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Asymmetry between right and left 
optical coherence tomography 
images identified using 
convolutional neural networks
Tae Seen Kang1, Woohyuk Lee1, Shin Hyeong Park1 & Yong Seop Han1,2*

In a previous study, we identified biocular asymmetries in fundus photographs, and macula was 
discriminative area to distinguish left and right fundus images with > 99.9% accuracy. The purposes 
of this study were to investigate whether optical coherence tomography (OCT) images of the left 
and right eyes could be discriminated by convolutional neural networks (CNNs) and to support the 
previous result. We used a total of 129,546 OCT images. CNNs identified right and left horizontal 
images with high accuracy (99.50%). Even after flipping the left images, all of the CNNs were capable 
of discriminating them (DenseNet121: 90.33%, ResNet50: 88.20%, VGG19: 92.68%). The classification 
accuracy results were similar for the right and left flipped images (90.24% vs. 90.33%, respectively; 
p = 0.756). The CNNs also differentiated right and left vertical images (86.57%). In all cases, the 
discriminatory ability of the CNNs yielded a significant p value (< 0.001). However, the CNNs could 
not well-discriminate right horizontal images (50.82%, p = 0.548). There was a significant difference in 
identification accuracy between right and left horizontal and vertical OCT images and between flipped 
and non-flipped images. As this could result in bias in machine learning, care should be taken when 
flipping images.

Optical coherence tomography (OCT) is an imaging modality providing high-resolution cross-sectional and 
three-dimensional images of living  tissue1. OCT can be used to quickly and safely examine eyes at the cellular 
level. OCT has been widely used for diagnosing retinal and optic disc diseases, is readily accessible for ophthal-
mologists, and is being used increasingly in  dermatology2 and  cardiology2.

A convolutional neural network (CNN) is an image analysis method that has developed rapidly in recent 
years. The multi-layered structure of the visual cortex inspired the development of  CNNs3. CNNs show high 
ability to analyze and classify images. In recent studies, the classification ability of some CNNs was similar to 
that of  physicians4,5.

The accuracy of CNNs for diagnosing ophthalmic diseases has been evaluated in numerous  studies6, including 
ones on retinal  disease7–11 and  glaucoma12, in which CNNs were able to determine patient’ age, sex, and even 
smoking status from retinal images. A fundus image of the left eye appears as a mirror image of the fundus image 
of the right eye. In a previous study of CNNs, we identified asymmetries in fundus  photographs13. However, 
fundus images can also be affected by several factors such as the camera lens, flash, and room lighting conditions. 
As OCT is free from these factors, we try to evaluate the asymmetry of right and left eyes using high-resolution 
OCT with CNN models.

Results
Baseline characteristics of image sets. Medical charts of patients who visited Gyeongsang National 
University Changwon Hospital from February 2016 to December 2020 were reviewed retrospectively. A total 
of 3,238,650 macular images were taken from 9274 patients between 2016 and May 2021. We selected 129,546 
median images from among the total of 3,238,650 images. There were 33,366 right horizontal, 31,211 right verti-
cal, 33,429 left horizontal, and 31,540 left vertical OCT images.
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We split the images in each set into training, validation, and testing sets according to a 8:1:1 ratio. Sets 1–5 
consisted of horizontal images (33,366 right horizontal and 33,429 left horizontal images). Of these 66,795 
images, 6680 were used for model testing. During CNN learning, 53,435 images were used to train the models 
and 6680 for model validation. Sets 6 and 7 consisted of vertical images (31,211 right vertical and 31,540 left 
vertical images). Of the 62,751 images, 6276 were used for testing. During CNN learning, 50,199 images were 
used for training and 6276 for validation. Set 8 consisted of only 33,366 right horizontal images, split into 3337 
images for testing, 26,692 for training, and 3337 for validation.

Comparison of right and left horizontal OCT images (Set 1;  RhLhD121). We classified the right and 
left horizontal OCT images using the CNN model. After the 50th epoch, the validation accuracy was 99.50% 
(Fig. 1). Of the 6680 test set images, 6675 were correctly labeled by the CNNs, for a test accuracy of 99.93% 
(AUC = 0.999, p < 0.001, Fig. 2).

