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Abstract: In recent decades, the ever-growing demands for clean water in households and industries
have urged researchers to take every possible step to deal with the global water crisis. Seawater
desalination has turned out to be the most promising and efficient way to provide clean water. Owing
to the advancement of synthetic chemistries and technologies, great success has been achieved in the
desalination and utilization of seawater worldwide. China, with the world’s largest population, has
pushed the development of desalination and multipurpose utilization of seawater further in respect
of materials, technologies and services, etc. This review reports recent progress of desalination
technologies accomplished in China, from the viewpoints of facilities and equipment, collabora-
tions, technologies, applications, research abilities, services, and standard systems. Inspired by the
Fourteenth Five-year Plan, it also proposes future perspectives of desalination in China.

Keywords: seawater desalination; project scale; application scenarios; standard systems; techni-
cal services

1. Introduction

Reliable and stable freshwater supply is a prerequisite for the sustainable development
of human society. However, the fast-growing world’s population and development of
industrialization have made it difficult to acquire sufficient potable water. It has become
an international task to deal with the water crisis. Freshwater has been considered as a
strategic resource among the limited accessible resources [1]. Since seawater constitutes
more than 97% of the total water resources, desalination offers an effective way to provide
water supply via the extraction of freshwater from the sea [2]. Over the past decades,
seawater desalination has evolved as the main freshwater source in many countries and
areas, especially in the drought regions of the Middle East. As shown in Figure 1a, the
desalination capacity has exceeded 100 million m3/d worldwide as the total plants number
approaching 20,000 in 2020 [3].

The well-developed desalination technologies mainly include membrane-based pro-
cesses (e.g., forward osmosis (FO), reverse osmosis (RO), electrodialysis (ED) and nanofiltra-
tion (NF)) and thermal-based processes (e.g., multistage flash distillation (MSF), multi-effect
distillation (MED) and thermal vapour compression). Thermal processes, however, are
considered to be highly energy-intensive technologies due to their reliance on thermal
energy for heating the saline feed and for driving the pumps [4]. In contrast, RO has
become the most commonly used technology due to its simplicity and relatively low en-
ergy cost. Since 2000, the global desalination capacity has been dominated by RO based
desalination plants (Figure 1b) [3]. Till now, about 80% of the total desalination is derived
from RO technology around the world [5]. It could be attributed to the advancement in
novel RO membrane materials as well as the reduction in energy consumption and pure
water production cost [2,6]. The energy consumption of large-scale RO and MED projects
in China was estimated about 4 and 1.5 kWh/m3, respectively. Depending on the salinity
of the feed water, RO processes can be classified into SWRO and BWRO for seawater (SW)
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desalination and brackish water (BW) desalination, respectively. Generally, BWRO is less
energy-consuming and more efficient than SWRO because of the low feed salinity [7].
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Figure 1. (a) Evolution of desalination capacity and the number of plants across the world over the past 60 years. Inset: (b)
comparison of the desalination capacity evolution for four main desalination technologies since 1980 [3].

As of the end of 2019, there were 115 seawater desalination plants all together in China,
with a total capacity up to 1,573,760 m3/d of potable water (Figure 2) [8]. Particularly,
in 2019, China set up 17 desalination plants in Liaoning, Hebei, Shandong, Jiangsu, and
Zhejiang, respectively, enabling a desalination capacity of about 399,055 m3/d. These plants
were mainly built to supply the coastal industries, including petrochemical industries, steel
industries, fossil plants and nuclear plants, etc. The detailed number and capacity range
for local seawater desalination projects in China is depicted in Figure 3.
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Of all the seawater desalination plants in China, a majority of 97 plants are operated
based on RO, possessing a capacity of 1,000,930 m3/d, which accounts for 63.6% of the total
capacity. The second most popular type is MED plants, the number of which adds up to
15, generating 565,530 m3/d water desalination capacity, about 35.9% of the total capacity.
There is only one plant that applies the MSF technique, with the capacity of 6000 m3/d,
in the proportion of 0.38% of the total capacity. Three other plants rely on electrodialysis
technique, exhibiting a capacity of 800 m3/d, less than 0.05% of the total capacity. Another
one is based on FO technique, providing a desalination capacity of 500 m3/d, about 0.03%
of the total capacity. Over several decades’ evolution, China has gained great progress in
desalination industries in terms of products and engineering procurement construction
(EPC) companies (Table 1).

