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Two bacterial strains Ach-343 and Opo-235 were isolated, respectively from nodules
of Miocene-Pliocene relict legumes Astragalus chorinensis Bunge and Oxytropis
popoviana Peschkova originated from Buryatia (Baikal Lake region, Russia). For
identification of these strains the sequencing of 16S rRNA (rrs) gene was used. Strain
Opo-235 belonged to the species Mesorhizobium japonicum, while the strain Ach-
343 was identified as M. kowhaii (100 and 99.9% rrs similarity with the type strains
MAFF 303099T and ICMP 19512T, respectively). Symbiotic genes of these strains as
well as some genes that promote plant growth (acdS, gibberellin- and auxin-synthesis
related genes) were searched throughout the whole genome sequences. The sets of
plant growth-promoting genes found were almost identical in both strains, whereas the
sets of symbiotic genes were different and complemented each other with several nod,
nif, and fix genes. Effects of mono- and co-inoculation of Astragalus sericeocanus,
Oxytropis caespitosa, Glycyrrhiza uralensis, Medicago sativa, and Trifolium pratense
plants with the strains M. kowhaii Ach-343 and M. japonicum Opo-235 expressing
fluorescent proteins mCherry (red) and EGFP (green) were studied in the gnotobiotic
plant nodulation assay. It was shown that both strains had a wide range of host
specificity, including species of different legume genera from two tribes (Galegeae and
Trifolieae). The effects of co-microsymbionts on plants depended on the plant species
and varied from decrease, no effect, to increase in the number of nodules, nitrogen-
fixing activity and plant biomass. One of the reasons for this phenomenon may be the
discovered complementarity in co-microsymbionts of symbiotic genes responsible for
the specific modification of Nod-factors and nitrogenase activity. Localization and co-
localization of the strains in nodules was confirmed by the confocal microscopy. Analysis
of histological and ultrastructural organization of A. chorinensis and O. popoviana root
nodules was performed. It can be concluded that the strains M. kowhaii Ach-343
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and M. japonicum Opo-235 demonstrate lack of high symbiotic specificity that is
characteristic for primitive legume-rhizobia systems. Further study of the root nodule
bacteria having complementary sets of symbiotic genes will contribute to clarify the
evolutionary paths of legume-rhizobia relationships and the mechanisms of effective
integration between partners.

Keywords: plant-microbe interaction, symbiosis, nodulation, complementarity of genes, Astragalus chorinensis,
Oxytropis popoviana

INTRODUCTION

It has been shown that primitive tropical legumes possess
relatively low symbiotic specificity, whereas evolutionarily young
legumes of temperate climate show higher specificity and can
form symbiosis with a single species of root nodule bacteria
(Lie et al., 1987; Tikhonovich and Provorov, 2009; Provorov
and Vorobyev, 2011; Bakker et al., 2014). The promising
models for studying the evolution of such specificity are
symbiotic systems of relict legume plants. The species Vavilovia
formosa growing in Western Asia and Caucasus mountains as
well as Oxytropis triphylla, O. popoviana, O. tragacanthoides,
Hedysarum zundukii, Astragalus chorinensis, and Glycyrrhiza
uralensis originated from Baikal Lake region are known as
Miocene-Pliocene relics (Malyschev, 2006; Sinjushin et al., 2009;
Turuta et al., 2015). Information about strains isolated from
root nodules of these plant species was recently published
(Safronova et al., 2014, 2015a,b, 2017a,b). It was shown that these
isolates belonged to different families of rhizobia (Rhizobiaceae,
Phyllobacteriaceae, and Bradyrhizobiaceae) and new species
Bosea vaviloviae and Phyllobacterium zundukense were described
(Safronova et al., 2015a, 2018b).

The impact of natural rhizobial diversity and the resulting
multipartite interactions between symbionts on plant growth is
currently poorly understood. On the one hand, it was shown
that the multi-strain treatments of two Australian wattle species
Acacia salicina and A. stenophylla interacting with highly diverse
communities of rhizobia had a negative effect on plant growth,
probably due to strong competition between strains with different
levels of nitrogen-fixing activity and symbiotic effectiveness
(Barrett et al., 2015). On the other hand, two rhizobial strains
Mesorhizobium japonicum Opo-242 and Bradyrhizobium sp.
Opo-243 isolated from the same nodule of a relict legume
O. popoviana significantly accelerated the root nodule formation
on the host plant after a combined inoculation (Safronova et al.,
2018a). The whole genome sequence analysis of this pair of
strains showed the presence in Opo-243 additional genes nodPQ,
nolK, and noeL involved in the modification of Nod factors (NFs)
and affecting the specificity of plant-rhizobia interactions. This
report demonstrated that taxonomically different strains forming
symbiotic systems with relics can be co-microsymbionts infecting
the same nodule and promoting the nodulation process due to
complementary sets of symbiotic genes.

The aim of this work was to identify eight new rhizobial
strains isolated from nodules of A. chorinensis originated from
Buryatia (Baikal Lake region, Russia), to select among the
A. chorinensis and previously obtained O. popoviana isolates

a pair of strains having the most diverse sets of symbiotic
genes, and to study their effects on various legume species
(A. sericeocanus, O. caespitosa, G. uralensis, Medicago sativa,
and Trifolium pratense) after mono- and co-inoculations. The
species A. sericeocanus, O. caespitosa, and G. uralensis were
chosen because they have the same distribution area with
A. chorinensis and O. popoviana plants. The histological and
ultrastructural analyzes of A. chorinensis and O. popoviana root
nodules were also conducted to search for specific features of
their organization.