Comparison of right and flipped left horizontal OCT images (Sets 2–4;  Rh
fLh). We classified the 

non-flipped right horizontal OCT images and flipped left horizontal images using DenseNet121, ResNet50, and 
VGG19. The numbers of images in Sets 2–4(Rh

fLh) were the same as in Set 1(RhLhD121). After the 50th epoch, the 
validation accuracy was 92.97%, 88.92%, and 92.23% in Set 2(Rh

fLhD121), Set 3(Rh
fLhR50), and Set 4(Rh

fLhV19), 
respectively (Fig. 1). The test accuracies were around 90% (90.33%, 88.20%, and 92.68%, respectively; AUC: 
0.902, 0.882, and 0.927, respectively; all p values < 0.001, Fig. 2). The AUCs differed significantly in the ROC 
curve comparisons (all p values < 0.001).

Comparison of flipped right and non-flipped left horizontal OCT images (Set 5; fRhLhD121). Set 
5(fRhLhD121) comprised horizontally inverted versions of the images in Set 2(Rh

fLhD121). As we flipped only the 
left horizontal images in other Sets, it could cause bias. We tried to verify the results by flipping the right eye 
images. The DenseNet121 model classified the flipped right horizontal images and non-flipped left horizontal 
images. After the  50th epoch, the validation accuracy was 89.83% (Fig. 1). The test accuracy was 90.24% (AUC: 
0.902, p < 0.001, Fig. 2). In comparison to the ROC curve analysis for Set 2(Rh

fLhD121), the AUCs were not sig-
nificantly different (fRhLhD121 vs.  Rh

fLhD121; p = 0.756).

Figure 1.  Training and validation results. The training loss of Sets 1–7 approached zero. In Set 1, images 
of right and left eyes were easily distinguished, with the validation loss approaching zero and the validation 
accuracy thus approaching 1.0. In Sets 2–5, similar validation loss (~ 0.4) and validation accuracy (~ 90%) were 
obtained. For Set 6, which consisted of vertical images, the accuracy was slightly inferior compared to Sets 2–5. 
Set 7 showed the second-highest validation accuracy. In contrast to Sets 1–7, overfitting was observed in Set 8; 
in this set, training loss converged whereas validation loss diverged. The validation accuracy of Set 8 was around 
0.5 and failed to improve over the learning period. OD oculus dexter, OS oculus sinister, H horizontal, V vertical.
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Comparison of right and left vertical OCT images (Set 6;  RvLvD121). We classified the right and left 
vertical untransformed images using the DensdNet121 model. After the 50th epoch, the validation accuracy 
was 85.86% (Fig.  1). Of the 6276 test set images, 5433 were correctly labeled by the CNNs, for a test accu-
racy of 86.57% (AUC = 0.866, p < 0.001, Fig. 2). The AUC was significantly lower than that of Set 1(RhLhD121; 
AUC = 0.999) and Set 2(Rh

fLhD121; AUC = 0.902) (all p values < 0.001).

Comparison of right and flipped left vertical OCT images (Set 7;  Rv
fLvD121). We classified the 

right and flipped left vertical untransformed images using the DensdNet121 model. After the 50th epoch, the 
validation accuracy was 98.26% (Fig. 1). Of the 6276 test set images, 6146 were correctly labeled by the CNNs, 
for a test accuracy of 97.93% (AUC = 0.979, p < 0.001, Fig. 2). The AUC was significantly higher than that of Set 
6  (RvLvD121 vs.  Rv

fLvD121; p < 0.001).

Comparison between randomly distributed right horizontal OCT images (Set 8;  RhRhD121). Set 
8(RhRhD121) was designed to test overfitting, with DenseNet121 applied to classify randomly selected right 
horizontal images. Although the training accuracy increased and training loss decreased, the validation accu-
racy after the 50th epoch was only 48.55%. Of the 3337 test set images, 1696 (50.82%) were classified correctly 
(AUC = 0.505, p = 0.548, Fig. 2). Unlike Sets 1–7, Set 8 displayed an irregular CAM pattern that emphasized the 
outside regions of the vitreous and sclera.

