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Abstract: Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy based on a
monoclonal antibody conjugated to a photosensitizer (IR700Dye) that is activated by near-infrared
light irradiation. We previously reported on the use of NIR-PIT with a small protein mimetic, the
Affibody molecule (6–7 kDa), instead of a monoclonal antibody. In this study, we investigated a
combination of NIR-PIT for HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1)
with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate. HER2 Affibody
and trastuzumab target different epitopes of the HER2 protein and do not compete. In vitro, the
combination of NIR-PIT using both HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye
conjugate induced necrotic cell death of HER2-positive breast cancer cells without damage to HER2-
negative breast cancer cells (MCF7). It was more efficient than NIR-PIT using either the HER2
Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate alone. Additionally,
this combination of NIR-PIT was significantly effective against HER2 low-expressing cancer cells,
trastuzumab-resistant cells (JIMT1), and brain metastatic cells of breast cancer (MDA-MB361). Further-
more, in vivo imaging exhibited the strong fluorescence intensity of both HER2 Affibody-IR700Dye
conjugates and trastuzumab-Alexa488 conjugates in HER2-positive tumor, indicating that both HER2
Affibody and trastuzumab specifically bind to HER2-positive tumors without competing with each
other. In conclusion, the combination of NIR-PIT using both HER2 Affibody and trastuzumab
expands the targeting scope of NIR-PIT for HER2-positive breast cancer.

Keywords: photoimmunotherapy; Affibody; trastuzumab; IR700Dye

1. Introduction

In this study, we targeted HER2-positive breast cancer because HER2-positive expres-
sion occurs in about 20% of patients with breast cancer and is generally linked to poor
outcomes [1,2]. The HER2 protein is a 185-kilodalton transmembrane receptor and belongs
to the tyrosine kinase epidermal growth factor receptor family, which promotes cell growth,
division, and motility. Compared to other subtypes, HER2-positive cancers grow faster due
to increased HER2 signaling. Therefore, there are many studies on cancer treatment that
target the HER2 protein [3–5]. However, cancers are heterogeneous, and HER2-positive
cancer also includes cancer cells with low HER2 expression. In addition, a significant
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number of patients with HER2-positive cancer are either intrinsically resistant or eventu-
ally acquire resistance to anti-HER2-based therapy with trastuzumab, which is a major
monoclonal antibody used to clinically treat HER2-positive cancer [6]. Therefore, there is
an urgent need for new treatment to break away from the current state of HER2-positive
cancer therapy.

Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy using
a monoclonal antibody-conjugated photosensitizer (IR700Dye) and near-infrared light,
causing necrotic cancer cell death without an effect on normal cells [7–9]. In NIR-PIT,
monoclonal antibody (mAb)-conjugated IR700Dye binds to a specific protein on the target
cell surface, and when near-infrared light (690 nm) is irradiated, the light excites the
IR700Dye, causing damage to the cell membrane [10]. Currently, NIR-PIT targeting EGFR
with an mAb-IR700Dye conjugate is under a global phase III clinical evaluation for the
treatment of head and neck cancer (NCT03769506).

We previously reported on the use of NIR-PIT with a small protein mimetic, the
Affibody molecule (6–7 kDa), instead of a monoclonal antibody. Affibody molecules are de-
rived from the B-domain in the immunoglobulin-binding region of staphylococcal protein
A to recognize various molecules [11–13] and are used for imaging and therapy [14,15].
Due to their small size, NIR-PIT using Affibody molecules may expand the targeting scope
of NIR-PIT for HER2-positive breast cancer [16]. However, the effect of NIR-PIT depends
on the level of expression of the targeted protein. When the targeted protein expression
is low, IR700Dye cannot be activated efficiently, leading to reduced cellular damage and,
therefore, the likelihood of cancer recurrence.

In this study, we investigated the combination of NIR-PIT using a HER2 Affibody-
IR700Dye conjugate and a trastuzumab-IR700Dye conjugate which target different epitopes
of HER2 protein. Here, we demonstrated that the combination of NIR-PIT potentiates
the effect of NIR-PIT against HER2-positive breast cancer cells, including breast cancer
cells with low HER2 expression, trastuzumab-resistant breast cancer cells [17], and brain
metastatic breast cancer cells. It can be a new strategy to treat HER2-positive breast cancer.

2. Results
2.1. Expression of Human Epidermal Growth Factor Receptor 2 (HER2)

Various breast cancer cell lines were investigated for human epidermal growth factor
receptor 2 (HER2) expression by immunocytochemistry (ICC) and Western blotting analy-
sis. In ICC, SK-BR3 cells, MDA-MB361 cells, and JIMT1 cells showed stronger fluorescent
signals than MCF7 cells, in which HER2 expression was virtually undetected (Figure 1).
In the Western blotting analysis, a strong band with a molecular weight of 185 kDa cor-
responding to the HER2 protein was observed in SK-BR3, MDA-MB361, and JIMT1 cells.
JIMT1 cells showed a weaker band than SK-BR3 and MDA-MB361 cells (Figure 2).