MATERIALS AND METHODS

Isolation of Rhizobial Strains From the
Root Nodules of A. chorinensis and
O. popoviana Plants in Pot Experiments
Soil samples and seeds of A. chorinensis Bunge were collected
in Buryatia (Baikal Lake region, Russia). Seeds were surface
sterilized and scarified by treatment with 0.1% HgCl2 for 10 min
and then 5% NaOCl for 8 min, rinsed carefully with sterile
tap water and germinated on filter paper in Petri dishes at
25◦C in the dark for 4 days. Seedlings were transferred to three
sterile plastic pots (5 seedlings per pot) containing 250 g of soil.
Plants were cultivated for 60 days in the growth chamber with
50% relative humidity and four-level illumination/temperatures
mode: night (dark, 18◦C, 8 h), morning (200 µmol m−2 s−1,
20◦C, 2 h), day (400 µmol m−2 s−1, 23◦C, 12 h), evening
(200 µmol m−2 s−1, 20◦C, 2 h). Illumination was performed
by L 36W/77 FLUORA lamps (Osram, Germany). Then roots
of individual plants were removed from soil and washed with
tap water. Nodules were analyzed on the stereo microscope
Stemi 508 (Carl Zeiss, Germany). Strains of nodule bacteria
were isolated from the obtained nodules by the standard
method described by Novikova and Safronova (1992) using
modified yeast extract mannitol agar (YMA, Vincent, 1970)
supplemented with 0.5% succinate (YMSA, Safronova et al.,
2015a). From one individual plant one strain was isolated. All
strains were deposited in the Russian Collection of Agricultural
Microorganisms (RCAM, WDCM 966) and stored at −80◦C in
the automated Tube Store (Liconic Instruments, Lichtenstein)
as described previously (Safronova and Tikhonovich, 2012).
Isolation of rhizobial strains from nodules of O. popoviana
plants originated from the same region as A. chorinensis
was carried out in our previous work using similar methods
(Safronova et al., 2018a).

Frontiers in Microbiology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 514

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00514 March 13, 2019 Time: 18:17 # 3

Safronova et al. Rhizobia-Legume Interactions in Relict Systems

Identification of Isolates by the Analysis
of the 16S rRNA Gene
For identification of all isolates the following PCR primers
were used: fD1 (5′-AGAGTTTGATCCTGGCTCAG -3′) and rD1
(5′-CTTAAGGAGGTGATCCAGCC -3′) for an approximately
1400 bp segment of the 16S rRNA gene (Weisburg et al., 1991).
PCR was performed in 25-µL reaction mixtures containing
150 µM dNTPs (Promega, United States), 5 pmol of each
primer, 1 U of Taq polymerase (Helicon, Russia) and 50–100 ng
of purified template DNA. PCR conditions for amplification
of the 16S rRNA gene were following: initial denaturation at
95◦C for 3 min 30 s; 35 cycles of denaturation at 94◦C for
1 min 10 s, annealing at 56◦C for 40 s and extension at
72◦C for 2 min 10 s; final extension at 72◦C for 6 min 10 s.
Electrophoresis was carried out with 1% agarose gel (Invitrogen,
United States) in TAE. A 100-bp GeneRulerTM and Lambda
DNA/HindIII markers (Fermentas, United States) were used
for sizing and approximate quantification of DNA fragments.
Purification of the PCR products was usually performed by using
PureLinkTM Quick kit (Invitrogen, United States) according
to the manufacturer’s guidance. The direct sequencing of PCR
products was performed by an ABI PRISM 3500xl genetic
analyzer (Applied Biosystems, United States).

The sequences were compared with related sequences of the
type strains available in the GenBank database using BLAST
analysis (Basic logical alignment search tool) at NCBI. Rrs-
dendrogram was constructed using the neighbor-joining method
in MEGA 5.0 software package (Tamura et al., 2011). The
evolutionary distances were computed using the maximum
composite likelihood method. Bootstrap analysis with 1000
replicates was performed to estimate the support of clusters.

All rrs sequences have been deposited to the NCBI GenBank
database under accession numbers MH626527, MH628053,
MH628054, MH628085, MH628088, MH628090 – MH628092.

Whole Genome Sequencing of the
Isolates M. kowhaii Ach-343 and
M. japonicum Opo-235
Genomic DNA was extracted using Genomic DNA Purification
KIT (Thermo Fisher Scientific, Europe) according to
recommendation of manufacturer. DNA was fragmented
by focused ultrasonicator Covaris S2 (Covaris, United States).
Fragment DNA-libraries were prepared with NEBNext DNA
Library Kit (NEB, United States), and their quality was estimated
with High Sensitivity DNA Kit on Bioanalyzer 2100 (Agilent,
United States). DNA amount was estimated with dsDNA
High Sensitivity Kit on Qubit 1.0 (Invitrogen, United States).
Genome sequencing was performed on a MiSeq genomic
sequencer (Illumina, United States) by standard protocol with
MiSeq Reagent Kit, 600 Cycles (Illumina, United States) at SB
RAS Genomics Core Facility (ICBFM SB RAS). Genome was
assembled de novo using the SPAdes 3.5.0 software (Bankevich
et al., 2012). Quality control was performed by QUAST 3.0
(Gurevich et al., 2013). Search for genes in the assembled
contigs was performed using the RAST annotation service
(Overbeek et al., 2014). Search for homologs of the 16S rRNA

gene, ITS region, housekeeping genes recA, glnII, and rpoB as
well as symbiotic genes in annotated genomes was performed
using CLC Genomics Workbench 7.5.1 software using local
BLASTn and tBLASTx.

The whole genome sequences have been deposited to
the NCBI GenBank database under accession numbers
MZXV00000000 for the isolate M. kowhaii Ach-343 and
QKOD00000000 for the isolate M. japonicum Opo-235.
Genomic features of the complete genomes are given in
Supplementary Table S1.

