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MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism
through their specific gene regulatory networks. However, differently from transcription factors, our understanding of
the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for
gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis
of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive,
genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs
synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa
procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be
associated with the TGFb pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and
miR-190 inhibit, while miR-340 enhances TGFb signaling and its effects on cell proliferation, morphology, and scattering.
Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation
procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs.

[Supplemental material is available for this article.]

MicroRNAs (miRNAs) are small noncoding RNAs that have basic roles

in the control of gene expression (Bushati and Cohen 2007). They

carry out their functions in animal cells by binding, with imperfect

base pairing, to complementary sequences in the 39-untranslated

regions (39UTRs) of their target mRNAs. This results in down-

regulation of target expression, at either the transcript or the

translational level (Baek et al. 2008; Selbach et al. 2008; Guo

et al. 2010).

Over the last decade, miRNAs have emerged as important and

evolutionarily conserved regulators of various physiopathological

processes, from development to cancer (Meola et al. 2009; Visone

and Croce 2009). As in the case of transcription factors, target

identification is key to an understanding of the functions of

miRNAs. The analogies between these two classes of regulatory

molecules include the specificity of the sequences they target and

a certain degree of flexibility in the composition of these sequences.

However, decades of molecular studies on transcription factors have

revealed that their actions are largely combinatorial, i.e., their spe-

cific effect—activation or repression of gene expression—is strictly

dependent on the local chromatin microenvironment, which in

turn is an expression of the combination of multiple factors, such as

cell type and a plethora of internal and external stimuli. In this

regard, one of the most notable features is that the same transcrip-

tion factor can activate or repress gene expression and even change

binding specificities according to its dynamic interactions with

other transcription factors and coactivators (Chen et al. 2011).

Combinatorial effects multiply the complexity of transcription-

factor gene regulatory networks, as well as the efforts needed for

their dissection. In contrast, miRNAs appear to have less flexible

specificities and effects: They basically repress gene expression

through binding to a few subtypes of target sequences, the com-

positions of which are dictated by their ‘‘seed’’ sequence (Bartel

2009). Moreover, they do not appear to have the same combinato-

rial logic as transcription factors, but rather more plain synergic or

additive effects when multiple miRNAs target the same mRNA

(Tsang et al. 2010).

These simpler features give much more appeal to the dissec-

tion of the miRNA regulatory networks through the computational

identification of their targets. Indeed, the first tools for miRNA

target identification were developed shortly after the emergence

of miRNAs as regulatory factors of cellular metabolic processes

and animal development. These ‘‘first-generation’’ tools have

taken into account sequence-based features, like miRNA–mRNA

complementarity at the seed region (Rehmsmeier et al. 2004; Krek
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et al. 2005; Miranda et al. 2006; Betel et al. 2008; Maragkakis et al.

2009; Thomas et al. 2010), the evolutionary conservation of tar-

get sequences (Friedman et al. 2009), their numbers (John et al.

2004), and their accessibility, as predicted by analysis of second-

ary structures (Kertesz et al. 2007). However, current computa-

tional methods have intrinsic limitations due to the imprecise

complementarity between mRNA/miRNA sequences in animal

systems and an overall low specificity that results in a large number

of false targets among the predictions (Didiano and Hobert 2006).

Moreover, a substantial lack of overlap between the various algo-

rithms has been reported (Saito and Saetrom 2010), which sug-

gests that additional parameters should be considered for the

development of more comprehensive prediction algorithms. Re-

cent methods for reducing the number of false positives include

expression analysis to detect inverse correlations between miRNA

and mRNA transcriptional behaviors, and they have required the

use of specific microarray platforms that contain probes for miRNAs

(Huang et al. 2007; Hausser et al. 2009; Ulitsky et al. 2010). Alter-

native methods included the use of miRNA host genes as proxy for

measuring the expression of the embedded miRNAs (Gennarino

et al. 2009).

Here, we perform a comprehensive analysis of human miRNA

regulatory networks by focusing on the expression relationships

among miRNA targets. We have developed a strategy based on Co-

expression Meta-analysis of miRNA Target genes (CoMeTa) to in-

tegrate expression data from hundreds of cellular systems and

multiple tissues. CoMeTa analysis of 675 human miRNAs was used

to effectively select bona fide miRNA target genes by ranking them

according to their degree of co-expression. Subsequent analyses of

clusters of miRNA targets have led to the association of specific

miRNAs with biological function(s) at high resolution. Furthermore,

network analysis has resulted in a comprehensive map of miRNA–

miRNA functional interactions based on the overlap among their

target cohorts of genes. We validated the CoMeTa procedure by

experimental assays focused on the control on the TGFb path-

ways exerted by three previously uncharacterized miRNAs.

