the protein with a much lower affinity. We also
conducted ITC measurements with several related amino acids that did not cause
significant Tm shifts (Table 1). In all cases, an absence of binding was noted, indicating
that PsPto-PscA-LBD specifically binds L- and D-Asp and L-Glu. These results are in
agreement with those observed for the P. syringae pv. actinidiae homologue PscA (38).
Finally, microcalorimetric titrations with L-tartrate, a D-Asp homologue abundant in
plants, did not reveal binding (see Fig. S1A in the supplemental material).

PsPto-PscA ligands mediate chemotaxis. To investigate the chemotactic response
of P. syringae pv. tomato to the three PsPto-PscA ligands, we conducted quantitative
capillary chemotaxis assays with the WT (wild-type) strain. Amino acids were used at
concentrations ranging from 0.5 to 10 mM. We observed significant responses toward
L- and D-Asp and L-Glu, with maxima at 1 mM and 0.5 mM, respectively (Fig. 4). It was
reported previously that L-Asp and L-Glu are used by P. syringae pv. tomato as carbon
and nitrogen sources (49), a finding that we have confirmed (Fig. S2A and B). In
contrast, D-Asp is not used as a nutrient source (Fig. S2E) by P. syringae pv. tomato and
does not alter bacterial growth (Fig. S2F).

To determine whether these chemotactic responses are mediated by PsPto-PscA, we
conducted assays with a mutant in which the pscA gene was insertionally inactivated.
This mutant did not respond to L-Asp, whereas chemotaxis to D-Asp and L-Glu was

TABLE 1 ΔTm values obtained by differential scanning fluorimetry and thermodynamic
parameters for titration of PsPto-PscA-LBD with acid amino acids and their amidesa

Ligand �Tm (°C)
Mean KD

(�M) � SEM
Mean �H
(kcal/mol)� SEM

L-Asp �12.88 1.2 � 0.1 �6.7 � 0.1
D-Asp �11.63 1.2 � 0.1 �4.7 � 0.1
L-Asn �0.31 No binding
D-Asn �0.97 No binding
L-Glu �12.35 3.4 � 0.1 �7.8 � 0.1
D-Glu �0.42 No binding
L-Gln �0.03 No binding
L-Gln ND No binding
N-Phthaloyl-L-Glu �6.23 No binding
aCompounds that resulted in a �2°C shift in melting temperature are in boldface type. ND, not determined.

FIG 2 Differential scanning fluorimetry-based ligand screening of PsPto-PscA-LBD. Shown are the
melting temperature (Tm) changes for each of the 95 compounds present in the Biolog PM3B compound
array of nitrogen sources with respect to the Tm of the ligand-free protein. The dashed line indicates the
threshold of 2°C for significant hits. Data are the means and standard deviations from two assays.
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significantly reduced (Fig. 4A), indicating that PsPto-PscA is the sole chemoreceptor for
L-Asp, whereas additional receptors are likely to respond to the other two ligands
(Fig. 4B and C).

Chemotaxis assays revealed that pscA provided in trans complemented the reduced
chemotactic response of the pscA mutant toward L-Asp, D-Asp, and L-Glu (Fig. S3). Taken
together, these results indicate that the chemoreceptor PsPto-PscA mediates chemot-
actic responses to D-Asp, L-Asp, and L-Glu.

Perception of PsPto-PscA ligands controls biofilm formation and swarming
motility. The regulatory mechanisms that govern biofilm dynamics are highly complex
and remain poorly understood. Several studies highlight the involvement of chemo-
sensory pathways in the biofilm formation process (12, 50, 51), and a role of specific
chemoreceptors in biofilm formation has been reported for Pseudomonas putida

FIG 3 Microcalorimetric studies showing the binding of different D- and L-amino acids to PsPto-PscA-
LBD. (Top) Titration raw data for the injection of 8 �l of 0.5 to 1 mM ligand solutions into 15 �M
PsPto-PscA-LBD. (Bottom) Integrated, dilution heat-corrected, and concentration-normalized peak areas
fitted with the one-binding-site model of ORIGIN.