Construction of Fluorescent-Labeled
Strains M. kowhaii Ach-343 and
M. japonicum Opo-235
Electroporation of strains was performed in accordance with
the previous work (Garg et al., 1999). For this purpose, 90 µl
competent cells of strains M. kowhaii Ach-343 and M. japonicum
Opo-235 were suspended between two electrodes spaced by
0.1 cm. Electroporation was carried out with an electric pulse
of 14 kV/cm and pulse length of ∼7.3 ms (Gene PulserXcell,
Bio-Rad, United States). Number of high voltage pulses ranged
1 for each strain. After the pulse was delivered, the cuvettes
were kept on ice for 10 min. Then the electroporated cells
were suspended in YM broth (Vincent, 1970), incubated for
24 h at 30◦C with 200 rpm shaking (Orbital Shaker-Incubator
ES20, BioSan, Latvia) and spreaded on the YMA plates. In
transformation experiments a derivative of the pHC60 (tetR)
plasmid (Cheng and Walker, 1998), in which the GFP coding
sequence was replaced by the mCherry coding sequence (J.
Fournier, LIPM, Toulouse, France, unpublished results) and
pMP4655 (tetR) plasmid harboring the egfp gene were used for
electroporation of strains Ach-343 and Opo-235, respectively.
Screening of different transformants was performed on YMA
medium containing 10 µg/ml tetracycline. PCR was carried
out using Thermal Cycler T100 (Bio-Rad, United States) to
confirm the transformation using total DNA as template and
a pair of primers flanking fluorescent protein gene present
on the plasmids pHC60 and pMP4655. The PCR conditions
used for the amplification of 1083 and 967 bp fragment (for
pHC60 and pMP4655, respectively) included a pre-amplification
denaturation at 95◦C for 3 min 30 s followed by 35 cycles at
94◦C for 1 min 10 s, 54◦C for 1 min and 72◦C for 2 min 10 s,
with a final extension at 72◦C for 7 min. The following primers
were used: M13F (5′-GTTGTAAAACGACGGCCAGTG-3′) and
M13R (5′-AGCGGATAACAATTTCACACAGGA-3′). The PCR
products were visualized by electrophoresis on 1.0% agarose gel
(Invitrogen, United States) in TAE buffer and purified by using
Silica (Helicon, Russia). Sequencing was performed using the ABI
PRISM 3500xl (Applied Biosystems, United States) according to
the manufacturer’s instructions. Positive clones of each strain
were tested for fluorescence in the Axio Imager A1 microscope
(Carl Zeiss, Germany).

Plant Nodulation Assays
Seeds of A. chorinensis, A. sericeocanus, O. popoviana,
O. caespitosa, G. uralensis, M. sativa, and T. pratense were
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surface sterilized, scarified and germinated as described
above. The uniformly germinated seedlings were transferred
to polypropylene pots OS140BOX (Duchefa, Netherlands)
containing 20 g of vermiculite (3 seeds per pot, 4 pots per
each treatment of A. chorinensis and O. popoviana plants, 10
pots per each treatment of other plant species). Each pot was
supplemented with 40 ml of the nutrient solution (g/l): K2HPO4
1.0, KH2PO4 0.25, MgSO4 1.0, Ca3(PO4)2 0.2, FeSO4 0.02,
H3BO3 0.005, (NH4)2MoO4 0.005, ZnSO4 × 7 H2O 0.005,
MnSO4 0.002 (Novikova and Safronova, 1992). Seedlings were
inoculated with unlabeled strains M. kowhaii Ach-343 and
M. japonicum Opo-235 or their fluorescent-labeled variants
Ach-343(pHC60) and Opo-235(pMP4655) or their combination
in the amount of 106 cells per pot. The uninoculated plants
were used as negative control. Plants were cultivated for 30 days
in the growth chamber as described above. The appearance of
nodules on six plants per treatment was recorded after 2 and
3 weeks of cultivation. Nodules were analyzed on the stereo
microscope Stemi 508 (Carl Zeiss, Germany) and photos were
taken using the microscope color camera AxioCam ERc 5 s (Carl
Zeiss, Germany). At the end of experiment the nodules were
counted and the fresh biomass of plants (shoots and roots) was
determined. The nitrogen fixation of nodules was measured by
the acetylene-reduction method (Turner and Gibson, 1980) using
gas chromatograph GC-2014 (Shimadzu, Japan). Five nodules
from each treatment were used for the confocal microscopy.
The data were processed by the standard method of variance
analysis using the software STATISTICA version 10 (StatSoft
Inc., United States). Fisher’s LSD test was used to evaluate
differences between means.

Confocal Microscopy
Nodules were molded in 3% agarose gel blocks and prepared
in 1/4 MTSB (50 mM PIPES, 5 mM MgSO4 · 7H2O, 5 mM
EGTA, pH 6.9). Nodule sections (50 µm) were prepared using a
microtome with a vibrating blade HM650V (Microm, Germany).
Sections were analyzed using the laser scanning confocal system
LSM 510 META (Carl Zeiss, Germany). EGFP and mCherry were
excited at 488 and 543 nm, respectively. Images were acquired
with ZEN 2009 software (Carl Zeiss, Germany).

Histological and Ultrastructural Analysis
of A. chorinensis and O. popoviana Root
Nodules Obtained in Gnotobiotic
Conditions
The A. chorinensis and O. popoviana plants inoculated with
the strains M. kowhaii Ach-343 and M. japonicum Opo-
235, respectively, were grown in the plant nodulation assay
as described above. 3-week-old nodules were harvested from
roots and placed directly in fixative. The sample preparation
and embedding procedure were described previously (Serova
et al., 2018). Briefly, the whole nodules were fixed in
2.5% (v/v) glutaraldehyde (Sigma-Aldrich, United States),
then were post-fixed in 2% (v/v) osmium tetroxide for
2 h. Samples then were dehydrated in a graded series of
increasing ethanol concentrations followed by two changes

of 100% acetone. Dehydrated samples were progressively
embedded in Epon (Honeywell FlukaTM, Thermo Fisher
Scientific, United Kingdom) at room temperature. Embedded
samples were transferred to blocks in fresh resin and polymerized
at 60◦C for 48 h.