So far, there have been many interesting review papers on the seawater desalination
technology and engineering in China, ranging from the desalination industries, techniques,
projects, and energy consumption to economic impact, etc. [9–14]. A comprehensive review
covering the recent project scales, application scenarios, equipment series, standard systems
and technical services undergoing in China, especially those initiated by the leading
desalination organization of the Institute of Seawater Desalination and Multipurpose
Utilization (ISDMU) is still missing. Therefore, in this review, the recent progress on
desalination projects and techniques achieved by China are surveyed. Emphasis is put
on the project scale, application scenarios, equipment, techniques, materials and services,
especially achieved by ISDMU. In the end, it comes up with some perspectives in the future
development of desalination in China.
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Table 1. Main products and EPC companies in China.

Classification Product Brands/Company
Names Location

Membranes

OriginWater Beijing
Vontron Guiyang

Toray Bluestar Beijing
Koch Beijing

Zhaojin Motian Yantai
Motech Tianjin
Scinor Beijing

Equipment

Shandong Shuanglun Weihai
Nanfang Pump Industry Hangzhou

Voitu Shanghai
Kaiquan Shanghai

Sulzer (Dalian) Dalian
KSB(Shanghai) Shanghai

EPC company

Beijing OriginWater
Technology Co., Ltd. Beijing

Qingdao Water Group Co.,
Ltd. Qingdao

Shanghai Electric Group Co.,
Ltd. Shanghai

ISDMU Tianjin
Hangzhou Water Treatment
Technology Development

Center Co., Ltd.
Hangzhou

POWCHINA Beijing

2. The Main Technical Progress
2.1. The Expanded Project Scale and Single Plant Scale

Plant capacity is one of the key indicators of the development degree of the desali-
nation industry. To scale up the plant facility and capacity is highly desirable as larger
plants offer the distinct advantages of energy-effectiveness, operational stability, and small
footprint. The last 60 years have witnessed the evolution of the seawater desalination
capacities of the top 20 plants worldwide, as shown in Figure 4 [15]. All of the plants
had undergone steady increases in the plant capacities, especially the largest one in Sorek
in Israel, the capacity of which increased by almost 1000-fold over 60 years (achieved
624,000 m3/day) [16]. It is predicted that the capacity of a single SWRO plant could exceed
1,000,000 m3/d in the future.

In recent years, China has been devoted to expanding the scale of plants as well. So
far, the ≥10,000 m3/d desalination plants have added up to 37, with a total capacity of
1,403,848 m3/d. The number of plants with the capacity in therange of 1000–10,000 m3/d
has reached 42, exhibiting a capacity of 162,522 m3/d. There are 36 plants under 1000 m3/d,
with the total capacity of 7390 m3/d. In 2019, the capacity of largest newly built desalination
plant is 180,000 m3/d.



Membranes 2021, 11, 206 5 of 18Membranes 2021, 11, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 4. The evolution of plant capacity worldwide over the past 60 years. The solid line shows 
the trend of the capacity of the largest plant and the dashed line showing that of the top 20 plants 
[15]. 

 
Figure 5. Seawater desalination projects with the capacity of >50,000 m3/d in China. (a) Beijiang Power Plant MED project, 
Tianjin (200,000 m3/d). (b) Dagang New Spring SWRO project, Tianjin (100,000 m3/d). (c) Caofeidian SWRO project, Tang-
shan (50,000 m3/d). (d) Befesa SWRO project, Qingdao (100,000 m3/d). (e) Dongjiakou SWRO project, Qingdao (100,000 
m3/d). (f) Zhejiang Petroleum SWRO/MED project, Zhoushan (180,000 m3/d). 

2.2. The Broadening Application Scenarios and Technical Integration 
Apart from seawater desalination, desalination technologies have been widely used 

in other areas, such as water treatment for municipal and industrial usages. According to 
the statistic released by The Membrane Industry of Association of China (MIAC), the hold-
ing number of RO membrane modules has exceeded 3,500,000 and the installation capac-
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The representative seawater desalination projects with the capacity of >100,000 m3/d
are shown in Figure 5. In China, the largest seawater desalination plant of the Beijiang
Power Plant MED project owns a capacity of about 2,000,000 m3/d (Figure 5a), whilst the
largest SWRO plants in five corresponding projects have the capacity of 100,000 m3/d
each (Figure 5b–f). Notably, Befesa SWRO project is attempting to expand its capacity to
200,000 m3/d in the expectation of becoming the largest SWRO plant in China soon. More-
over, it has become more and more popular to apply the integrated membrane/distillation
systems in large plants. For example, in Zhejiang petroleum project, it makes good use of
SWRO (75,000 m3/d) and MED (105,000 m3/d) in the integrated system.