FIG 4 Quantitative assays of capillary chemotaxis of P. syringae pv. tomato (WT) and the PsPto-pscA mutant toward L-Asp (A), D-Asp (B), and L-Glu (C). The data
have been corrected with the number of cells that swam into buffer-containing capillaries. Shown are means and standard errors from three independent
experiments conducted in triplicate. Generalized linear models (GzLMs) were performed, followed by Fisher’s least significant difference (LSD) test (*, P � 0.05;
**, P � 0.01; ***, P � 0.005; ****, P � 0.001), with the exception of L-Asp at 0.5 mM and L-Asp at 5 mM, where ANOVA was performed, followed by Fisher’s LSD
test (*, P � 0.05).

PsPto-PscA Chemoreceptor Controls Phytopathogenicity ®

September/October 2019 Volume 10 Issue 5 e01868-19 mbio.asm.org 5

https://mbio.asm.org


KT2440 and P. aeruginosa (12, 52). Furthermore, D-amino acids were found to trigger
biofilm disassembly in some bacteria (53, 54), while they had no effect on others (55).

To investigate whether PsPto-PscA is involved in biofilm formation, we analyzed WT
and mutant strains grown under static conditions during 24 h. A modest but significant
increase in biofilm formation was observed for the PsPto-pscA mutant with respect to
that of the WT strain (Fig. 5).

To assess the role of PsPto-PscA ligands in biofilm formation, we developed an assay
in which saturating ligand concentrations were present, putatively causing complete
receptor saturation, preventing a response. The WT strain showed increased biofilm
formation in the presence of L- and D-Asp and L-Glu, reaching levels similar to those of
the pscA mutant. In contrast, the addition of L-Arg, a compound that does not bind to
PsPto-PscA, did not increase biofilm formation in the WT strain (Fig. 5).

Considering the increased biofilm formation of the pscA mutant, and the inverse
regulation of biofilm formation and swarming motility in Pseudomonas (35, 56), we
assessed bacterial swarming of the WT and mutant strains after 16 h. Inactivation of
pscA reduced swarming motility compared to the WT (Fig. 6).

Intracellular levels of c-di-GMP are increased in the PsPto-pscA mutant. The role
of c-di-GMP in the transition between motile and sessile lifestyles has been well
documented in many bacteria (57–59) and was also found associated with the inverse
regulation of biofilm formation and swarming in species like P. aeruginosa (60, 61),
Vibrio parahaemolyticus (62), and P. syringae pv. tomato (34). We therefore quantified
c-di-GMP levels in the WT and pscA mutant strains by introducing the plasmid pCdrA::
gfpS (Text S1 and Table S1), which harbors a transcriptional fusion of the c-di-GMP-
responsive cdrA promoter to a gene encoding green fluorescent protein (63). The

FIG 5 Biofilm formation in MGA medium. Total biofilm formation was quantified using the absorbance
of crystal violet at 570 nm. Medium was supplemented with 0.5 mM D-Asp, 1 mM L-Glu, or 1 mM L-Asp.
Shown are means and standard errors from at least three independent experiments conducted in
triplicate. GzLM analysis was performed, followed by Fisher’s LSD test (****, P � 0.001).

FIG 6 Impact of pscA mutation on swarming motility. Five replicates of each strain were placed onto a
single plate and examined after 16 h. (A) Photographs of representative swarm colonies. (B) Quantifi-
cation of the lateral colony surface area in digital images of the colonies. Shown are means and standard
errors from three independent experiments. GzLM analysis was performed, followed by Student’s t test
(****, P � 0.001).
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fluorescence intensity of the reporter correlates with the intracellular c-di-GMP levels.
As a positive control, we used the pJBpleD* plasmid, which confers high levels of
c-di-GMP (64). The resulting strains were grown on agar plates for 24 h and subse-
quently analyzed by fluorescence microscopy, showing that the fluorescence intensity
was significantly higher in the pscA mutant than in the WT strain (Fig. 7A to C). The
complementation of the mutant with the pscA gene resulted in reduced c-di-GMP levels
(Fig. S4). The increased c-di-GMP level in the mutant strain is in accordance with its
enhanced biofilm formation (Fig. 5) and the reduced swarming phenotype (Fig. 6).
Moreover, the addition of saturating concentrations of PsPto-PscA ligands caused an
increase in the c-di-GMP levels in the WT strain on an order similar to that found in the
mutant strain (Fig. 7A to C).