Results

The CoMeTa procedure

We hypothesized that the targets of a given miRNA are co-ex-

pressed with each other, at least in certain tissues/conditions, i.e.,

they belong to the same gene regulatory network. Based on this

assumption, we devised a strategy for the general inference of

miRNA downstream regulatory networks through analysis of the

expression correlations of their putative targets (CoMeTa).

A scheme for the rationale of CoMeTa is shown in Figure 1A.

For each miRNA, the procedure was seeded by using the predicted

targets from three sequence-based prediction tools, miRanda (Betel

et al. 2008), PicTar (Krek et al. 2005), and TargetScan (Friedman

et al. 2009). The overlap among these algorithms is often limited,

and thus together they should ensure consistent coverage for tar-

get prediction. The expression relationships between predicted

targets were calculated by analyzing thousands of publicly avail-

able expression microarray experiments that are representative

Figure 1. The CoMeTa procedure. (A) For simplicity, the strategy is described on a subgroup of 10 genes. Multiple transcriptional controls (arrows) for
these genes are shown, including a specific miRNA (miRNA-X, blue arrows). In the example, Gene 8 (yellow box) and Gene 9 (red box) are, respectively,
a false positive and a false negative result of sequence-based software predictions, used to seed the analysis. In co-expression lists, the ranking of the genes is
an index of their expression correlations with the probe gene. A co-rank list is obtained by averaging the co-expression lists. The false-positive target ranks low
in the co-rank list, whereas the false-negative target ranks high and can be identified by subsequent de novo sequence analyses (additional targets [AT] list).
The CoMeTa output consists of the list of predicted targets ranked by expression analysis. Co-expression lists are subsequently used for further analysis
(see text). (B) Distribution of known miRNA targets (horizontal lines in the top panel) within CoMeTa lists, for three independent data sets of miRNA targets
(DS1, DS2, DS3). Counts within the first 30th and 50th percentiles are provided for each data set in the lower table. The average number of targets for each
miRNA present in the first 50th percentile of CoMeTa lists is 750 (DS1), 850 (DS2), and 900 (DS3). P-values: <10�39 (DS1), <10�29 (DS2), and <10�23 (DS3).
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of multiple tissues and conditions. For each miRNA target, a co-

expression list was calculated, where any other gene was ranked

according to its positive expression correlation with the given

target. We recently used a similar approach to identify a gene net-

work that regulates lysosomal biogenesis and function (Sardiello

et al. 2009).

Using this ranking system, a gene under the control of a given

miRNA is expected to generate a co-expression list that is enriched

with other target genes of the same miRNA at the top positions

because of the positive correlations among their expression.

However, most genes are subject to multiple transcriptional con-

trols. This implies that a gene under the control of N factors is

expected to generate a co-expression list that is enriched at the top

positions with genes under the control of the same N factors, in-

cluding the targets of the given miRNA (Fig. 1A). The co-expression

lists associated with a collection of putative miRNA targets will

therefore be enriched for genes controlled by multiple factors, spe-

cific to each target. However, they will be collectively enriched for

the targets of the given miRNA (see Fig. 1A). Based on this hy-

pothesis, for each collection of putative targets we generated

a ‘‘co-rank’’ list by taking into account the average target ranking

in their respective lists. This procedure was expected to produce

two notable outcomes: First, the true targets, including genes

missed by sequence-based prediction tools (the false negatives),

would rank higher than nontarget genes in the co-rank list be-

cause of their higher average ranking in the single co-expression

lists (see Fig. 1A). Second, based on the same principle, genes that

are not targets of the given miRNA would rank low, including

false positives from sequence-based prediction tools.

We applied this procedure to all of the known human miRNAs

(n = 675; miRBase, release 13.0) and we obtained the corresponding

lists of the coregulated targets ranked according to their expression

concordance (Co-rank and CoMeTa lists) (Fig. 1A).

CoMeTa is effective in the recognition of true positive
miRNA targets

To test the efficacy of the procedure, we built three independent

data sets of previously validated miRNA targets (DS1, DS2, DS3)

that were derived from the analysis of available data. DS1 was built

using high-confidence miRNA–target pairs that had been validated

experimentally and includes 270 target genes coupled with 84

miRNAs (Supplemental Table 1) (Papadopoulos et al. 2009); DS2

includes 671 target genes coupled with eight miRNAs, identified

through pSilac experiments (Baek et al. 2008; Selbach et al. 2008);

and DS3 includes 162 target genes coupled with three miRNAs,

identified by transcriptome analysis (Lim et al. 2005).

The analysis of the CoMeTa lists showed that >90% of the

validated targets from DS1 and >80% of the targets identified by

high-throughput analyses (DS2, DS3) fall within the first 50th

percentile of their respective ranked lists (P < 10�20 for all of the

data sets) (Fig. 1B), thus demonstrating the validity of the pro-

cedure. A comparison with the scoring systems of TargetScan,

PicTar, and miRanda showed that CoMeTa’s ranking system im-

proves miRNA target prediction efficiency in all three data sets an-

alyzed (DS1, DS2, and DS3; Supplemental Fig. S1).