2.2. The Broadening Application Scenarios and Technical Integration

Apart from seawater desalination, desalination technologies have been widely used
in other areas, such as water treatment for municipal and industrial usages. According
to the statistic released by The Membrane Industry of Association of China (MIAC), the
holding number of RO membrane modules has exceeded 3,500,000 and the installation
capacity outnumbered 50,000,000 m3/d (Figure 6) [17]. Among them, only about 3% of
the capacity was provided to seawater desalination projects (1573,760 m3/d), indicating
that RO membranes have been extensively used in many other water treatment projects.
Moreover, combination of different desalination technologies has become a new trend for
various water treatment scenarios [18–20]. For instance, in the project of coal chemical
industrial wastewater treatment, RO was coupled with membrane bioreactor (MBR) and
MED processes as an integrated system, providing a capacity of 20,000 m3/d.
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The ISDMU of the Chinese Ministry of Natural Resources, has taken over several
industrial wastewater treatment projects in recent years (Figure 7). Despite the application
in seawater desalination, desalination technologies have been applied in a wide range of
water treatment applications.

On another hand, efforts have been made in the combination of desalination with other
energy technologies, such as nuclear power. Seawater desalination is an energy-intensive
and/or thermal-intensive process, while nuclear power plants generally rely on excessive
consumption of water for cooling and other operations [21]. The integration of seawater
desalination and nuclear power plants could be beneficial for each other. Hongyanhe
nuclear power plant SWRO project (10,000 m3/d) is the first to demonstrate the practical
application of nuclear power and desalination integrated system. After that, SWRO desali-
nation projects have been utilized in other nuclear power plants, such as Ningde, Sanmen,
and Haiyang. Recently, researchers from Shandong have proposed an innovative integra-
tion idea, named “Co-transport of water and heat”. In their proposal, the product water
from the nuclear desalination undergoes certain post-treatment processes first, following
heating by the extra heat from the nuclear power plant. Then the heated desalination water
was transported to the users, providing heat and clean water simultaneously. Using this
proposal, the traditional three pipe systems could be replaced by one single pipe, thereby
reducing the operation cost remarkably. The pilot project for water and heat simultaneous
transmission has been put into operation, providing water and heat supply for nearly 2000
people at the same time. It provides technical support and demonstration for long-distance
heat and water transmission. Additionally, other renewable energy sources such as solar,
wind, and geothermal energy have also been considered as an alternative energy supply or
desalination [22]. Particularly, solar energy has been widely applied as a heat source or
power source for thermal and/or membrane desalination. In China, several solar-driven
desalination projects have been implemented. For example, ISDMU has constructed a
solar-driven eight-effect plate distillation in Xinjiang (Figure 8a) and solar-driven MED in
Hainan (Figure 8b).
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2.3. Further Improved Equipment Series and Strengthened Supporting Capability

Recent decades have seen great progress and advances in the evolution of seawater
desalination facilities and capabilities for marine use. Particularly, ISDMU has developed
the abilities in equipment series (Table 2) supply based on different utility sites and energy
sources, which are classified as ship-based equipment, island-based equipment and all-in-
one integrated equipment.

Table 2. Specifications of equipment models from ISDMU.

Model
Water Production

Capacity
(m3/d)

Salt Rejection
(%)

Recovery Ratio
(%)

Operational
Pressure

(MPa)

Equipment Size
L × W × H/cm

CH-001 a 1 99.2 12 5.5 100 × 60 × 150
CH-005 5 99.2 24 5.5 100 × 60 × 150
CH-010 10 99.5 30 5.5 100 × 60 × 160
CH-020 20 99.5 30 5.5 150 × 75 × 180
CH-050 50 99.5 40 5.5 190 × 110 × 180
CH-100 100 99.5 40 5.5 220 × 130 × 180
CH-200 200 99.5 40 5.5 400 × 150 × 180