A PsPto-cheA2 mutant is defective in chemotaxis but shows increased c-di-GMP
levels. In order to identify the chemotaxis pathway of PsPto-PscA, we constructed a
mutant strain of the homologue of P. aeruginosa PAO1 cheA (PA1458), previously
described to be involved in the chemotaxis pathway of many MCPs. This gene
(PSPTO_1982 or cheA2) is located in P. syringae pv. tomato chemotaxis cluster I (65), and
the encoded protein shares 78% sequence identity with P. aeruginosa PAO1 CheA
(Fig. S5). In P. aeruginosa, the core proteins of the chemotaxis pathway are encoded by
two clusters, namely, clusters I and V. Cluster V contains the CheR and CheV proteins,
and this cluster is also found in P. syringae pv. tomato (Fig. S5). The PsPto-cheA2 mutant
lost the chemotactic response to the three ligands of PsPto-PscA. This mutant also
showed significantly higher c-di-GMP levels than the WT strain (Fig. 8). In order to
ascertain whether PsPto-CheA2 is the autokinase involved in chemotaxis, we measured
responses to serine, spermidine, and succinic acid. Our results showed that the PsPto-
cheA2 mutant lost the ability for chemotaxis to the three compounds tested (Fig. S6).

PsPto-PscA function controls virulence of P. syringae pv. tomato in tomato
plants. The decreased swarming motility and increased c-di-GMP levels of the PsPto-
pscA mutant may potentially affect virulence. To test this hypothesis, we conducted
virulence assays in which leaves of tomato plants were inoculated with the WT and
mutant strains. At 6 days postinoculation, bacterial populations were quantified. Data
showed significant reductions in both symptom development and bacterial popula-
tions for the PsPto-pscA mutant compared to the WT strain. A complemented PsPto-
pscA mutant strain restored virulence to WT levels (Fig. 9A and B).

In subsequent studies, we analyzed bacterial pathogenicity in the presence of the
PsPto-PscA ligands. Chemotaxis is based on a ligand gradient covering the chemore-

FIG 7 Effect of PsPto-pscA ligands on c-di-GMP levels. Fluorescence intensities of strains harboring the c-di-GMP biosensor plasmid pCdrA::gfpS

grown in M9 medium supplemented with D-Asp (A), L-Asp (B), and L-Glu (C) were determined. Shown are means and standard errors from three
independent experiments. ANOVA was performed, followed by Fisher’s LSD test (*, P � 0.05). A.U., arbitrary units.
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ceptor response range (6), and chemoreceptor saturation with the ligand will prevent
taxis. We therefore conducted virulence assays in the presence and absence of satu-
rating concentrations of D-Asp, L-Asp, and L-Glu. To this end, tomato leaves were spray
inoculated with a bacterial suspension with or without 1 mM amino acid. As a control,
we inoculated plants with bacteria containing 1 mM L-Arg or D-Glu, compounds to
which P. syringae pv. tomato does not show chemotaxis (data not shown). After 6 days
postinoculation, dramatic reductions in both symptom development and bacterial
populations were observed for the plants inoculated with a bacterium–D-Asp mixture

FIG 8 Effect of PsPto-PscA ligands on chemotaxis and c-di-GMP levels in a cheA2 mutant. (A) Quanti-
tative capillary chemotaxis assay of P. syringae pv. tomato (WT) and the cheA2 mutant (PsPto-cheA2). (B)
Fluorescence intensity of strains harboring the c-di-GMP biosensor plasmid pCdrA::gfpS. Shown are
means and standard errors from three independent experiments. GzLM analysis was performed, followed
by Student’s t test (****, P � 0.001).