Discussion
OCT is a novel imaging modality that provides high-resolution cross-sectional images of the internal micro-
structure of living  tissue1. The low-coherence light of OCT penetrates the human retina and is then reflected 
back to the interferometer to yield a cross-sectional retinal  image14. Retinal OCT images consist of repeated 
hyporeflective and hyperreflective layers. Hyperreflective layers in OCT include the retinal nerve fiber layer, 
inner plexiform layer, outer plexiform layer, external limiting membrane, ellipsoid zone, and retinal pigmented 
epithelium. Hyporeflective layers include the ganglion cell, inner nuclear, and outer nuclear layers. The choroid 
and parts of the sclera also appear in OCT  images15.

Our previous  study13 showed that left fundus images are not mirror-symmetric with respect to right fundus 
images. CNNs are capable of distinguishing the left from right fundus with an accuracy greater than 99.9%. 
However, it is important to consider the various factors that can affect fundus photography outcomes. In fundus 
photography, light from the flashlight reflects off the retina and enters the sensor of the fundus camera; a sensor 
then examines the wavelength and strength of the light. According to the working principle of a fundus camera, 
fundus images may be affected by the type and location of the light source and sensor, as well as by reflection and 

Figure 2.  Confusion matrix for each test set. The classification accuracy for Set 1 was 99.93%, which was the 
highest among all sets. (AUC = 0.999, p < 0.001). Sets 2–5 showed test accuracies of ~ 90% (90.33%, 88.20%, 
92.68%, and 90.24%, respectively; AUC: 0.902, 0.882, 0.927, and 0.902, respectively; all p values < 0.001). Set 6 
showed a test accuracy of 86.57% (AUC = 0.866, p < 0.001). The accuracy of Set 7 was 97.93%, which was the 
second-highest (AUC = 0.979, p < 0.001). The results for Sets 1–7 were statistically significant. Set 8 showed 
50.82% classification accuracy (AUC = 0.505, p = 0.548). OD oculus dexter, OS oculus sinister, H horizontal, V 
vertical.
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various environmental  factors16. However, OCT is a completely different modality free from these confounding 
factors; high-quality cross-sectional OCT images allow visualization of the anatomy.

Our CNNs showed 99.93% classification accuracy for bilateral horizontal OCT images (Set 1;  RhLhD121). This 
result is not surprising because the thick retinal nerve fiber layer (RNFL), which consists of the papillomacular 
bundle, is on the nasal side of the fovea but not the temporal side; in addition, large blood vessels are concentrated 
on the nasal side. Notably, CAM highlighted not only the RNFL but also the entire thickness of the parafoveal 
retina. These results indicate that CNNs are capable of recognizing anatomical asymmetry based on the anatomi-
cal information of every layer of the retina, choroid, and sclera, as well as the RNFL.

The human eye cannot distinguish a right horizontal OCT from a flipped left horizontal OCT, as the 
images largely coincide with each other. To examine this problem, we used image sets (Sets 2–4;  Rh

fLh) to train 
DenseNet121, ResNet50, and VGG19. Although the classification accuracy differed among the models, all of 
the CNNs showed around 90% accuracy to distinguish for left and right horizontal OCT images. Thus, CNNs 
can discriminate horizontal OCT images that are not mirror-symmetric.

However, we could not fully explain the CAM results of Sets 2–4(Rh
fLh). CAM was used to analyze the last 

layers of the CNN, and the results may have been affected by the model structure. The classification results for 
DenseNet121 were similar between Set 1(RhLhD121) and Set 2(Rh

fLhD121). The ResNet50 CAM for Set 3(Rh
fLhR50) 

displayed a vertically linear pattern that included the vitreous region and the region outside the sclera. Given 
that the region surrounding the sclera is irrelevant for OCT images, this indicates an error. The AUC for Set 
3(Rh

fLhR50) was significantly lower than those of Set 2(Rh
fLhD121) and Set 4(Rh

fLhV19); this was attributable to 
uninterpretable CAM results. The VGG19 CAM for Set 4(Rh

fLhV19) highlighted the outer retina parafoveal and 
foveolar regions, different from Set 2(Rh

fLhD121) and Set 3(Rh
fLhR50).