2.2. Localization of HER2 Affibody-IR700Dye and Trastuzumab-Alexa488 Conjugates

To detect the HER2-specific localization of the HER2 Affibody-IR700Dye conjugate
and the trastuzumab-Alexa488 conjugate, fluorescence images were taken using fluores-
cence microscopy (BZ-X800, KEYENCE, Osaka, Japan). The fluorescence of Alexa488
and IR700Dye was detected primarily on the cell surface of HER2-positive cells (SK-BR3,
MDA-MB361, and JIMT1), while HER2-negative cells (MCF7) did not show any detectable
fluorescence under the same imaging conditions (Figure 3). Furthermore, the flow cytome-
try analysis revealed the stronger fluorescence intensity of both Alexa488 and IR700Dye in
the SK-BR3, MDA-MB361, and JIMT1 cell populations than in the MCF7 cell population
(Figure 4).
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Figure 1. Immunocytochemistry of HER2 protein in breast cancer cell lines (SK-BR3, MDA-MB361, 
JIMT1, and MCF7). SK-BR3 cells, MDA-MB361 cells, and JIMT1 cells exhibited stronger fluorescent 
signals than MCF7 cells, in which HER2 expression was virtually undetected. Scale bar: 100 µm. 
 

 

 

 

 

 

Figure 2. Western blotting analysis of HER2 protein in breast cancer cell lines (SK-BR3, MDA-
MB361, JIMT1, and MCF7). β-actin protein expression was assessed as a control. A strong band with 
a molecular weight of 185 kDa, corresponding to HER2 protein, was observed in SK-BR3, MDA-
MB361, and JIMT1 cells. 

2.2. Localization of HER2 Affibody-IR700Dye and Trastuzumab-Alexa488 Conjugates 

Figure 1. Immunocytochemistry of HER2 protein in breast cancer cell lines (SK-BR3, MDA-MB361,
JIMT1, and MCF7). SK-BR3 cells, MDA-MB361 cells, and JIMT1 cells exhibited stronger fluorescent
signals than MCF7 cells, in which HER2 expression was virtually undetected. Scale bar: 100 µm.
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Figure 2. Western blotting analysis of HER2 protein in breast cancer cell lines (SK-BR3, MDA-MB361,
JIMT1, and MCF7). β-actin protein expression was assessed as a control. A strong band with a
molecular weight of 185 kDa, corresponding to HER2 protein, was observed in SK-BR3, MDA-MB361,
and JIMT1 cells.
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Figure 4. Flow cytometry after double labeling of HER2 Affibody-IR700Dye conjugate and
trastuzumab-Alexa488 conjugate to HER2 receptors. Both IR700Dye and Alexa488 showed a strong
fluorescence intensity and revealed specific binding of HER2 receptors on HER2-positive cells (SK-
BR3, MDA-MB361, and JIMT1) without labeling to HER2-negative cells (MCF7). Representatives of
each experiment are shown by dot plots.
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2.3. The Morphological Effect by NIR-PIT

The images of the cancer cells showed that the HER2-positive cells (SK-BR3, MDA-
MB361, and JIMT1) exposed to NIR-PIT with the HER2 Affibody-IR700Dye conjugate
or the trastuzumab-IR700Dye conjugate displayed morphological evidence of cellular
bursting and bleb formation, whereas the morphology of HER2-negative cancer cells
(MCF7) remained unchanged (Supplementary Figure S1). Furthermore, as shown in
Supplementary Figure S2, in the apoptosis/necrosis assay, HER2-positive cells exposed
to NIR-PIT with the HER2 Affibody-IR700Dye conjugate or the trastuzumab-IR700Dye
conjugate showed red signals, indicative of necrotic dead cells, while HER2-negative cells
were stained blue, indicative of living cells, showing that the mode of death by NIR-PIT
using the HER2 Affibody-IR700Dye conjugate or the trastuzumab-IR700Dye conjugate for
HER2-positive cells is selectively necrotic.