FIG 9 PsPto-PscA is required for the full virulence of P. syringae pv. tomato. (A) Virulence of P. syringae pv. tomato WT, mutant (PsPto-pscA), and
complemented (PsPto-pscA-Comp) strains. (B) Plant colonization based on bacterial population sizes in tomato leaves at 6 days postinoculation, after spray
inoculation of bacterial suspensions (108 CFU/ml). Shown are means and standard errors from three independent experiments. ANOVA was performed,
followed by Fisher’s LSD test (*, P � 0.05). (C) Virulence of P. syringae pv. tomato (WT) and a PsPto-pscA mutant when the indicated amino acids were
added to the bacterial suspension before infection. (D) Plant colonization based on bacterial population sizes in tomato leaves at 6 days postinoculation,
after spray inoculation of bacterial suspensions (108 CFU/ml), in the presence of the indicated amino acids. Shown are means and standard errors from
at least three independent experiments. GzLM analysis was performed, followed by Fisher’s LSD test (****, P � 0.001).
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compared to plants inoculated without D-Asp (Fig. 9C and D). In contrast to the drastic
decreases in symptom development and leaf colonization that occurred in the pres-
ence of D-Asp, only a slight reduction was observed when D-Glu was added to the
inoculum. Moreover, the presence of L-Arg, L-Asp, and L-Glu did not alter disease
development. As expected, the PsPto-pscA mutant strain was impaired in its virulence
despite the addition of L-amino acids to the inoculum (Fig. 9C and D).

DISCUSSION

Knowledge on the function of chemoreceptors in plant-pathogenic bacteria is very
scarce. In this work, we have identified the ligands of the PsPto-PscA chemoreceptor
and demonstrate that it exerts multiple functions. Apart from mediating chemotaxis,
this receptor was shown to be involved in regulating c-di-GMP levels, which was
reflected in associated phenotypic manifestations such as changes in biofilm formation
or swarming motility. Furthermore, PsPto-PscA was also involved in controlling P.
syringae pv. tomato virulence.

There is very substantive evidence that chemotaxis is a key requisite for efficient
pathogenesis in plant pathogens (16). It is generally accepted that chemoeffectors
released by either plant wounds or stomata induce chemotaxis toward these plant
openings, providing access to the apoplast to initiate plant infection. Most of the
studies available to date have analyzed mutants in cheA or flagellar genes that resulted
in nonchemotactic or nonmotile phenotypes, respectively (16). However, information
regarding particular bacterial chemoreceptors and the specific plant signals that they
sense is scarce. Here, we show that the PsPto-PscA chemoreceptor binds specifically to
D/L-Asp and L-Glu and that signaling through PsPto-PscA affects bacterial virulence in
host plants. This ligand specificity is underlined by the observation that L-tartrate, a
D-Asp homologue present in plants, failed to bind to PsPto-PscA, and hence, L-tartrate
chemotaxis was not altered in the PsPto-pscA mutant (see Fig. S1B in the supplemental
material). PsPto-PscA contains a dCACHE LBD; a significant number of dCACHE-
containing chemoreceptors have been reported so far, and many of them are charac-
terized by a broad ligand spectrum since they recognize almost all proteinogenic amino
acids. Representative members of this family include the chemoreceptors PctA of P.
aeruginosa (39, 40), McpU of Sinorhizobium meliloti (66), McpC of Bacillus subtilis (43),
McpX of Vibrio cholerae (44), and CtaA and CtaB of Pseudomonas fluorescens (67). In
marked contrast is PsPto-PscA, which has a very narrow ligand range and recognizes
only three acidic amino acids. Interestingly, Asp and Glu are the most abundant
proteinogenic amino acids in plants (68, 69) and specifically in the tomato apoplast (49).
Moreover, the presence, although in smaller amounts, of D-amino acids in plants has
also been reported (70) and was found to be due to the activity of plant racemases or
to the uptake of bacterium-derived amino acids from soil.

It can therefore be hypothesized that the abundance of these compounds in tomato
apoplasts has driven the evolution of a chemoreceptor that recognizes these com-
pounds with high specificity and that their detection during plant infection is crucial for
optimal infection. Aspartate, next to its abundance in apoplasts, appears to be an
amino acid of particular relevance for bacteria since several other chemoreceptors have
evolved that recognize this amino acid with high specificity. The Tar receptors of E.
coli and Salmonella enterica serovar Typhimurium are the central model chemore-
ceptors to study chemotactic signaling. Both proteins were found to bind aspartate
with high preference, and the obtained dissociation constants are very similar to
those obtained in this study for PsPto-PscA (71–73). Tlp1 (renamed CcaA) of the
human pathogen Campylobacter pylori is an aspartate-specific chemoreceptor (46,
74) and was found to play an important role in virulence since experimentation with
the mutant strain in different hosts resulted in a number of pathological changes
in infection experiments (75). Although the corresponding molecular mechanisms
remain unclear, these data underline the importance of signaling mediated by
aspartate-specific chemoreceptors.