As we flipped only the left horizontal images in other Sets, it could induce bias. The purpose of Set 5(fRhLhD121) 
was to verify whether the flip function in the NumPy package has errors. Set 5(fRhLhD121) consisted of hori-
zontally inverted versions of the images in Set 2(Rh

fLhD121). If image flipping did not distort the images, we 
would expect to obtain similar results between Set 2(Rh

fLhD121) and Set 5(fRhLhD121). Classification accuracy 
was similar between the two sets  (Rh

fLhD121, 90.33%; fRhLhD121, 90.24%), and the AUCs were not significantly 
different (p = 0.756). Through this, we found that there was no difference between flipping the left eye images 
and the right eye images.

Set 6(RvLvD121) consisted of vertical images of the right and left eyes. It is believed that vertical images of 
the two eyes are symmetrical; thus, we did not expect the CNNs to distinguish them. Set 6(RvLvD121) images 
were unmodified, similar to Set 1(RhLhD121). The CNNs distinguished the right and left vertical OCT images 
with relatively high accuracy (86.57%, AUC = 0.866, p < 0.001). However, the accuracy for Set 6 images was 
significantly lower than for Sets 1 and 2. The CAM result for Set 6 were also different from Set 1(RhLhD121) and 
Set 2(Rh

fLhD121). For Set 6(RvLvD121) images, CAM highlighted not only the parafovea, but also the fovea. In a 
previous study using fundus  photography13, CAM brightly highlighted the temporal parafovea and moderately 
highlighted the fovea. It is possible that the asymmetric differ on the location of the retina, and the temporal 
parafovea may have a larger asymmetric than the superior and inferior parafovea. This could be explained by 
asymmetry differing according to retina location; additional research is required to test this hypothesis.

Set 7(Rv
fLvD121) comprised OCT images of the upper and lower halves of the eye. Several  studies17–19 have 

demonstrated macular and choroidal asymmetry between the upper and lower halves of the eyes. In this study, 
the classification accuracy was second-highest for Set 7(Rv

fLvD121), supporting previous studies. CAM highlighted 
the thickness of the parafoveal retina and choroid. The AUC of Set 7(Rv

fLvD121) was significantly higher compared 
to that of Set 6(RvLvD121), which also supports previous studies showing that the upper and lower halves of the 
retina and choroid are not identical.

Set 8(RhRhD121) was designed to test overfitting, which is a common problem with CNNs. The results for Sets 
1–7 may have resulted from overfitting, in which a CNN would show similar results for any random OCT image. 
The reliability of our results would be demonstrated by an inability of the CNNs to distinguish among uniform 
images. The CNNs could not accurately discriminate Set 8(RhRhD121) images (p = 0.548), although training loss 
decreased. This result indicates that the classification results for Sets 1–7 were not affected by overfitting.

We observed asymmetry between the left- and right-eye OCT images. Cameron et al.20 also observed asym-
metry; however, they were unable to identify specific asymmetric components. Wagner et al.21 reported that the 
“angles between the maxima of peripheral RNFL thickness” were higher in right than left eyes, and that RNFL 
asymmetry could be influenced by the locations of the superotemporal retinal artery and  vein22. The retinal vas-
cular system also exhibits interocular asymmetry. Leung et al23 reported that the mean central retinal arteriolar 
equivalent of right eyes was 3.14 µm larger than that of left eyes. In this study, the CNNs were well-capable of 
recognizing asymmetry.