DH-005 b 5 99.5 24 5.5 100 × 60 × 150
DH-010 10 99.5 30 5.5 100 × 60 × 160
DH-020 20 99.5 30 5.5 100 × 60 × 160
DH-050 50 99.5 40 5.5 120 × 60 × 170
DH-100 100 99.5 40 5.5 120 × 60 × 170
DH-200 200 99.5 40 5.5 150 × 60 × 180
DH-500 500 99.5 40 5.5 200 × 60 × 180

DHP-005 c 5 99.5 30 5.5 600 × 280
DHP-010 10 99.5 30 5.5 1000 × 300
DHP-020 20 99.5 30 5.5 1300 × 300
DHP-050 50 99.5 40 5.5 2000 × 400
DHP-100 100 99.5 40 5.5 2500 × 500

Note: a CH model series refers to desalination plant for marine use. b DH model series refers to desalination plant for island use. c DHP
series refers to wind/light/oil-storage-integrated desalination plant.

Generally, island-based seawater desalination units are located at remote islands and
marine monitoring stations. These instruments should have the advantages of compact
structures, less area occupation, easy to install, high automation, easy to operate and
maintain. Examples include equipment series in Yongxing island (Figure 9a, with a capacity
of 1000 and 100 m3/d, respectively), Chenhang island, Lingyang island, Dongmaozhou
island, Xiaoqin island and Zhongjian island (with a capacity of 100 m3/d), Lingshan island
in Qingdao (Figure 9b, with a capacity of 300 m3/d), and Daguan island in Qingdao (with a
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capacity of 5 m3/d using renewable energy). Alternatively, an all-in-one integrated system
has been designed and developed to supply fresh water for remote places with no power or
network coverages. With the combination of wind, solar, oil, desalination, and intelligent
control systems, such a highly integrated plant has its energy supply systems without
the need of additional power resources, thereby showing the advantageous features of
energy-effective and highly automated operation (Figure 9c). Moreover, a low-temperature
tolerable RO equipment realized by integration with thermal devices for extreme conditions,
like in the South Pole (Figure 9d), was developed.

Besides, seawater desalination has been extensively employed to generate freshwater
to meet the regular need onboard ships (Figure 10) [23]. Such devices are designed specifi-
cally for ship users, offering the advantages of small size, lightweight, simple installation,
and wide adaptability. Plus, the maintenance of these instruments is convenient and time-
saving without frequent washing, as the instruments use one-key start/stop allowing the
installation/maintenance to be carried out in narrow spaces, such as the cabins, decks, and
corridors [23].
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ISDMU has also developed chemical reagents for seawater desalination including
scale inhibitors, defoaming agents, fungicides, and cleaning agents [24]. Scale inhibitors
showed excellent performance, with the antiscale rate at about 95% [24]. The defoaming
agents composed of polyether (SD501) and silicone (SD502), exhibited a defoaming rate
of >90% at 70 ◦C without interfering with the scale inhibitors [24]. The developed DM
fungicides have the advantages of broad-spectrum and fast sterilization, easy degradation
and residual-free. Meanwhile, the cleaning agents are safe, environmentally friendly, as
well as compatible with scale inhibitors and fungicide used. These new reagents have been
applied in many desalination projects such as Baifa, Yongxing island, Cape Verde, and
Djibouti seawater desalination plant.

In the typical SWRO system, pretreatment processes are utilized to ensure all the par-
ticulates are removed before the stream reaching the membranes without the incorporation
of any strainers [5,25,26]. However, such pretreatment process is sensitive to the changes
of source water characteristics, which would lead to a large consumption of processing
chemicals, high operational costs and deterioration of environment [27,28]. Thus, it is
desired to come up with new processes that allow minimum consumption of chemicals in
different application scenarios.

2.4. Improved Research and Development Ability and Technical Level
2.4.1. Core Components and Equipment

Despite the rapid development of seawater desalination technologies in China, the
core materials, components, and equipment (e.g., RO membranes, energy recovery devices,
and high-pressure pumps) are still cost sensitive on the importation. In recent years, ISDMU
has been devoted to the research and development of key devices of desalination based on
theoretic improvement, self-developed simulation and domestic materials. For instance,
ISDMU developed a series of titanium-based pipelines and its fittings (Figure 11a), which
showed excellent performances in several tropical island seawater desalination projects,
especially the anticorrosive activity [29]. Energy recovery devices and high-pressure pumps
were developed with higher efficiency and recovery tolerance (Figure 11b,c) [30,31]. The
experiences of high-pressure components and the data accumulation of its site applications
and cost evaluation will set up new frontier for SWRO material selection.
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2.4.2. Membrane Materials and Technologies