For transmission electron microscopy, 90–100-nm-thick
ultrathin sections were cut using a diamond knife (Diatome,
Switzerland) on a Leica EM UC7 ultramicrotome (Leica
Microsystems, Germany) and collected on copper/palladium
grids coated with 4% (w/v) pyroxylin and carbon. The
grids containing the sections were counterstained with
2% (w/v) aqueous uranyl acetate for 1 h followed by
lead citrate for 1 min. Ultrathin sections of the selected
area were examined using a Tecnai G2 Spirit electron
microscope (FEI, the Netherlands) at 80 kV. Electron
micrographs were taken with Mega View G2 CCD Camera
(Olympus-SIS, Germany).

RESULTS AND DISCUSSION

Isolation of Rhizobial Strains From the
A. chorinensis and O. popoviana Plants
and Their Identification by the Analysis
of the 16S rRNA Gene
Eight fast-growing rhizobial strains (Ach-304, Ach-305, Ach-
313, Ach-318, Ach-320, Ach-328, Ach-343 and Ach-347) were
isolated from nodules of A. chorinensis. Colonies appeared on
YMSA medium at the 5-th day. The identification of these
isolates by the sequencing of 16S rRNA gene showed that
they belonged to different species of the genus Mesorhizobium
(Figure 1 and Supplementary Table S2). The isolates Ach-313,
Ach-318, Ach-328 and Ach-347 formed a separate cluster with
the type strain M. newzealandense ICMP 19545T (Figure 1)
and had 100% rrs similarity with this type strain at 94% query
cover (Supplementary Table S2). The isolates Ach-304 and
Ach-305 grouped together and were the closest to the type
strain M. huakuii IFO 5243T with 99.93% rrs similarity. The
isolate Ach-343 formed the high supported cluster with the
type strain M. kowhaii ICMP 19512T (99.85% rrs similarity)
while the last isolate Ach-320 was the most closely related
to the species M. japonicum (99.52% with the type strain
MAFF 303099T). Thus the isolates Ach-304 and Ach-305 were
assigned to the species M. huakuii and the isolate Ach-343
to M. kowhaii. We preliminarily classified the isolates Ach-
313, Ach-318, Ach-328 and Ach-347 as M. newzealandense, and
left the isolate Ach-320 without species definition. The species
M. newzealandense and M. kowhaii were recently described
as microsymbionts of New Zealand endemic species Sophora
prostrata and S. microphylla (De Meyer et al., 2016). The host
plant range of these rhizobia is not yet studied; however, the
genus Sophora includes the extremely promiscuous relict species
S. flavescens that forms symbiosis with strains belonging to genera
Bradyrhizobium, Sinorhizobium, Mesorhizobium, Rhizobium, and
Phyllobacterium (Jiao et al., 2015). On the other hand, the
rhizobial species M. huakuii being described long ago (Chen et al.,
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FIGURE 1 | Phylogenetic tree generated by the Neighbor-Joining method
using partial 16S rRNA gene sequences (1400 nt) of the
Mesorhizobium-related isolates from Astragalus chorinensis and Oxytropis
popoviana (in bold) and closely related species. Bootstrap values more than
50% are given. Type strains are indicated by the letter “T.”

1991) was up to now known as a specific microsymbiont of the
plant species A. sinicus (Jarvis et al., 1997; Fuli et al., 2017).

Nine other strains belonging to M. japonicum and M. kowhaii
were also isolated in our previous work from the nodules of
O. popoviana plants (Safronova et al., 2018a). Among them the
isolate Opo-235 was chosen as the object of this research and
presented in Figure 1, having 100% rrs sequence similarity with
the type strain M. japonicum MAFF 303099T isolated from Lotus
japonicus (Martínez-Hidalgo et al., 2016).

Thus, eight new isolates from nodules of Miocene-Pliocene
relict legume A. chorinensis originated from the Baikal Lake
region (Eastern Siberia) as well as the previously obtained
isolates from O. popoviana belonged to mesorhizobial species
M. newzealandense, M. huakuii, M. kowhaii, and M. japonicum
having East Asian or Polynesian origins. Based on whole genome
sequence analysis of twelve strains isolated from O. popoviana,
O. triphylla, and A. chorinensis plants (data not presented) two
strains M. kowhaii Ach-343 and M. japonicum Opo-235 with the
maximum number of symbiotic genes, but with the most different
sets of them were selected for further work.

Analysis of Plant Growth-Promoting and
Symbiotic Genes of the Strains
M. kowhaii Ach-343 and M. japonicum
Opo-235 by the Whole Genome
Sequencing
Symbiotic genes of the strains M. kowhaii Ach-343 and
M. japonicum Opo-235 isolated, respectively, from A. chorinensis
and O. popoviana plants as well as the genes that promote

plant growth (acdS, gibberellin- and auxin-biosynthesis related
genes) were searched throughout the whole genome sequences. It
was shown the presence in both strains the acdS gene encoded
anti-stress enzyme 1-aminocyclopropane-1-carboxylate (ACC)
deaminase, which is common among root nodule bacteria (Ma
et al., 2003) and plays important role in nodulation process
(Glick et al., 2007). The following plant growth-promoting genes
were also detected in the strains Ach-343 and Opo-235: cpxP,
cpxR, cpxU, and ispA related to biosynthesis of phytohormones
gibberellins (Nett et al., 2017); the tryptophan synthase (trp)
and amine oxidase gene involved in the tryptophan-dependent
production of auxins (Ahemad and Kibret, 2014). No difference
between both strains in the set of plant growth-promoting genes
was found, except for the presence of two copies the acdS gene
in the strain Ach-343 and one copy – in the strain Opo-235
(data not presented).