The response to extracytoplasmic signals by bacteria is achieved mainly by two-
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component signaling systems (TCSs) and chemosensory pathways (76). Many bacteria
possess multiple copies of TCSs and chemosensory pathways. Indeed, the genome of
P. syringae pv. tomato encodes four chemosignaling pathways (Fig. S7). A central
question in signal transduction research resides in establishing whether there is any
functional cross talk between these multiple copies of homologous signal transduction
systems. Cross talk between signal transduction pathways, while usually considered
undesired in the evolution of protein-protein interactions, might be beneficial as a
result of an evolutionary response to a given environmental situation. Although for
TCSs, significant insight into this issue has been obtained, mainly by the pioneering
work of the Laub laboratory (77), much less information is available for chemosensory
pathways (12). We show here that mutation of PsPto-pscA increases biofilm formation
(Fig. 5) and decreases swarming motility (Fig. 6), which are phenotypes most likely
caused by the increase in c-di-GMP levels observed in this mutant (Fig. 7). Furthermore,
mutation of PsPto-cheA2 of the chemotaxis pathway generates a dramatic reduction in
taxis to several compounds, including the PsPto-PscA ligands, and an increase in
c-di-GMP levels. These data suggest that PsPto-CheA2 may interact with other MCPs
and that stimulation of PsPto-CheA2 modulates c-di-GMP levels. The results also
indicate that the chemotaxis pathway of P. syringae pv. tomato is not an insulated
pathway but interacts with different signaling systems, such as the one governing
biofilm formation.

One of the four chemosensory pathways in P. syringae pv. tomato, encoded by
cluster III (Fig. S7), is homologous to the P. aeruginosa Wsp pathway that was shown to
modulate c-di-GMP levels in response to as-yet-unidentified environmental cues (10).
Data obtained with P. aeruginosa indicate that a given chemoreceptor interacts spe-
cifically with only one CheA paralogue (78). In the present case, we hypothesize that
PsPto-PscA likely interacts with CheA2, which, however, would signal to its cognate
receptor CheY2 as well as to the CheY homologue of the Wsp pathway (WspR_Pspto).
CheY2 of P. syringae pv. tomato is a receiver-domain-only response regulator that is
likely to interact in its phosphorylated state with the flagellar motor causing taxis.
WspR_Pspto is a fusion of a receiver domain with a GGDEF diguanylate cyclase domain.
Studies in P. aeruginosa have shown that WspR phosphorylation alters the catalytic
activity of its GGDEF domain (79).

Interference of chemotaxis has been proposed to be a strategy to fight bacterial
pathogens (80). Chemotaxis is required for localizing to plant openings in order to enter
the plant and establish bacterial infection. We show here that saturating PsPto-PscA
with D-Asp reduced bacterial infection, which is most likely due to a reduction in
chemotaxis toward plant openings. However, the addition of L-Asp and L-Glu did not
cause any significant effect on virulence. This may seem to be contradictory at first sight
but may be due to the fact that D-Asp cannot be metabolized, whereas both
L-enantiomers are efficiently used as nutrients (Fig. S2). Metabolization of these com-
pounds will lead to the formation of a compound gradient, which in turn induces an
additional chemotactic response. One may argue that growth promotion by L-Asp and
L-Glu may cancel out the negative effect that these ligands had on virulence (as
observed with D-Asp). However, L-Arg, a compound that also stimulates P. syringae pv.
tomato growth (Fig. S2D) but that is not a PsPto-PscA ligand, did not produce
significant effects on virulence. This result indicates that although P. syringae pv.
tomato can grow on L-amino acids, the corresponding increase in cell density is rather
modest. Moreover, the addition of other D-amino acids like D-Glu, which is not a P.
syringae pv. tomato chemoattractant, caused only minor reductions in symptom de-
velopment and leaf colonization, which is in marked contrast to the severe effects
observed in the presence of D-Asp. Taken together, these data show that D-Asp, under
saturating conditions, reduces virulence in a specific manner. Therefore, the addition of
nonmetabolizable chemoeffectors may be an alternative to inhibit bacterial entry into
plants.
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MATERIALS AND METHODS
Bacterial strains, culture media, and growth conditions. Bacterial strains and plasmids used in this

work are listed in Text S1 and Table S1 in the supplemental material. P. syringae pv. tomato DC3000 and
its derivative strains were grown at 28°C in KB (King’s B) medium (81). E. coli derivatives were grown at
37°C in LB medium (82). When appropriate, the following antibiotics were added to the medium at the
following concentrations: rifampin at 25 �g/ml, streptomycin at 50 �g/ml, kanamycin at 25 �g/ml,
ampicillin at 100 �g/ml, chloramphenicol at 10 �g/ml, nalidixic acid at 10 �g/ml, and gentamicin at 5
�g/ml.