Based on our results and previous studies using fundus  imagery24–26, it seems clear that CNNs can distin-
guish several features through analyzing retinal images that cannot be resolved by humans; that is, CNNs can 
determine patient age, sex, and smoking status. Our CNNs identified several features distinguishing left- and 
right-eye images that cannot be detected by humans. The results were similar after resetting the CNNs many 
times. Therefore, we assume that there are hidden patterns in gray-scale OCT images detectable only by CNNs. 
One possible hypothesis is that the human brain has limited multi-tasking capacity compared to the computer. 
Human cognition has limitations in processing multiple inputs at the same  time27. For example, in the “Where’s 
Wally?” visual search  task28, the human brain has difficulty processing the seven salient features (a red-striped 
long-sleeved T-shirt, jeans, round glasses, a hat, a chin, and curly hair) simultaneously, whereas a computer can 
do this  easily29. The numbers of filters in the last layer of DenseNet121, ResNet50, and VGG19 are 1024, 2048, 
and 512, respectively. In theory, each filter can find a different feature. Thus, DenseNet121 can process 1024 
features, which is beyond human capabilities.
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The main strength of this study was that we included images of both normal and pathological eyes. It seems 
that there are significant biocular asymmetries in both healthy and pathological eyes. It would be interesting 
to analyze asymmetry according to disease type and progression, which could aid the development of a scale 
for measuring normal structure degradation/destruction. In addition, we used “lossless” BMP and unmodified 
images (except for the cropping and flipping processes). However, only one OCT device (Spectralis SD-OCT; 
Heidelberg Engineering) was used, and all analyses were conducted at a single institution. Thus, future studies 
should compare multiple OCT systems.

In conclusion, we hypothesized that OCT images of the right and left eyes are mirror-symmetric. However, 
we found asymmetry in both vertical and horizontal OCT images of the right and left eyes. To our knowledge, 
this is the first machine learning study to assess differences in OCT images of the left and right eyes. Our CNNs 
could accurately distinguish left- and right-eye OCT images. However, asymmetry may introduce bias into 
CNN results; thus, care should be taken when flipping images during preprocessing, given the possible impact 
of bias on evaluations of diseases that involve the macula, such as age-related macular degeneration and diabetic 
macular edema.

Methods
Study design. This retrospective study was approved by the Institutional Review Board of Gyeongsang 
National University Changwon Hospital (GNUCH 2020-07-009). The procedures used in this study followed 
the principles of the Declaration of Helsinki. The requirement for informed patient consent was waived by the 
Institutional Review Board of Gyeongsang National University Changwon Hospital due to the retrospective 
nature of the study.

Image acquisition protocol. An expert examiner evaluated the retinas with a Spectralis SD-OCT device 
(Heidelberg Engineering, Heidelberg, Germany). The system acquired 40 k A-scans per second, with an axial 
resolution of 3.9 μm/pixel and transverse resolution of 5.7 μm/pixel. Twenty-five cross-sectional images were 
taken with an interval of 240 μm. Each cross-sectional image consisted of 768 A-scans and subtended an angle 
of 30° (Fig. 3). The examiner took a horizontal cross-sectional image of the macula, followed by vertical cross-
sectional images. We accessed these images using automated programs written in AutoIt and saved them in the 
bitmap (BMP) format. Only the 13th image (i.e., the median image of 25 consecutive OCT images) was analyzed. 
We included all cases in the analysis to reduce selection bias. The cases included various retinal diseases such 
as epiretinal membrane, macular hole, and rhegmatogenous retinal detachment; some eyes were filled with gas, 
air, or silicone oil, etc.

Figure 3.  Optical coherence tomography (OCT) images used in the study. Twenty-five OCT images were 
obtained during one examination; only the median (13th) images were analyzed. A Right horizontal OCT 
image, B Left horizontal OCT image, C Right vertical OCT image, D Left vertical OCT image. In horizontal 
images (A,B), the optic disc is positioned on the right side of the right eye (A) and left side of the left eye (B). 
Since the retinal nerve fiber layer (RNFL) and major retinal vessels gather from the optic disc, the RNFL is 
thicker on the optic disc than on the opposite side. Also, shadows of the retinal vessels are easily identifiable on 
the optic disc side. As the optic discs of both eyes are located on the opposite sides, the horizontal images of the 
right and left eyes look like mirror images. In vertical images (C,D), the left side is the inferior part of the fovea 
(bottom of vertical green line), and the right side is the superior part of the fovea (top of vertical green line). 
Because the inferior and superior parts are located at similar distances from the optic disc, the RNFL thickness 
and the vascular shade density are similar. The vertical images of the right eye (C) and left eye (D) are difficult to 
discriminate.
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Data pre-processing. We did not perform data augmentation. We trimmed and flipped the images using 
the Python packages OpenCV and  NumPy30. The size of the original OCT images was 768 × 496 pixels. We 
trimmed 136 pixels at both ends of each image to remove boundary artifacts, leaving only the macula (496 × 496 
pixel-size image, Fig. 4). The trimmed 496 × 496 pixel image corresponds to about 19.4° of macular.