2.4. Cell Viability after Near-Infrared Photoimmunotherapy (NIR-PIT)

The alamarBlue assay showed cell viability as fluorescence intensity. As shown
in Figure 5, HER2-positive cells (SK-BR3, MDA-MB361, and JIMT1) incubated with the
HER2 Affibody-IR700Dye conjugate and the trastuzumab-IR700Dye conjugate (0.1–0.3 µM)
and irradiated with NIR light (5–50 J/cm2) maintained lower cell viability than the cells
treated with NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or the
trastuzumab-IR700Dye conjugate alone, even 5 days after irradiation. On the other hand,
all samples of HER2-negative cells (MCF7) increased rapidly, including the cells that
were exposed to the conjugates (0.3 µM each) and irradiated with NIR light (50 J/cm2)
(Figure 5). Twenty-four hours after NIR-PIT, the viability of SK-BR3 (0.1 µM, 5 J/cm2),
MDA-MB361 (0.2 µM, 20 J/cm2), and JIMT1 (0.3 µM, 50 J/cm2) cells showed a significant
difference between NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or
the trastuzumab-IR700Dye conjugate alone and the NIR-PIT combination (Figure 6). On
the contrary, all samples of MCF7 cells increased at the same level as control cells.

However, as shown in Figure 6, while SK-BR3 cells treated with the combination
of NIR-PIT with the HER2 Affibody-IR700Dye and the trastuzumab-IR700Dye (0.1 µM,
5 J/cm2) conjugates were efficiently affected, MDA-MB361 cells and JIMT1 cells were
unaffected under the same condition (Supplementary Figure S3). In addition, JIMT1
cells were not affected even by the NIR-PIT combination when the concentration of both
conjugates was 0.2 µM and the power of irradiation was 20 J/cm2, while MDA-MB361 cells
were affected (Figure 3). Taken together, the cell viability of HER2-positive cells depends
on the level of HER2 expression, the concentration of the conjugates, and the dose of NIR
light irradiation.

2.5. In Vivo Fluorescence Image

In the mouse tumor xenograft studies, the mouse bearing both types of tumors
exemplified the difference between the two tumors (Figure 7a, white arrow). The MDA-
MB361 tumor had a stronger fluorescence intensity of IR700Dye than the MCF7 tumor did,
while Alexa488 was not detectable in both tumors. In the images of excised tumors (the
weight (mean ± SD) of MDA-MB361 (n = 3) was 0.36 ± 0.121 g and that of MCF7 (n = 3)
was 0.046 ± 0.012 g) in Figure 7b, the MDA-MB361 tumor exhibited a stronger fluorescence
intensity of both IR700Dye and Alexa488 than the MCF7 tumor did, and the fluorescence
intensity showed significant differences (Figure 7c). The MCF7 tumor grew slower than the
MDA-MB361 tumor, but the MCF7 tumor had enough vascularization to be affected by the
conjugates. Moreover, HER2 immunohistochemistry of engrafted tumors revealed stronger
HER2 positive stains in the MDA-MB361 tumor than in the MCF7 tumor (Figure 7d).
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Figure 5. alamarBlue assay showed cell viability as fluorescence intensity. After NIR-PIT using HER2 Affibody-IR700Dye
conjugate and/or trastuzumab-IR700Dye conjugate, the cell viability of SK-BR3 (0–0.1 µM, 0–5 J/cm2), MDA-MB361
(0–0.2 µM, 0–20 J/cm2), JIMT1 (0–0.3 µM, 0–50 J/cm2), and MCF7 (0–0.3 µM, 0–50 J/cm2) cells was measured for an
extended period of 5 days. Only HER2-positive cells (SK-BR3, MDA-MB361, and JIMT1) treated with the combination
of NIR-PIT with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate maintained the lowest cell
viability, whereas all samples of HER2-negative cells (MCF7) increased at the same speed as the control.
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Figure 6. Fluorescence intensity indicating the cell viability 24 h after NIR-PIT. HER2-positive cells (SK-BR3, MDA-MB361,
and JIMT1) treated with the combination of NIR-PIT showed lower cell viability than the cells treated with NIR-PIT using
either HER2 Affibody-IR700Dye conjugate or trastuzumab-IR700Dye conjugate, with no effect of NIR-PIT on MCF7 cells.
When SK-BR3 cells were exposed to 0.1 µM of the conjugates and 5 J/cm2 irradiation, MDA-MB361 cells were exposed to
0.2 µM of the conjugates and 20 J/cm2 irradiation, and JIMT1 cells were exposed to 0.3 µM of the conjugates and 50 J/cm2