At the same time, the sets of symbiotic genes of the strains
Ach-343 and Opo-235 differed and complemented each other
with several nod, nif, and fix genes (Table 1). The common
nodABC genes necessary for legume nodulation (Wais et al.,
2002) were present in both strains. They also contained nif and fix
genes required for nitrogen fixation, namely nifHDK and nifENB
genes encoding structural and catalytic components of the
nitrogenase complex (Dos Santos et al., 2012) as well as fixABCX,
fixNOPQ, and fixGHIS genes participating in electron transfer to
nitrogenase and symbiotically essential oxidase complex (Fischer,
1994; Edgren and Nordlund, 2004). However, the strain Ach-343
had additional nodG, nodM, nodN, and nifQ genes that were not
found in the strain Opo-235, while the nodT, nodW, nifV, and
fixJKL genes were observed only in the strain Opo-235. Although
the strain Ach-343 contained the protein PZV34926 that has 51%
similarity (at 98% coverage) with the NodW protein of the strain
Bradyrhizobium diazoefficiens USDA 110 (NODW_BRADU) and
can play the same role. The functions of these genes and their
possible role in the plant-microbe interactions will be discussed
below. Bearing in mind that the strains Ach-343 and Opo-
235 belong to the microsymbionts of relict rhizobia-legume
systems, we calculated the sequence similarity between their
nod, nif, or fix genes and homologs sequences presented in
the GenBank database. It was shown that 18 nod genes of
our isolates (nodCIJGMPQZ genes of the strain Ach-343 and
nodABCDIJEPWZ genes of the strain Opo-235) had a high level

TABLE 1 | Presence of symbiotic genes in the strains Mesorhizobium kowhaii
Ach-343 and M. japonicum Opo-235.

Genes Isolates

M. kowhaii Ach-343 M. japonicum Opo-235

nod A∗BCDIJEF[G]L[MN]PQZ ABCDIJEFLPQ[TW]Z

nif ABDEH∗KN[Q]STWXZ ABDEHKNST[V]WXZ

fix ABCGHINOPQSX ABCGHI[JKL]NOPQSX

nol – [L]

noe – [K]

Genes present in only one of strains (Ach-343 or Opo-235) are shown in brackets.
Asterisks indicates genes that split into two different contigs.
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of similarity (80 - 99%) simultaneously with representatives of
two or three rhizobial families: Rhizobiaceae, Phyllobacteriaceae
and Bradyrhizobiaceae (Supplementary Table S3). On the other
hand, the nodABDEFLN genes of the strain Ach-343 and the
nodFLQT genes of the strain Opo-235 were the closest only to
sequences of strains from the family Phyllobacteriaceae (89 – 99%
similarity). Phylogenetic trees based on two common nodulation
genes nodA and nodC of isolates and representatives of different
rhizobial families (Supplementary Figures S1, S2) showed that
both genes involved in biosynthesis of the core structure of
NFs (Wais et al., 2002) grouped with other Mesorhizobium
strains (at 99 and 64% bootstrap support for nodA and nodC,
respectively). The strain M. amorphae CCBAU 01583, which
is a microsymbiont of Astragalus membranaceus and Caragana
intermedia (Yan et al., 2017), was closest to the isolate Opo-235
(99% of nodA and 95% of nodC sequence similarity). The isolate
Ach-343 revealed close relatedness to the strain M. septentrionale
CCBAU 11244 isolated from Caragana microphylla in China
(Chen et al., 2008) with 90% of nodA and 94% of nodC sequence
similarity. It should be noted that the nodA gene of the strain
Ach-343 was split into two different contigs.

Construction of Fluorescent-Labeled
Strains M. kowhaii Ach-343 and
M. japonicum Opo-235
Strains M. kowhaii Ach-343 and M. japonicum Opo-235
expressing, respectively, fluorescent proteins mCherry (red) and
EGFP (green) were obtained using electroporation method. One
positive clone of each strain having the brightest fluorescence was
selected for further work.

Symbiotic Phenotype of the Strains
M. kowhaii Ach-343 and M. japonicum
Opo-235 in the Plant Nodulation Assays
Symbiotic properties of the unlabeled strains M. kowhaii Ach-
343 and M. japonicum Opo-235 as well as their fluorescent-
labeled variants Ach-343(pHC60) and Opo-235(pMP4655) were
preliminarily studied in gnotobiotic plant nodulation assay
with their host plants A. chorinensis and O. popoviana
(Supplementary Table S4). It was shown, that all strains
nodulated both plant species, but formed low effective symbiosis
with O. popoviana plants (no differences with uninoculated
control on the plant biomass). However, they were significantly
more effective on A. chorinensis plants, although they did not
differ in any of the symbiotic parameters. No differences were
found between unlabeled strains and their fluorescent-labeled
variants (Supplementary Table S4).

Symbiotic phenotype of the fluorescent-labeled strains
M. kowhaii Ach-343(pHC60) and M. japonicum Opo-
235(pMP4655) was studied in gnotobiotic plant nodulation assay
with A. sericeocanus, G. uralensis, O. caespitosa, M. sativa, and
T. pratense plants using treatments of mono- and co-inoculation.
After 2 weeks of cultivation root nodules were observed only
on A. sericeocanus roots (in all variants of inoculation) and
G. uralensis (in the co-inoculation treatment), while after 3 weeks
of cultivation only uninoculated controls had no nodules (data TA
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not shown). The results of plant nodulation assay (Table 2)
demonstrated that the strains Ach-343 and Opo-235 had a
wide range of host plants including different species and genera
of legumes from tribes Galegeae (Astragalus, Oxytropis, and
Glycyrrhiza) and Trifolieae (Medicago, Trifolium). However, the
number of nodules as well as their acetylene reduction activity
was different depending on the plant species and treatments: as
a rule the strain Opo-235 induced more nodules and was more
active in acetylene reduction than the strain Ach-343 (Table 2).
Nitrogen-fixing nodules were not observed on M. sativa and
T. pratense plants. The data showed that depending on plant
species the effects of a combined inoculation with the strains