During a desalination process, the membrane is one of the key elements determining the
desalination performance. Generally, there are two main types of desalination membranes,
namely ultrafiltration (UF) and RO membranes. However, membrane fouling (e.g., organic
fouling, scaling/inorganic fouling, and biofouling) is a major concern in membrane-based
applications [32]. For example, scaling could induce extra energy and operational cost in
the RO process as a result from the contamination in feed water [33]. Membrane surface
modification has been developed to improve the membrane antifouling properties, by
physical or chemical methods like nanomaterial penetration, mixing, coating, grafting,
self-assembly, chemical coupling, physical adsorption, and irradiation, etc. [32,34–37].

On another hand, novel membrane material synthesis, module design and processing
approaches have been broadly explored, rendering the membranes chlorine-resistant, an-
tifouling, stable, and highly efficient in terms of desalination and separation performance.
Interested readers are referred to the excellent research and review articles [38–46]. In a
recent work by ISDMU and Shandong University of Science and Technology, aminophenyl-
modified mesoporous silica NPs were used to fabricate RO membranes, enabling enhanced
water flux by 21% while maintaining high NaCl rejection of 98.97%, only slightly decreased
by 0.29% compared with that of the pristine membrane [47]. Polytetrafluoroethylene (PTFE)
hollow-fiber has emerged as a promising candidate for highly efficient water treatment
applications due to its acid-resistant, alkali-resistant and antioxidant properties. Recently,
ISDMU has developed a pilot line for PTFE hollow-fiber membranes (HFMs), produc-
ing versatile PTFE HFMs with tunable diameters of 0.8–1.5 mm and average pore size
0.28–2.17 µm (Figure 12a,c). The self-developed 10-inch module (Figure 12b) based on the
produced PTFE HFMs yields the capacity of portable water of 140 L/h with a salt rejection
of 99.9% in MD desalination. Apart from MD, PTFE HFMs are also widely used for UF
desalination. Alternatively, ceramic membranes have been developed with outstanding
features of tunable microstructures, excellent chemical and thermal properties, long lifetime,
and little environmental impact [48]. Ceramic membranes are mostly used in UF, whilst in
some cases, are used in NF and RO desalination applications. Some new types of ceramic
membranes made of low-cost geomaterials from nature (i.e., clay, apatite, zeolite, and sand)
have become a focus of research interests [49–52]. For instance, ISDMU has invented novel
MFI-type zeolite membranes, for RO desalination applications (Figure 12d,e, unpublished
work), exhibiting high salt rejection with diminished absorption for hydrated metal ions in
saline water.

Researchers from the Nanjing University of Technology have promoted the advance-
ment of ceramic membranes and cut the price of imported ceramic membranes in Chinese
markets [17]. It is mainly realized by shifting the research focus from process engineering
to nanostructured membrane design, the fabrication technology from experience-driven to
quantification control. Up to now, the domestic enterprise values of the ceramic membrane
industries have risen from the initial million to 100-million scale. Large scale produc-
tion lines for ceramic membranes have enabled their applications in traditional Chinese
medicine clarification, biological fermentation broth purification, petro-chemical as well as
environmental protection fields [17]. The ceramic membranes developed in China exhibited
better separation and operational stability, more than 1000 application cases, and exported
to 55 countries. Some typical ceramic membrane projects have been listed in Table 3. In
supplement for ultra-large companies, listed companies, large private enterprises, as well
as research institutions, the ceramic membrane markets have brought about more than
one-billion-yuan direct profits and 10-billion-yuan indirect profits [17]. The development
of ceramic membranes in Chinese industries is considered to be continuously accelerating
in the future.
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Table 3. Summary of some typical ceramic membrane projects in China.

Company Project Name Area Feed Solution Capacity

Jiangsu Jindong Salt
Refining Co., Ltd. Salt refining project Process dissociation Saline water 800 m3/h

Wudi Xinyue Chemical
Co., Ltd.

Ionic membrane caustic
soda one pass salt

refining project
Process dissociation Saline water 360 m3/h

Shandong Haobang
Chemical Co., Ltd.

Ionic membrane caustic
soda one pass salt

refining project
Process dissociation Saline water 360 m3/h

Hulun Buir Northeast
Bufeng Biotechnology

Co., Ltd.

Continuous separation
of fermented broth Process dissociation Fermented broth 1200 m3/d

Xinjiang Bufeng
Biotechnology Co., Ltd.