irradiation, they showed the most significant difference between NIR-PIT using either HER2 Affibody-IR700Dye conjugate
or trastuzumab-IR700Dye conjugate and the combination of both with NIR-PIT (n ≥ 6; * p < 0.05; ** p < 0.01, one-way
ANOVA with Tukey–Kramer post hoc tests). Data are presented as means ± SD.
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Figure 7. (a) In vivo imaging of tumor xenograft-bearing mice with HER2 Affibody-IR700Dye con-
jugate and trastuzumab-Alexa488 conjugate. The image shows high-intensity IR700Dye fluores-Figure 7. (a) In vivo imaging of tumor xenograft-bearing mice with HER2 Affibody-IR700Dye
conjugate and trastuzumab-Alexa488 conjugate. The image shows high-intensity IR700Dye fluo-
rescence in the MDA-MB361 tumor (shoulder, white arrow) in contrast to the MCF7 tumor (right
dorsum). (b) The excised MDA-MB361 tumor exhibited higher fluorescence intensity of HER2
Affibody-IR700Dye conjugate and trastuzumab-Alexa488 conjugate in contrast to the MCF7 tumor.
(c) The fluorescence intensities of IR700Dye and Alexa488 showed a significant difference (n = 3,
* p < 0.05; ** p < 0.01, Student’s t-test). Data are presented as means ± SD. (d) The immunohistochem-
istry of HER2 protein from the engrafted tumors revealed stronger positive HER2 staining on the cell
membrane of the MDA-MB361 tumor than on the MCF7 tumor.
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Next, the fluorescence intensities from the tissues were examined ex vivo. The flu-
orescence images of IR700Dye showed strong fluorescence intensity in the liver, kidney,
stomach, and intestine. On the other hand, the fluorescence images of Alexa488 showed
strong fluorescence intensity only in the stomach and the intestine (Figure 8).
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3. Discussion

To determine the effect of the combination of near-infrared photoimmunotherapy
(NIR-PIT) with the HER2 Affibody-IR700Dye conjugate and the trastuzumab-IR700Dye
conjugate, we performed a range of analyses. Our immunocytochemistry (ICC) and West-
ern blotting analyses demonstrated strong expression of the HER2 protein in SK-BR3,
MDA-MB361, and JIMT1 cancer cells compared to MCF7 cancer cells (Figures 1 and 2).
JIMT1 cells expressed the HER2 protein less than SK-BR3 and MDA-MB361 cells did
(Figure 2). These results are in line with those reported by others in the literature [7,8].
In Figure 3, the fluorescence images show that IR700Dye and Alexa488 from the HER2
Affibody-IR700Dye conjugate and the trastuzumab-Alexa488 conjugate clearly merged
in the HER2-positive cancer cells. Additionally, in Figure 4, flow cytometry, used to mea-
sure the fluorescence intensity on the surface of cells in a population, showed that the
fluorescence intensity of IR700Dye and Alexa488 in the HER2-positive cells was stronger
than in the HER2-negative cells after double labeling of the HER2 Affibody-IR700Dye
conjugate and the trastuzumab-Alexa488 conjugate. These results indicate that the HER2
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Affibody-IR700Dye conjugate and the trastuzumab-Alexa488 conjugate do not compete
with each other and are specifically bound to the HER2 protein (Figures 3 and 4). In
Supplementary Figures S1 and S2, our results show that NIR-PIT using either the HER2
Affibody-IR700Dye conjugate or the trastuzumab-IR700Dye conjugate induced morpholog-
ical changes of bursting as well as necrotic cell death of only HER2-positive cancer cells
without any damage to HER2-negative cancer cells. Sato et al. described that NIR-PIT using
mAbs induces physical changes in the conjugate that is bound to the surface of target cells,
exerting physical stress within the cellular membrane and leading to an overall increase in
transmembrane water flow that eventually leads to cell bursting and necrotic cell death [18].
NIR-PIT using either the HER2 Affibody-IR700Dye conjugate or the trastuzumab-IR700Dye
conjugate also induced the same physical changes against HER2-positive cancer cells.

Our combination of NIR-PIT using the HER2 Affibody-IR700Dye conjugate and the
trastuzumab-IR700Dye conjugate caused selective cell death of HER2-positive cancer
cells and successfully maintained the lowest cell viability even 5 days after the NIR-PIT
(Figures 5 and 6 and Supplementary Figure S3).

Affibody molecules bind to an epitope that includes residues from both domains III
and IV of the HER2 protein, which are different from the epitopes where trastuzumab
binds [19]. Using the difference of the binding epitopes, Lee et al. successfully exhibited
fluorescence images of HER2-positive cells with double labeling of Affibody-Alexa488
and trastuzumab-Alexa680 conjugates [20]. Additionally, previous studies investigated
the efficacy of NIR-PIT using a cocktail of antibody conjugates and concluded that it
enhanced the therapeutic effects of NIR-PIT [21,22]. In this study, the difference of the
targeted epitope of the HER2 protein between HER2 Affibody and trastuzumab facilitated
cooperation and enhanced the effect of NIR-PIT on HER2-positive cancer cells.