Ach-343 and Opo-235 on plants varied from the decrease, no
effect, to the increase in different symbiotic parameters including
plant biomass as an indicator of the symbiotic effectiveness.
Figure 2 illustrates this conclusion in the form of a diagram. If
the symbiotic effectiveness of the strain Ach-343 is conditionally
taken as level 1, the effectiveness of the strain Opo-235 may be
taken as levels 1 or 2 (depending on the plant species). With this
assumption the symbiotic effectiveness in the variants Ach-343+
Opo-235 can be designated as levels 1, 1.5, or 2, corresponding to
the level of one co-microsymbiont (T. pratense and O. caespitosa
plants), to an average level of two strains (A. sericeocanus plants)
or to the level exceeding both strains (G. uralensis plants).

FIGURE 2 | Diagram demonstrating the effects of co-inoculation with strains M. kowhaii Ach-343 and M. japonicum Opo-235 on the effectiveness of symbioses with
T. pratense, A. sericeocanus, O. caespitosa, and G. uralensis plants. The strains Ach-343 and Opo-235 carried the plasmids pHC60 and pMP4655 and expressed
fluorescent proteins mCherry (red) and EGFP (green), respectively. LSE stands for the conditionally level of symbiotic effectiveness (plant biomass). Non-active
nodules, lower level of acetylene reduction activity, higher level of acetylene reduction activity.
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Presence of the Fluorescent-Labeled
Variants of Strains M. kowhaii Ach-343
and M. japonicum Opo-235 in Nodules of
A. sericeocanus, G. uralensis, O.
caespitosa, M. sativa, and T. pratense
Localization and co-localization of the fluorescent-labeled
strains M. kowhaii Ach-343(pHC60) and M. japonicum Opo-
235(pMP4655) in nodules obtained in the plant nodulation
assay was analyzed by the confocal microscopy (Figures 3–5).
Figure 3 represents a general view of nodules on the roots
of M. sativa and T. pratense plants and confocal images of
nodule sections. It can be seen that pseudonodules formed
on M. sativa roots in all variants of inoculation did not
contain any rhizobia (Figures 3A–C), although bacterial cells
of the strain Ach-343 were present on the root surface
(Figure 3B). It is known that M. sativa is a highly specific
plant that forms a symbiosis only with bacteria Sinorhizobium
meliloti and S. medicae, although it has been shown that some
other rhizobial strains can also nodulate this plant species
(Noreen et al., 2003; Torres Tejerizo et al., 2011). In contrast, in

nodules on T. pratense roots inoculated with the strains Opo-
235(pMP4655) or Ach-343(pHC60) the corresponding bacteria
were present (Figures 3D,E), while in the variant of co-
inoculation only nodules with the strain Opo-235(pMP4655)
were observed (Figure 3F).

Figures 4, 5 represent some examples of nodules on the
roots of A. sericeocanus, O. caespitosa, and G. uralensis plants.
In all variants of mono-inoculation the corresponding strains
were detected in nodules. In the co-inoculation treatments all
nodules contained the strain Opo-235(pMP4655), however, the
strain Ach-343(pHC60) was also observed in some nodules
of O. caespitosa (Figure 4C) as well as in all nodules
and some infection threads of G. uralensis (Figures 5D–F).
The phenomenon of the simultaneous presence of different
rhizobial strains in one nodule, which is called the double
nodule occupancy, was previously described for common beans
(Phaseolus vulgaris) inoculated with the strain Rhizobium tropici
CIAT 899 marked with the gus-gene in competition with
other isolates from beans (Shamseldin and Werner, 2004).
It should be noted that in nodules of O. caespitosa having
both strains some plant cells were simultaneously infected by

FIGURE 3 | Pictures of root nodules formed by the fluorescent-labeled strains M. kowhaii Ach-343(pHC60) and M. japonicum Opo-235(pMP4655) on the M. sativa
and T. pratense plants in gnotobiotic nodulation assay. Plant species: A–C – M. sativa; D–F – T. pratense. Inoculation treatment: A,D – Opo-235, merge of
differential interference contrast (DIC) and green channel; B,E – Ach-343, merge of DIC and red channel; C,F – Opo-235 + Ach-343, merge of DIC, green and red
channels. Columns 1 and 3 present the general views of nodules and root surface (scale bar = 1 mm), columns 2 and 4 – the confocal microscopy images (scale
bar = 100 µm). Opo-235 bacteria in green, Ach-343 bacteria in red.
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FIGURE 4 | Pictures of root nodules formed by the fluorescent-labeled strains
M. kowhaii Ach-343(pHC60) and M. japonicum Opo-235(pMP4655) on the
A. sericeocanus and O. caespitosa plants in gnotobiotic nodulation assay.
Plant species: A – A. sericeocanus; B,C – O. caespitosa. Inoculation
treatment: A – Opo-235 bacteria in green; B – Ach-343 bacteria in red; C –
Opo-235 + Ach-343. Column 1 presents the general views of nodules (scale
bar = 1 mm), column 2 – the confocal microscopy images (scale
bar = 100 µm). A – merge of DIC and green channel; B – merge of DIC and
red channel; C – merge of DIC, green and red channels.

green and red bacteria, but in some plant cells only green
or red bacteria were present (Figure 4C). In 3 of the 5
analyzed nodules of G. uralensis both strains were predominantly
present in the same plant cells (Figure 5E); however, in two
nodules the strains occupied different cells and the cells infected
by Ach-343 were significantly smaller than the cells infected
by Opo-235 (Figure 5D). The observed small size of cells
infected with Ach-343 strain may indicate that they do not
undergo typical differentiation, which is accompanied by a
significant increase in the infected cell size (Tsyganova et al.,
2018). However, further studies are required to confirm this
assumption. The form of nodules was different depending on
the plant species and rhizobial microsymbiont and varied from
irregular in shape to round or elongated with one or several
lobes (Figures 3–5).