We also evaluated the performance of the CoMeTa procedure

for the identification of validated targets that escaped recognition

by the sequence-based prediction algorithms used to seed the

procedure (n = 25 in DS1; Supplemental Table S1). Interestingly, we

found that most of these targets have high rankings in their re-

spective miRNA co-rank lists (21 out of 25 above the 50th percen-

tile; P < 10�3). Therefore, to identify putative, additional targets for

each miRNA, we carried out a de novo analysis of the 39UTRs of

all genes to search for canonical miRNA seeds (7-mer-A1, 7-mer-

m8, or 8-mer sites) (Bartel 2009). The lists of these additional tar-

gets (AT lists) (Fig. 1A) are available through the CoMeTa website

(http://cometa.tigem.it/site/index.php), along with their ranking

positions.

Inference of miRNA gene networks and association
with biological functions

We hypothesized that co-expression analyses can drive the pre-

diction of the functional pathways controlled by miRNAs. To test

this hypothesis, for each miRNA we clustered the targets that

showed the highest extent of co-expression, a procedure hereafter

referred to as CO-Operational Level (COOL) analysis. We system-

atically carried out COOL analyses for all of the human miRNAs

and found that predicted targets tended to aggregate in discrete co-

expression clusters, compared with random groups of miRNA target

genes of similar size (Fig. 2A; Supplemental Fig. S2). We then se-

lected the co-expression clusters that showed greater significance

over the control clusters (R-squared [R2] #0.91; see Methods for

details). A total of 508 co-expression clusters (for 508 miRNAs) were

retained as the most statistically significant. Of note, these clus-

ters were significantly enriched for the validated miRNA targets in

DS1 (77% of the total; P < 10�5) (Fig. 2A), which indicates that

the miRNA targets indeed tend to aggregate in co-expression

clusters. As an additional control, we mapped on the COOL

clusters the genes that we previously found to be down-regulated

upon transient overexpression of miR-26b and miR-98 in HeLa

cells (Gennarino et al. 2009). Gene-set enrichment analysis of

these genes showed that down-regulated genes (i.e., the most likely

direct targets) were significantly enriched in clusters with R2 <0.91

(Fig. 2B,C).

Next, to assign biological functions to human miRNAs, we

performed gene ontology (GO) and KEGG (Kyoto Encyclopaedia of

Genes and Genomes) pathway analyses of the significant COOL

clusters. These analyses associated hundreds of nonredundant

developmental or metabolic functions with specific miRNAs. The

diagram in Figure 2D shows that miRNAs were associated with

virtually every known functional macro category, from cell house-

keeping (cell components, trafficking, and metabolism) and regu-

latory pathways (cell signaling, gene expression, response to stim-

ulus, apoptosis) to development, reproduction, and cancer. In each

macrocategory, the resolution of the analysis for specific pathways

was remarkable. For example, miRNAs associated with intracellular

trafficking could be mapped to several distinct pathways, including

endocytosis (miR-1/103/106a/106b/107), ER-to-Golgi (miR-1/1323/

19a/23a/23b), and Golgi (let-7c/7e and miR-1182/1183/1202) ves-

icle transport, phagocytosis (miR-1257/182/524-5p), and axon

cargo (miR-103/107/143/16/195). Similarly, miRNAs associated

with gene expression were differentially assigned to pathways

regulating epigenetic control (miR-1/1202/1253/1266), basal tran-

scription-factor activity (miR-1294/181b/181c/26a/26b) and RNA

processing (miR-105/107/1179/1183), silencing (let-7b/7c and miR-

1205/184/298), and translation (let-7 family and miR-1183/1205/

1236). Functions were assigned with high confidence to all 508

miRNAs with significant co-expression clusters, and the results

showed high concordance with the miRNA functions that had

been determined experimentally (135 such cases are given in Sup-

plemental Table 2). Examples include: miR-155, which is involved

in hematopoiesis (Kluiver et al. 2006) and immunity (Fig. 3A;
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Rodriguez et al. 2007); miR-1, which has a role in heart development

(Fig. 3B; Sayed et al. 2007); miR-130a, which has been identified as

a proangiogenic miRNA (Fig. 3C; Chen and Gorski 2008); miR-106b

and miR-93, which are known potent inhibitors of transforming

growth factor (TGF)b signaling (Petrocca et al. 2008a); and the miR-

29 family, whose members miR-29a and miR29c, but not miR-29b,

have been associated with regulation of the Wnt pathway (Kapinas

et al. 2009). Notably, COOL analyses also correctly distinguished

between closely related members of the same family, i.e., miRNAs

that share the same seed sequence, as in the case of the miR-29

family. Dozens of critical biological processes were associated for

the first time with miRNA regulation, e.g., neuronal migration

(hsa-miR-20b), muscle-tissue development (hsa-miR-655), the

BMP signaling pathway (hsa-miR-1252), and many others (see

Supplemental Table 2).