Continuous separation
of fermented broth Process dissociation Fermented broth Valine, 900 m3/d

Isoleucine, 800 m3/d
Yili Chuanning

Biotechnology Co., Ltd.
Continuous separation

of fermented broth Process dissociation Fermented broth 400 m3/d

North China
Pharmaceutical Hebei

Huamin Company, Ltd.

The continuous
filtration system of

fermented broth
Process dissociation Fermented broth 300 m3/d

2.4.3. Chemical Resources Recovery

Seawater contains a large number of chemicals which could potentially be extracted
to add to the chemical resources on the land. It has drawn the world’s attention to recover
and reuse these chemical resources for the sake of sustainable development of natural
resources. In conventional desalination process, especially SWRO, rejected brine containing
the majority of chemicals was supposed to discharge into the ground or sea. Thus, it is
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essential to improve the recovery of chemical resources from the brine to alleviate the
discharge environmental compact. Various strategies have been proposed, including solar
ponds, membrane distillation/crystallization, electrodialysis and reverse electrodialysis,
chemical precipitation, adsorption/desorption, eutectic freezing and crystallization, pres-
sure infiltration and microbial desalination ponds [53]. Apart from salt, the main chemical
resources produced from brine include bromine, potassium chloride, magnesium chloride,
magnesium sulfate, and potassium sulfate, etc. In China, most of such enterprises are
located in Tianjin, Hebei, Shandong, Fujian, and Hainan. The Chinese government offers
great financial supports for research programs on chemical resource recovery from brine,
promoting advances in unique chemical extraction technologies, high efficiency equipment
and industrial-level energy-saving demonstration. ISDMU has achieved progress in the
research of continuous hydrothermal preparation of high purity magnesium hydroxide
as well as in the construction of a pilot line for the macro process. Still, there are some
challenges in these areas such as high costs, large energy consumption, relatively deficient
equipment, and low efficiency. In 2019, Tianjin Changlu Hangu Saltern Co., Ltd. (Tianjin,
China) successfully implemented the equipment remodeling for bromine recovery from
highly concentrated seawater, enabling the construction of thousand-ton demonstration
installation. As a result, the energy consumption was reduced by nearly 10% and the
recovery rate increased by 8%, providing excellent demonstration for further applications
of this technology in Shandong and other places (unpublished work). The extraction of
strategic chemical elements such as lithium and uranium through inorganic ion adsorption
method is still in the experimental stage.

2.4.4. Boron Removal

Seawater contains varied content of boron in different geographical locations. Typical,
the boron content is in the range of 4–6 mg/L in most seawater resources whilst about
4.6 mg/L in standard seawater [54]. The existence of residual borides from desalination
has become a major concern among people, as minute boron would be detrimental to
human health and plant growth. The limit level of boron content in drinking water was
established in different countries to guarantee safe drinking, for example, the World Health
Organization (WHO, 2.4 mg/L, 2011), Japan (1.0 mg/L, 2015), European Commission
(1.0 mg/L, 1998), and China (0.5 mg/L, 2006) [55]. As the majority of the boron compounds
in seawater is in the form of small molecules of H3BO3 and the remaining being H2BO3

−, it
is difficult to get rid of boron residues to meet such criterion via traditional desalination [55].
In fact, the removal of boron can be sensitive to the temperature, salinity and pH of
the feed water in the thermal desalination processes [56]. Whilst, in SWRO, the boron
removal level is closely related to the pH value, which affects the dissociation of boric acid
and surface charge negativity of the RO membrane [57]. Moreover, two-pass system or
integrated technologies have been adopted in SWRO to realize the higher boron removal
in desalination [58].