Our results clearly indicated that the effect of NIR-PIT on cells was well correlated
with the level of HER2 protein expression on the targeted cells, the concentration of the
conjugate, and the power of irradiation (Figures 5 and 6 and Supplementary Figure S3). SK-
BR3 cells expressed adequate HER2 protein to be efficiently killed by NIR-PIT using either
the HER2 Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate
alone when the concentration of the conjugates was high (0.2–0.3 µM) and the power
of irradiation was strong (20–50 J/cm2). However, JIMT1 cells were not affected even
by the NIR-PIT combination using both conjugates (0.2 µM) and NIR light irradiation
(20 J/cm2) (Supplementary Figure S3). This is because the expression of the HER2 protein
in JIMT1 is low, and also because JIMT1 has a low level of trastuzumab binding capacity
to HER2 receptors despite amplification of the HER2 gene [23]. JIMT1 is a cancer cell
line that was established from a pleural metastasis of a patient with breast cancer who
was clinically resistant to trastuzumab [17,24–26]. Importantly, the combination of NIR-
PIT using both the HER2 Affibody-IR700Dye conjugate and the trastuzumab-IR700Dye
conjugate (0.3 µM, irradiation: 50 J/cm2) successfully killed JIMT1 cells by about 80%
without damaging HER2-negative cells (MCF7) (Figure 6). Our study is the first report
to show that the combination of NIR-PIT is available to cancer cells that have acquired
resistance to trastuzumab.

MDA-MB361 cells, which were isolated from a metastatic site in the brain, were also
markedly affected by the combination of NIR-PIT, although our previous study showed that
the cell viability slightly recovered 5 days after NIR-PIT using the HER2 Affibody-IR700Dye
conjugate alone [16]. The combination of NIR-PIT using the HER2 Affibody-IR700Dye
conjugate and the trastuzumab-IR700Dye conjugate has real therapeutic potential for brain
metastases of HER2-positive cells because when cancer metastasizes to the brain, the blood–
brain barrier (BBB) is disrupted [27], consequently permitting both monoclonal antibodies
and Affibody molecules to cross [28–31].

Taken together, our combination of NIR-PIT using the HER2 Affibody-IR700Dye
conjugate and the trastuzumab-IR700Dye conjugate led to a strong anti-cancer effect for
HER2-positive cancer cells, including HER2 low-expressing cells, trastuzumab-resistant
cells, and brain metastasis of HER2-positive breast cancer.



Int. J. Mol. Sci. 2021, 22, 12213 11 of 16

Our in vivo study also demonstrated that the HER2 Affibody-IR700Dye conjugate and
the trastuzumab-Alexa488 conjugate bound to the HER2 protein and imaged only HER2-
positive tumor (MDA-MB361) specifically. In whole-body images, IR700Dye showed a
strong fluorescence intensity in the MDA-MB361 tumor, but Alexa488 could not be detected
(Figure 7a). The reason is that IR700Dye allows deep signal penetration but the tissue
penetration of Alexa488 is too poor to go through mouse skin. However, in the ex vivo
study, the MDA-MB361 tumor showed a stronger fluorescence intensity of both IR700Dye
and Alexa488 (Figure 7b). Therefore, these results confirm that both HER2 Affibody and
trastuzumab bound to the HER2-positive tumor without competition. In addition, ex vivo
fluorescence images showed a discrepancy in the fluorescence intensity between the HER2
Affibody-IR700Dye conjugate and the trastuzumab-Alexa488 conjugate in the liver and
the kidney (Figure 8). Li et al. described that the extent of tissue distribution of protein
therapeutics increases as the molecular size decreases, and kidneys represented the most
abundant disposition site among all tissues, especially for smaller proteins [32]. Addition-
ally, Mczyska et al. found an increased uptake of the IR700Dye-labeled Affibody conjugate
in the kidney and suggested that it is associated with renal elimination and re-absorbance
of the Affibody molecules [33]. Additionally, Seyed et al. showed that hydrophobic patches
or positive charges in the proteins promote liver uptake using Affibody molecules [34].
These results are in agreement with our ex vivo results.

While this study showed that the combination of NIR-PIT using the Affibody-IR700Dye
conjugate and the trastuzumab-IR700Dye conjugate is an attractive candidate for clinical
use, we need further studies to examine the full therapeutic potential of this approach and
also to know the effect of Affibody molecules remaining in the kidney and the liver for a
long time and whether or not the Affibody-IR700Dye conjugate can actually cross the blood–
brain barrier to treat brain metastases. However, Affibody and IR700Dye are already used
clinically [35–37] (NCT03769506), and therefore, we would expect that the combination of
NIR-PIT using the Affibody-IR700Dye conjugate and the trastuzumab-IR700Dye conjugate
can be safely and rapidly translated into clinical practice. This study clearly demonstrated
that the combination of NIR-PIT using the HER2 Affibody-IR700Dye conjugate and the
trastuzumab-IR700Dye conjugate represents a new treatment strategy for heterogeneous
HER2-positive cancer, including HER2 low-expressing cancer, trastuzumab-resistant cancer,
and brain metastasis.