Identification and classification of MCP signal domains. The search for the MCP signal domains
(PF00015) was performed using an ad hoc pipeline as described previously by Río-Álvarez et al. (83).
Transmembrane (TM) domains were identified individually using the TMHMM server v. 2.0 (http://www
.cbs.dtu.dk/services/TMHMM/) and the DAS transmembrane region prediction algorithm (84). Each MCP
was analyzed for Pfam matches (https://pfam.xfam.org/) and categorized according to its LBD. LBDs were
considered the domains different from the MCP signal (PF00015) and HAMP (domain present in histidine
kinases, adenylyl cyclases, methyl-accepting proteins, and phosphatases) (PF00672).

Construction of the expression plasmid for PsPto-PscA-LBD. A complete list of plasmids used in
this study is available in Table S1, and a complete list of primers can be found in Table S2.

The DNA fragment encoding the PSPTO_2480 (amino acids 30 to 278) LBD was amplified by PCR
using primers 2480LBDFw and 2480LBDRv (Table S2), and the resulting PCR fragment was finally cloned
into the pDEST17 expression vector using Gateway technology (Invitrogen, CA, USA). The verified
resulting plasmid, p2480-LBD, was transformed into E. coli BL21(DE3). A detailed description of the
construction can be found in Text S1.

Overexpression and purification of PsPto-PscA-LBD. E. coli BL21(DE3) containing p2480-LBD was
grown in 2-liter Erlenmeyer flasks containing 400 ml LB medium supplemented with 100 �g/ml ampicillin
at 30°C. Once the culture reached an optical density at 600 nm (OD600) of 0.5, protein overexpression was
induced by the addition of 0.5 mM isopropyl-�-D-1-thiogalactopyranoside (IPTG). Growth was then
continued at 18°C overnight prior to cell harvest by centrifugation at 6,000 � g for 20 min at 4°C. Cell
pellets were resuspended in buffer A (30 mM Tris-HCl, 300 mM NaCl, 10 mM imidazole, 10% [vol/vol]
glycerol [pH 8.0]) and broken by French press treatment at a gauge pressure of 62.5 lb/in2. After
centrifugation at 20,000 � g for 1 h, the supernatant was loaded onto a 5-ml HisTrap column (Amersham
Biosciences) previously equilibrated with 5 column volumes of buffer A, washed with buffer A containing
40 mM imidazole, and eluted with a linear gradient of 40 to 500 mM imidazole in buffer A. Protein-
containing fractions were pooled and dialyzed into HNG buffer (50 mM HEPES, 300 mM NaCl, 10%
[vol/vol] glycerol [pH 8.0]) for immediate analysis.

Thermal shift assay-based high-throughput ligand screening. Thermal shift assays were per-
formed on a Bio-Rad MyIQ2 real-time PCR instrument. Ligands from the compound array (Biolog,
Hayward, CA, USA) were dissolved in 50 �l of Milli-Q water, which, according to the manufacturer,
corresponds to a concentration of 10 to 20 mM. Screening was performed using 96-well plates. Assay
mixtures (25 �l) contained 15 �M protein dialyzed into HNG buffer, SYPRO orange (Life Technologies) at
a 5� concentration, and ligands at final concentrations of 1 to 2 mM. In a single well (ligand-free protein),
the compound was replaced by water. Samples were heated from 23°C to 85°C at a scan rate of 1°C/min.
The protein unfolding curves were obtained by monitoring the changes in SYPRO orange fluorescence.
Melting temperatures were determined using the first derivative values from the raw fluorescence data.