2.4.5. Novel Technologies

ISDMU has undertaken a lot of research based on desalination technologies beyond
traditional SWRO process, including but not limited to MD, FO and CDI [59–61]. For
example, Xu et al. reported a novel electrospun nanofibril membrane derived from Coca
Cola bottles (Figure 13a), which was successfully used in the MD process [59]. In another
ongoing work, the performance of the membrane was improved by enhancing the hy-
drophobicity of the membrane surface through hierarchical inorganic nanostructure design
(Figure 13b). Figure 13c displays the pilot equipment based on a novel three-effect MD
process, the capacity of which turned out to be 2 m3/d. This configuration was designed
to promote thermal energy efficiency by reusing latent evaporation heat. It should be
noted that FO, MD, or CDI is not standalone and always combined with other technologies
(i.e., hybrid configuration) when being used in desalination [62]. For example, FO-NF,
FO-RO, and FO-MD hybrid systems were designed for wastewater reuse [63–65]. A FO-RO
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hybrid system was used to improve the antifouling and antiscaling properties of desali-
nation [66]. A RO-MD-PRO hybrid system was used to increase the energy efficiency of
desalination [67]. In China, FO and MD have been applied in high-concentration water
treatment whilst CDI is only for lab-scale study. As depicted in Figure 13d, an FO-MD
hybrid system was designed exhibiting a capacity of 12.5 m3/d. FO, as a spontaneous
osmotic-driven process, was coupled with MD to recover water from draw solutions while
the MD process was used to concentrate the draw solution from FO to obtain the maxi-
mum energy utilization. Furthermore, as an emerging novel desalination technology, FO
has undergone significant development during the past decades, due to its high energy
efficiency and favorable separation performances [68]. Interested readers are referred to
the excellent review literature on FO [69–71].
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2.5. Enriched Standard Systems and Technical Services

As of the end of 2019, China had established 166 standards on seawater utilization,
including 43 national standards, 116 industrial standards, and 7 local standards. ISDMU is
conducting the first ISO standard on the product water of seawater desalination and it is
speculated to be released in 2021.

ISDMU is planning to build the seawater desalination innovation base, combining
the functions of scientific research, detection and evaluation, product development, recon-
naissance design, communication and training, and information integration. In November
of 2016, the construction of pilot laboratory started, with the investment of about CNY
0.46 billion for infrastructure and about CNY 0.5 billion for instruments and equipment.
This pilot laboratory would provide platforms for seawater resources innovative utilization,
including seawater desalination innovative service, island and vessel use small-medium
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desalination manufacturing, preparation and evaluation of chemical agents, and desali-
nation device monitoring/evaluating platforms. The second phase project would mainly
involve the construction of research buildings, testing centers, information centers as well
as reconnaissance and design institute, etc.

This project would bring about a series of benefits for the desalination market and
industry which entail (1) providing high-end research facilities for breaking the bottleneck
technical problems for self-developed products; (2) enabling the third-party evaluation of
related products from home and abroad and promoting their market application; (3) offer-
ing industry–academia–research innovative centers and attracting excellent research teams
from both home and abroad for collaborations; (4) enabling the pilot experiments of the
laboratory outcome to facilitate the maturation of the technology; (5) attracting the joining
of innovative technologies and personnel to become the center of innovation and one of
the world’s competitive desalination industrial communities

3. Summary and Perspectives

In the long term, it is of significant importance to develop desalination technologies
to face the challenges of global water crisis. Desalination technologies in China are vital
both in the field of freshwater extraction from the sea and the improvement of water
environment and ecology. Specifically, emphasis should be put on the following aspects.

(1) Technology innovation

Further improve the performance of large-scale SWRO plants. Efforts include the en-
largement of single unit capacity, decrease of energy consumption, improvement of system
integration, operational stability and reliability, and desalination cost. Further endeavors
should be made towards pretreatment and system instrumentation, high-performance RO
membranes and elements, high-pressure pumps and energy recovery devices, etc.

(2) Utilization of chemical resources from seawater

The extraction and reuse of chemical resources from seawater desalination is an
attractive topic from a scientific point of view. Better technologies need to be explored to
recover chemicals and reduce possible cost. Moreover, the extraction of strategic elements
such as lithium and uranium is more challenging and needs better technologies.

(3) Green pretreatment methods

Attention should be paid to the development of green pretreatments involving green
antiscaling agents and agent-free biological methods. It is advisable to investigate electro-
coagulation and dissolved air flotation techniques.

(4) Emerging desalination technologies

Apart from the traditional SWRO desalination technologies, emerging technologies
including MD, CDI, and ED desalination processes require more research efforts, from
the exploitation of novel membrane materials to the fabrication of core components and
equipment. In addition, hybrid systems coupling the traditional technologies and the
emerging technologies should be further promoted to make the most of the less-popular
technologies.

Overall, with the ongoing research and development of desalination, China is believed
to play a more and more important role in the international desalination market with re-
markable openness and inclusiveness, providing state-of-the-art desalination technologies,
facilities and services, benefitting the water-stressed countries and regions in the world.
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