4. Materials and Methods
4.1. Cell Culture

The human breast cancer cell lines SK-BR3, MDA-MB361, MCF7, and JIMT1 were
obtained from the American Type Culture Collection (SK-BR3, MDA-MB361, ATCC®,
Manassas, VA, USA), the RIKEN Cell Bank (MCF7, Ibaraki, Japan), and the DSMZ (JIMT1,
Braunschweig, Germany). MDA-MB361 was established from a brain metastasis of breast
cancer. JIMT1 was established from a pleural effusion of breast cancer and is insensitive to
HER-2-inhibiting drugs, e.g., trastuzumab (Herceptin).

The SK-BR3 cell line was cultured in McCoy’s 5A medium (GIBCO®, Life Technolo-
gies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; GIBCO®, Life
Technologies, Carlsbad, CA, USA) and 1% penicillin-streptomycin (Invitrogen, Life Tech-
nologies, Carlsbad, CA, USA). Other cell lines were cultured in DMEM (GIBCO®, Life
Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin. All cell lines were kept in a humidified environment containing
5% CO2 at 37 ◦C. The medium was changed every other day.

4.2. Immunocytochemistry (ICC)

Prior to ICC, coverslips needed to be put at the bottom of the wells in a 24-well plate.
In total, 1 × 105 HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) and
HER2-negative breast cancer cells (MCF7) were seeded on the coverslips. Cells were fixed in
4% paraformaldehyde for 15 min and washed with phosphate-buffered saline (PBS) twice.
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Nonspecific sites were then blocked with 3% bovine serum albumin (BSA, Sigma-Aldrich,
Burlington, MA, USA) in PBS for 30 min at room temperature. Cells were incubated with
anti-HER2 antibody (HER2/ErbB2 (D8F12) XP TM rabbit mAb, Cell Signaling Technology,
Danvers, MA, USA) overnight at 4 ◦C and washed with PBS, followed by incubation with
the appropriate Alexa Fluor 488 secondary antibody (1:1000, anti-rabbit IgG Fab2, Alexa
Fluor ® 488, Cell Signaling Technology, Danvers, MA, USA) for 1 h at room temperature.
The coverslips were added to the mounting medium with DAPI (Vectashield Mounting
Medium with DAPI, Tokyo, Japan) for 10 min and were observed using a fluorescence
microscope (LSM 700 confocal, ZEISS, Oberkochen, Germany).

4.3. Western Blotting Analysis

The general procedure for Western blot analysis was performed as follows. Cells
(SK-BR3, MDA-MB361, JIMT1, and MCF7) in a 60-mm dish were washed with ice-cold
PBS (-) and 100 µL of modified RIPA buffer (Thermo Fisher Scientific, Waltham, MA,
USA) containing a protease inhibitor tablet (cOmplete™, Mini Protease Inhibitor Cocktail,
Roche, Mannheim, Germany), 1% ethylenediaminetetraacetic acid (EDTA), and 1% pro-
tease/phosphatase inhibitor (Thermo Fisher Scientific, Waltham, MA, USA) was added.
The cells were scraped from the dish and centrifuged at a high speed at 4 ◦C for 4 min. The
supernatant was transferred to fresh tubes and the protein concentration was determined
using a Qubit Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) according
to the manufacturing protocol described. The samples were then heated for 5 min at 100 ◦C
and equal amounts of proteins (30 µg) were subjected to SDS-PAGE. The proteins were
transferred to a polyvinylidene fluoride (PVDF) membrane. After blocking with 5% non-fat
milk, the membrane was incubated with primary antibody (HER2/ErbB2 (D8F12) XPTM
Rabbit mAb, Cell Signaling Technology, Danvers, MA, USA) at 4 ◦C overnight. Subse-
quently, the membrane was incubated with secondary antibodies (EasyBlot anti-rabbit IgG
(HRP), Gene Tex, Inc., Alton Pkwy Irvine, CA, USA). As a loading control, the membrane
was also subjected to immunoblotting using β-actin polyclonal Ab (beta-actin antibody,
Gene Tex, Inc., Alton Pkwy Irvine, CA, USA) as a primary antibody and EasyBlot anti-
rabbit IgG (HRP) (Gene Tex, Inc., Alton Pkwy Irvine, CA, USA) as a secondary antibody.
The immunoreactive bands were visualized with chemiluminescence using ECL Western
blotting detection reagent (ECL Prime Western Blotting Detection Reagent, GE Health Care
AmershamTM, Chicago, IL, USA). Image Quant LAS-500 (GE Healthcare, Chicago, IL, USA)
was used for visual assessment.