CNN model. Transfer learning is a method for generating a new model using a previously trained model 
and weights. We used a pre-trained model to improve  accuracy31–34, as previous studies have demonstrated 
that the features of pre-trained models are transferable to ophthalmology  data33.  Densenet12135,  ResNet5036, 
and  VGG1937, embedded in the Keras package, showed excellent ability to distinguish left and right fundus 
 photographs13. The outputs of DenseNet121, ResNet50, and VGG19 were connected to the fully connected layer 
and Softmax layer. We used categorical cross-entropy loss functions and Adam as the gradient descent optimiza-
tion algorithm.

Image sets. Eight image sets were prepared (Fig. 5). Set 1(RhLhD121) consisted of horizontal OCT images of 
right and left eyes without any transformation. Sets 2–4(Rh

fLh) comprised non-flipped right horizontal images 
and horizontally flipped left horizontal images. We tested different CNNs on the same image dataset to check for 
asymmetry. Set 5(fRhLhD121), which consisted of flipped right horizontal images and non-flipped left horizontal 
images, showed an inversed dataset to Sets 2–4. Set 6(RvLvD121) consisted of vertical images of right and left eyes 
without any transformation. Set 7(Rv

fLvD121) consisted of non-flipped right vertical images and horizontally 
flipped left vertical images. The images in Sets 1–7 were of right and left eyes. The purpose of Set 8(RhRhD121) 
was to verify the overfitting problem that often occurs in CNNs. Set 8(RhRhD121) consisted of only non-flipped 
right horizontal images. The images were randomly divided into subsets 1 and 2.

Class activation mapping. We used class activation mapping (CAM)38 to better understand how the 
CNNs worked. CAM uses heatmaps to identify the areas used by CNNs to make decisions. Hotter areas carry 
more weight in CAM heatmaps and are more important in the CNN class discrimination process. Using CAM, 
we identified locations that carried more weight in the final convolutional and classification layers.

Software. Python (version 3.7.9) was used for this study. The CNN model consisted of TensorFlow 2.4.1, 
Keras 2.4.3, OpenCV 4.5.1.48, and NumPy 1.19.5. The performance of each CNN model was evaluated by calcu-
lating the accuracy of the test set. The central processing unit used to train the CNN model was an Intel® Core™ 
i9-10980XE system (Intel Corp., Santa Clara, CA, USA), equipped with a GeForce RTX 3090 graphics card 
(Nvidia Corp., Santa Clara, CA, USA). We analyzed the results of the test set using SPSS for Windows statistical 
software (version 24.0; SPSS Inc., Chicago, IL, USA). We drew receiver operating characteristic (ROC) curves 
with test set results and computed the area under the ROC curve (AUC). The p values for the ROC curves were 
calculated with SPSS software. We compared AUC of two ROC curves using MedCalc Statistical Software for 
Windows (version 19.2.6; MedCalc, Ostend, Belgium). Statistical significance was set at a p value of < 0.05.

Figure 4.  Diagram of the image processing procedure. The images were trimmed from 768 × 496 to 496 × 496 
pixels. If needed, the images were flipped horizontally. The processed images were loaded into convolutional 
neural networks (CNNs) embedded in the Keras package and attached to the fully connected and Softmax 
layers.
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Data availability
Data supporting the findings of the current study are available from the corresponding author upon reasonable 
request.
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Figure 5.  Image sets and their corresponding class activation mapping (CAM) results. Set 1 consisted of 
horizontal images of right and left eyes. Papillomacular retinal nerve fiber layers with high reflectivity were 
shown on the nasal side of the image. CAM highlights both ends of parafoveal regions of images. Sets 2–4 
consisted of right horizontal images and flipped left horizontal images. Papillomacular retinal nerve fiber 
layers with high reflectivity were shown in the right-side of OCT images. CAM patterns in Sets 2–4 differed: 
DenseNet121 highlighted the parafovea, whereas ResNet50 highlighted only the parafovea and VGG19 both 
the parafovea and macula. Set 5 consisted of flipped right and left horizontal images; CAM highlighted the 
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