Isothermal titration calorimetry binding studies. Experiments were conducted on a VP micro-
calorimeter (MicroCal, Amherst, MA, USA) at 25°C. PsPto-PscA-LBD was dialyzed overnight against HNG
buffer, adjusted to a concentration of 15 �M, and placed into the sample cell of the instrument. The
protein was titrated by the injection of 8-�l aliquots of 0.5 to 1 mM ligand solutions that were prepared
in HNG buffer immediately before use. The mean enthalpies measured from the injection of ligands into
buffer were subtracted from raw titration data prior to data analysis with the MicroCal version of ORIGIN.
Data were fitted with the “one-binding-site” model.

Construction of mutants. The generation of PsPto-pscA and PsPto-cheA2 mutant strains was carried
out by single-crossover integration. A detailed description can be found in Text S1.

Quantitative capillary chemotaxis assays. Cultures grown overnight were diluted to an OD600 of
0.05 in KB buffer and grown at 28°C with orbital shaking. At the early stationary phase of growth, cultures
were centrifuged at 1,750 � g for 5 min, and the resulting pellet was washed twice with 10 mM HEPES
(pH 7.0). Cells were resuspended in HEPES and adjusted to an OD600 of 0.25. Next, 230-�l samples were
placed into each well of a 96-well plate. One-microliter capillaries were filled with the compound to be
tested, immersed into the bacterial suspension, and incubated for 30 min. Capillaries were removed from
the bacterial suspension and rinsed with sterile water, and the content was expelled into 1 ml of NB
medium (1 g yeast extract, 2 g beef extract, 5 g NaCl, and 5 g Bacto peptone [per liter]). Serial dilutions
were plated onto NB medium with the appropriate antibiotics, and the number of CFU was determined.
In all cases, data were corrected by subtracting the number of cells that swam into buffer-containing
capillaries.

Biofilm formation. Biofilm formation assays were performed as described previously by Chakravar-
thy et al. (36), with a modified MG liquid medium, MGA (54 mM mannitol, 3.6 mM KH2PO4, 23 mM NaCl,
0.8 mM MgSO4, 18 mM NH4Cl [pH 7.0]). A detailed description can be found in Text S1.

Swarming motility assays. P. syringae pv. tomato strains were grown at 28°C for 24 h on KB agar.
Cells were resuspended in KB medium to an OD600 of 1. Five microliters of the bacterial suspension was
spotted onto soft KB agar (0.5% [wt/vol] agar). Plates were incubated for 16 h at 28°C at 80% relative
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humidity (RH) under dark conditions. Swarm colonies were photographed, and the surface area of each
colony was quantified using the area selection tool of Adobe Photoshop software with readings in pixels.

Colony-based c-di-GMP reporter assays. Fluorescence intensity analyses using the c-di-GMP
biosensor pCdrA::gfpS were carried out according to methods described previously by Corral-Lugo et al.
(52), with slight modifications. A detailed description can be found in Text S1.

Tomato virulence assays. P. syringae pv. tomato strains were grown at 28°C for 24 h on KB agar in
darkness. Cells were resuspended in 10 mM MgCl2 and diluted to 108 CFU/ml. Three-week-old tomato
plants (Solanum lycopersicum cv. Moneymaker) were sprayed with a suspension containing 108 CFU/ml.
Silwet L-77 was added to the bacterial suspensions at a final concentration of 0.02% (vol/vol). Where
indicated, amino acids were added to a final concentration of 1 mM.

Plants were incubated in a growth chamber at 25°C at 60% RH with a daily light period of 12 h. Six
days after inoculation, the leaf symptoms were recorded, and bacterial populations from three plants
were measured by sampling five 1-cm-diameter leaf disks per plant. The infected leaf disks were washed
twice with 10 mM MgCl2 prior to homogenization to eliminate the bacteria from the leaf surface. Plant
material was homogenized in 10 mM MgCl2 and drop plated onto KB agar supplemented with the
appropriate antibiotics. The average number of bacteria per square centimeter isolated from five infected
tomato leaves was determined based on log-transformed data.

Statistical analysis. Differences among strains were compared using generalized linear models
(GzLMs) when variances were different or one-way analysis of variance (ANOVA) when variances were
equal, followed by Fisher’s least significant difference (LSD) post hoc test for multiple comparisons,
performed using the statistical software package SPSS 22.0 (SPSS Inc., Chicago, IL, USA).
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