4.4. HER2 Affibody-IR700Dye Conjugate, Trastuzumab-IR700Dye or Alexa488 Conjugate

HER2 Affibody (Affibody AB, Solna, Sweden) was dissolved in PBS to a final concen-
tration of 1 mg/mL and dithiothreitol (DTT) was added to a final concentration of 20 mM
at >pH 7.5. After incubation at room temperature for 2 h, excess DTT was removed from
the conjugate by passage through a NAP5 column (GE Healthcare, Chicago, IL, USA). Then,
the HER2 Affibody was incubated with a 5-fold molar excess of IRDye700DX–maleimide
(MW: 1979.23, LI-COR Biosciences, Lincoln, NE, USA) for 2 h at 37 ◦C. After conjuga-
tion, the solution was applied to protein desalting spin columns (Thermo Fisher Scientific,
Waltham, MA, USA) and centrifuged at 1500× g for 2 min to purify the sample. To produce
the trastuzumab conjugate, trastuzumab (MW: 146 kDa, BioVision, Milpitas, CA, USA)
was incubated with a 5-fold molar excess of IR700DX-NHS ester (MW: 1954.22, RAKUTEN
medical, San Mateo, CA, USA) in PBS at 37 ◦C for 1 h. Then, the mixture was purified with a
protein desalting spin column (Thermo Fisher Scientific, Waltham, MA, USA). Additionally,
trastuzumab was incubated with a 5-fold molar excess of Alexa488 (MW: 643.41, Thermo
Fisher Scientific, Waltham, MA, USA) and purified in the same manner as above.

4.5. Confocal Microscopy Imaging of HER2 Affibody-IR700Dye and
Trastuzumab-Alexa488 Conjugates

HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) and HER2-
negative breast cancer cells (MCF7) were seeded on a glass-bottom 96-well plate. To test the
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specificity of the conjugate binding, the HER2 Affibody-IR700Dye conjugate (1 µM) and
the trastuzumab-Alexa488 (1 µM) conjugate were added to the media and the cells were
incubated for 30 min at 37 ◦C. After washing the cells with PBS, the cells were examined
using a BZ-X800 fluorescence microscope (Keyence, Osaka, Japan). To overlay images,
ImageJ was used [38].

4.6. Flow Cytometry

After detaching the cells with trypsin/ethylenediaminetetraacetic acid (EDTA), to a
1-milliliter cell suspension including 1 × 106 cells, HER2 Affibody-IR700Dye conjugate
(1 µM) and trastuzumab-Alexa488 (1 µM) conjugate were added. The cell suspension was
incubated for 30 min at 37 ◦C, washed with PBS, and then, the fluorescence intensity was
examined using a flow cytometer (CytoFLEX, Beckman Coulter Life Sciences, Inc., Brea,
CA, USA).

4.7. Cell Viability Assay

The cell viability was determined based on fluorescence intensity using an alamarBlue
assay. Briefly, cells were seeded at 1 × 104/well in flat-bottom 96-well culture plates
and allowed to grow for 24 h, followed by incubation with HER2 Affibody-IR700Dye
conjugate and/or trastuzumab-IR700Dye conjugate (0–0.3 µM) for 2 h at 37 ◦C. After
washing the cells with PBS, near-infrared light (0–50 J/cm2) was irradiated from the bottom
of the wells. After near-infrared (NIR) light irradiation, the cells were incubated with
alamarBlue solution (10 µL/100 µL in medium) for 2 h and the fluorescence intensity
was measured at 540–570/580–610 nm using a microplate reader (Power Scan’MX, DS
PHARMA BIOMEDICAL, Osaka, Japan). The cell viabilities were followed for 5 days after
NIR light irradiation. The results of the experiments are presented as the mean ± standard
deviation (SD), which were performed in at least three wells per sample and repeated more
than three times. The cell viabilities 24 h after the NIR-PIT were analyzed using a one-way
ANOVA with Tukey–Kramer post hoc tests, as shown in Figure 6 (* p < 0.05; ** p < 0.01).

4.8. Cell Images before and after Near-Infrared (NIR) Light Irradiation

Cells were seeded at 1 × 104/well in glass-bottom 96-well culture plates and allowed
to grow for 24 h, followed by incubation with HER2 Affibody-IR700Dye conjugate (0.3 µM)
or trastuzumab-IR700Dye conjugate (0.3 µM) for 2 h at 37 ◦C. After washing the cells with
PBS, near-infrared light (50 J/cm2) was irradiated from the bottom of the wells. Images of
the cells were taken by a microscope (LSM confocal, ZEISS, Oberkochen, Germany) before
and after NIR irradiation.