FIGURE 5 | Pictures of root nodules formed by the fluorescent-labeled strains
M. kowhaii Ach-343(pHC60) and M. japonicum Opo-235(pMP4655) on the
G. uralensis plants in gnotobiotic nodulation assay. Inoculation treatment: A –
strain Opo-235; B – strain Ach-343; C–F – Opo-235 + Ach-343; D,E –
co-infection of plant cells in nodules; D – nodule in which the strains occupied
the different cells; E – nodule in which there are cells with both strains (in
yellow-orange); F – infection thread formed by the strain Ach-343. Column 1
presents the general views of nodules (scale bar = 1 mm), column 2 – the
confocal microscopy images (scale bar = 100 µm). D,E – merge of DIC, green
and red channels; F – merge of DIC and red channel.

Histological and Ultrastructural
Organization of A. chorinensis and
O. popoviana Root Nodules Formed by
the Strains M. kowhaii Ach-343 and
M. japonicum Opo-235
Histological organization of A. chorinensis and O. popoviana
nodules was typical for indeterminate nodules (Figure 6).
Previously, the indeterminate type was described for nodules
formed on roots of A. alpinus, O. maydelliana, O. arctobia
(Newcomb and Wood, 1986), A. cicer (Wdowiak et al., 2000),
A. danicus, A. frigidus, A. glycyphyllos, O. lapponica (Ampomah
et al., 2012). The senescence zone occupied the significant
part of nodules due to their large age (Figure 6). The
infection threads were well developed in the infection zone
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FIGURE 6 | Histological organization in nodules of A. chorinensis and
O. popoviana formed by the strains M. kowhaii Ach-343 (A) and
M. japonicum Opo-235 (B). Zones in nodule are designated by Roman
numerals: I – meristem, II – infection zone, III – nitrogen fixation zone, IV –
senescence zone; scale bar = 100 µm.

in nodules of both species (Figures 7A,B). In nodules of
A. chorinensis the infected cells were filled by a large number
of symbiosomes containing spherical bacteroids individually
surrounded with rugose symbiosome membranes (Figure 7C).
In O. popoviana nodules in infected cells symbiosomes contained
several elongated or elongated-branched bacteroids surrounded
by a common symbiosome membrane (Figure 7D). In contrast,
in O. maydelliana nodules bacteroids were surrounded by
symbiosome membrane individually (Newcomb and Wood,
1986). Previously, it was shown that in nodules of A. canadensis
and O. lamberti infected cells are filled with elongated bacteroids
(Montiel et al., 2017), in nodules of A. cicer bacteroids are
spherical with elongated outgrowths (Wdowiak et al., 2000) and
in nodules of O. lapponica bacteroids are elongated-branched
(Ampomah et al., 2012). It was suggested that the morphotype
of bacteroids correlates with the number of nodule-specific
cysteine-rich (NCR) peptides (Montiel et al., 2017). Thus, it is
possible that the different morphotypes of bacteroids formed
in the nodules of A. canadensis and A. chorinensis are caused
by differences in the compositions of NCR peptides produced
by these species. In A. chorinensis nodules the numerous
mitochondria were present at the periphery of the infected cell
(Figure 7E). In nodules of O. popoviana in infected cells the
endoplasmic reticulum was powerfully developed (Figure 7F).
The extensive endoplasmic reticulum was previously described
for A. alpinus, O. maydelliana, O. arctobia as an adaptation

FIGURE 7 | Ultrastructural organization in nodules of A. chorinensis and
O. popoviana formed by the strains M. kowhaii Ach-343 (A,C,E) and
M. japonicum Opo-235 (B,D,F). it, infection thread; b, bacterium; ba,
bacteroid; m, mitochondria; cw, cell wall; arrowheads indicate rugose
symbiosome membrane; arrows indicate endoplasmic reticulum, asterisks
indicate symbiosomes with several bacteroids. Scale bars: (A,C,E) = 1 µm,
(B,D,F) = 2 µm.

for nodule development and functioning in arctic conditions
(Newcomb and Wood, 1986).

Thus, the strains M. kowhaii Ach-343 and M. japonicum Opo-
235 isolated from nodules of the relict legumes A. chorinensis
and O. popoviana, respectively, had a wide range of host plants,
including different genera of legumes (Astragalus, Oxytropis,
Glycyrrhiza, Medicago, and Trifolium). The genetic basis for
the low specificity of these isolates may be the similarity
of their nod genes with representatives of different rhizobial
families: Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
This data are in agreement with previous reports suggesting
that symbiotic systems of relict plants can be formed with
different rhizobial strains belonging to various taxonomic groups
(Safronova et al., 2014, 2015a,b, 2017b).