4.9. Cell Apoptosis/Necrosis Assay

Cells (SK-BR3, MDA-MB361, JIMT1, and MCF7) were seeded at 1 × 104/well in glass-
bottom 96-well culture plates and allowed to grow for 24 h, followed by incubation with
HER2 Affibody-IR700Dye conjugate (0.3 µM) or trastuzumab-IR700Dye conjugate (0.3 µM)
for 2 h at 37 ◦C. After washing the cells with PBS, near-infrared (NIR) light (50 J/cm2) was
irradiated from the bottom of wells. Then, apoptosis or necrosis of the cells was determined
using an Apoptosis/Necrosis Assay Kit (ab176749, Abcam, Cambridge, UK) as per the
manufacturing protocol described.

4.10. Near-Infrared Photoimmunotherapy (NIR-PIT) Illuminator

Our own designed NIR-PIT illuminator was used for all NIR-PIT experiments, with
the same settings as previously described [16]. The NIR-PIT illuminator is composed of
8 light-emitting diodes (LED: SMBB690D-1100-02 × 8, EPITEX, Inc., Kyoto, Japan), whose
peak wavelength of emission is 690 nm. In this study, the power density of the LEDs was
set to 200 mW/cm2 at 500 mA.
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4.11. Animal Imaging

Four-week-old female athymic mice (BALB/cSlc-nu/nu, Japan SLC, Shizuoka, Japan;
n = 3, body weight 12–17 g) were used in the animal studies. The mice were acclimatized
for 1 week and housed under specific-pathogen-free (SPF) conditions with a 12-h light/
dark cycle in cages. They were given free access to feed (D10001, AIN-76A, Research Diet
Inc., New Brunswick, NJ, USA) and sterilized water before the experiments started. The
MDA-MB361 model (n = 3) and the MCF7 model (n = 3) of breast cancer were established
in mice by injecting 1 × 106–107 cells suspended in 200 µL of a 1:1 mixture of Matrigel
(Becton Dickinson, Tokyo, Japan) and PBS subcutaneously into the shoulder (MDA-MB361)
and dorsum (MCF7). The experiments were performed 4 weeks after the injection. HER2
Affibody-IR700Dye conjugate and trastuzumab-Alexa488 conjugate were mixed and in-
jected into the tail vein in an amount of 100 µL. After 24 h, the mice were humanely killed
by an overdose of pentobarbital via intraperitoneal injection. The whole mice bodies
and removed tissues (tumor, heart, liver, kidney, stomach, spleen, intestine, and muscle)
were imaged using the IVIS Lumina iii In Vivo Imaging System (PerkinElmer, Waltham,
MA, USA).

4.12. Immunohistochemistry

Excised tumors were fixed in 10% formaldehyde solution overnight and were embed-
ded in a paraffin block. From the paraffin-embedded tissues of both HER2-positive tumors
(MDA-MB361) and HER2-negative tumors (MCF7), serial sections of 3 µm in thickness
were prepared. After deparaffinization, the sections were incubated with Immunosaver
(Nissin EM, Tokyo, Japan) at 98 ◦C for 45 min to retrieve the antigen and then treated
with ethanol containing 0.3% H2O2 to block endogenous peroxidase. The sections were
incubated with 5% normal goat serum (Agilent Technologies Inc., Santa Clara, CA, USA)
for 10 min at room temperature and then incubated with the primary antibody against
HER2 (HER2/ErbB2, clone D8F12, 1:400, Cell Signaling Technology, Danvers, MA, USA)
for 60 min at room temperature. Then, the sections were treated with secondary antibodies
(Histofine Simple Stain MAXPO MULTI; Nichirei Bioscience Inc., Tokyo, Japan) for 30 min
at room temperature. The color was developed using 3,3′-diaminobenzidine·4HCl (DAB
Substrate Kit; Nichirei Bioscience Inc.). After nuclear staining with hematoxylin, the slides
were observed under a light microscope (BX53, Olympus, Tokyo, Japan).

All animals were treated in accordance with the Ethical Guidelines for Investigations
of Experimental Animals of the Nippon Dental University School of Life Dentistry at
Niigata (No. 219).

5. Conclusions

The combination of NIR-PIT using the HER2 Affibody-IR700Dye conjugate and the
trastuzumab-IR700Dye conjugate enhanced the cytotoxic effect for HER2-positive breast
cancer cells, including HER2 low-expressing cancer cells, trastuzumab-resistant cancer
cells, and brain metastatic cells. This approach has the potential to improve the efficiency
of current NIR-PIT, especially for heterogeneous HER2-positive cancer.
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