The co-inoculation of plants with both strains Ach-343 and
Opo-235, which in some cases were localized in the same nodules,
led to changes in symbiotic phenotypes (number of nodules,
level of nitrogen fixation and plant biomass) compared with
the mono-inoculation treatments. Wherein the effectiveness of
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symbiosis after co-inoculation could both increase and decrease.
This phenomenon of rhizobial interaction can be explained by
the complementarity of symbiotic genes, which are responsible
for the specific modification of NFs, nitrogenase activity and
probably other processes related to formation and development
of symbiosis. It was shown that the strains Ach-343 and Opo-
235 possess quite different sets of nod, nif, fix, nol, and noe
genes (Table 1). Among them, nodG, nodM, and nodN genes that
were observed only in the strain Ach-343 encode the following
enzymes that involved in the biosynthesis and modification of
NFs: 3-oxoacyl-acyl carrier protein reductase (Lopez-Lara and
Geiger, 2001), glucosamine synthase (Baev et al., 1992; Lohrke
et al., 1998) and dehydratase (Baev et al., 1992). The strain
Opo-235 had two other genes for NFs modification: noeK gene
participates in NFs fucosylation (Lamrabet et al., 1999), nolL gene
involved in acetylation of the fucosyl residue (Corvera et al.,
1999). The nodT and nodW genes found only in the strain Opo-
235 encode an outer membrane lipoprotein playing a role in
the secretion of NFs (Rivilla et al., 1995; Pinto et al., 2009) and
the nod genes transcription regulator (Perret et al., 2000). It is
likely that the differences in the set of nod, nol, and noe genes
determine the greater nodule-forming ability of the strain Opo-
235 as compared with the strain Ach-343, which was manifested
in the plants of A. sericeocanus and T. pratense (Table 2). It
can also be assumed that products of different genes responsible
for plant nodulation may interact with each other if they are
secreted by bacteria into the external environment or localized
on the outer membrane of cells. Acceleration of the root nodule
formation has been previously observed in the symbiosis between
the relict legume O. popoviana and its two co-microsymbionts,
one of which could not induce nodules but contained nodPQ,
nolK, and noeL genes that could affect the specificity of plant-
rhizobia interactions via the sulfation and fucosylation of NFs
(Safronova et al., 2018a).

Particular attention should be given to the observed presence
of both strains in the same nodules of O. caespitosa and especially
G. uralensis, where co-microsymbionts were localized in the
same plant cells. Along with an increase in the number of
nodules, this could be the reason for significant (nine fold)
raising the acetylene reduction activity of G. uralensis nodules
(Table 2). The difference in the specific acetylene reduction
activity, calculated on the dry nodule weight, in the variant of
co-inoculation was not statistically significant compared to the
Opo-235 mono-inoculation treatment due to very large standard
errors of this parameter (Supplementary Table S5). However,
its increase was 56%. It was shown above that the nifQ gene
was discovered only in the strain Ach-343, while the nifV and
fixJKL genes were found only in the strain Opo-235 (Table 1).
The nifV gene is required for a maturation of the nitrogenase
MoFe-protein through the homocitrate synthesis (Evans et al.,
1991); the fixJKL genes are important for expression of some
nif and fix genes (Fischer, 1994). The nifQ gene encodes the
molybdenum ion binding protein with reductase activity that
is known as a specific molybdenum donor for FeMo cofactor
biosynthesis and the incorporation of reduced molybdenum in
the MoIV oxidation state into nitrogenase (Hernandez et al.,
2009; Black et al., 2012; Boyd et al., 2015). However, the

mechanisms of complementation between nif and fix genes
localized in different co-microsymbionts inside the same nodule
are not clear. Apparently, the alteration of symbiotic activity
may occur due to secreted products of these (or some other)
genes, extracellular metabolites or any factors released as a
result of bacteroid degradation. One the possible way of such
complementation having a positive effect on the nitrogen-fixing
activity of symbiosis is an increase in the amount of reduced
molybdenum required for high nitrogenase activity and provided
by the special Mo-binding proteins.

It should be noted that some other factors besides symbiotic
may be involved in the processes of integration between
symbiotic partners: plant hormones (auxin, ethylene, gibberellin,
cytokinin, abscisic acid), exo- and lipopolysaccharides, cellulases,
rhizopines, components of secretion systems (T3SS, T6SS)
encoding broad classes of effectors proteins (Russell et al., 2014;
Notti and Stebbins, 2016; Okazaki et al., 2016). It was previously
shown that the strains M. kowhaii Ach-343 and M. japonicum
Opo-235 did not differ statistically in the activity of the ACC-
deaminase reducing the level of the plant stress ethylene and the
ability to produce auxins: indole-3-acetic acid (IAA), indole-3-
carboxylic acid (ICA), and indole-3-lactic acid (ILA), which are
one of the main factors affecting the nodulation process (data
not published). The auxin producing activities for the strains
Ach-343 and Opo-235 were at the following levels, respectively:
199 and 175 ng/ml for IAA, 111 and 103 ng/ml for ICA, 12
and 15 ng/ml for ILA production. The ACC-deaminase activities
of free-living bacteria determined by monitoring the amount
of a-ketobutyrate (αKB) generated after hydrolysis of ACC
(Saleh and Glick, 2001) by modified method in suspensions of
disrupted cells (Belimov et al., 2015) were 14.5 and 12.3 µM
αKB mg-1 h-1 for the strains Ach-343 and Opo-235, respectively.
However, it should be taken into account that the levels of
ACC deaminase activity of mesorhizobia in free-living cells and
inside nodules can be different because within this genus the
expression of acdS genes are usually regulated by NifA protein
(Nascimento et al., 2012).

The presence of some components of the T6SS (icmF,
tssABCEGJKL, tagFH, vgrG, vasA, hcp, and clpV genes) was
detected in both strains, with the gene sets being identical
and the gene similarity between strains was 76 – 81%
(data not presented). The genes found are known to encode
key components of the bacterial pathogenicity (penetrating
system; secretion of cytotoxins, lysozymes, homologs to phage
tail proteins, lipoproteins, factors of adherence to epithelial
cells). Based on the analysis of secretion systems it remains
unclear why the strain Ach-343 demonstrates lower virulence
compared with the strain Opo-235 (forms statistically fewer
nodules on some plants and is usually not localized inside
nodules in the co-inoculation treatments). Further comparative
analysis of the factors related to formation and functioning
of symbiosis in taxonomic different co-microsymbionts will
contribute to the study of the phenomenon of rhizobial
interaction, based on genetic complementarity, as well as to
the disclosure of the evolutionary paths of legume-rhizobia
relationships and the mechanisms of efficient integration
between partners.
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