In addition to providing putative functions to most human

miRNAs, these results also strengthen the hypothesis that miRNAs

act as global regulators of specific pathways, a function that has

classically been attributed to transcription factors.

miR-519d, miR-190, and miR-340 are involved in regulation
of the TGFb signaling pathway

The high concordance between CoMeTa COOL analysis and lit-

erature data prompted us to test some of the novel associations

with miRNA functions generated by our procedure. Among the

miRNAs associated by COOL analysis to TGFb signaling, miR-519d,

miR-190, and miR-340 showed the most significant enrichment

(see CoMeTa database) (Fig. 3D–F). A detailed analysis of the CoMeTa

associations showed, indeed, that these miRNAs are predicted to

target most genes participating in the TGFb pathway (Fig. 4), which

regulates a wide range of biological responses including cell pro-

liferation and differentiation and tumorigenesis. Interestingly, the

predicted targets of the three miRNAs include both positive (for

example SMAD2/3) and negative (for example SMAD6/7) regulators

of the pathway. The A549 non-small cell lung carcinoma cell line is

highly sensitive to TGFB1 (TGF-b1) administration, which triggers

growth arrest along with cell scattering and invasion (Kasai et al.

2005). To test the activity of the selected miRNAs, we transiently

transfected A549 cells with the synthetic RNA duplexes of the ma-

ture forms of human miR-519d, miR-190, and miR-340; as a positive

control, we used miR-93, a known inhibitor of TGFb-induced cell

cycle arrest (Petrocca et al. 2008b). An unrelated Caenorhabditis ele-

gans miRNA (cel-miR-67) was used as a reference, while miR-507 and

miR-557, which were not associated with TGFb signaling by COOL

analysis, were used as negative controls. TGFB1 addition to cells

transfected with cel-miR-67, miR-507, and miR-557 resulted in the

loss of intercellular adhesion and cell scattering, while transfection

of miR-93, miR-519d, and miR-190 resulted in complete inhibition

of TGFB1-induced cell scattering. Strikingly, miR-340 did not inhibit

these effects of TGFB1, but rather triggered cell scattering, even in

the absence of TGFB1 stimulation. These data were confirmed by

quantitative analysis of cell scattering, which showed that miR-93,

miR-519d, and miR-190 fully antagonized the effects of TGFB1,

while miR-340 mimicked the actions of TGFB1 stimulation (Fig. 5).

Figure 2. COOL analysis of miRNA-predicted target transcriptional
networks. (A) Kernel density estimation of R2 values for the normal
probability plot analysis of miRNA clusters (red line) and size-matched
random clusters (blue line). An R2 value of 0.912 represents the lowest
value for the random clusters, and this was used as the threshold (green
dotted line) to select the significant miRNA clusters. (Black bars) R2 values
of DS1-associated clusters. (B,C) COOL heat-maps (left) and their enrich-
ment plots generated by gene-set enrichment analysis (right) for the data
set of probes differentially expressed after miR-26b transfection (B) and
miR-98 transfection (C ). (Blue lines in the plots) Enrichment scores;
(vertical black bars below the plots) positions of the probes from the
analyzed COOL clusters according to the ranking of their expression levels,
i.e., from the most down-regulated (left) to the most up-regulated. (ES)
enrichment score; (FDR) false discovery rate. (D) Frequency distribution
of functions assigned to COOL clusters as grouped in macrocategories.
The number of miRNAs associated with each macrocategory is shown in
parenthesis.
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Analysis of cell proliferation revealed that all three of these tested

miRNAs significantly affected cell growth. In particular, miR-519d

and miR-190 significantly counteracted cell-growth inhibition me-

diated by TGFB1, similar to what was observed for the positive

control, miR-93. In contrast, miR-340 strongly inhibited cell pro-

liferation to a level that could not be further decreased by additional

TGFB1 treatment (Fig. 5). In summary, miR-519d, miR-190, and

miR-340 were associated with the TGFb pathway by COOL analysis,

and indeed modulated two major biological responses elicited by

TGFb activation, i.e., cell scattering and cell cycle arrest in lung

tumor cells.

Co-expression analysis identifies
communities of miRNAs associated
with common functions

Recent work by Tsang et al. (2010)

showed that the members of a same

family of miRNAs tend to target com-

mon transcripts due to similarities

among their seed sequences. miRNA ‘‘co-

targeting’’ helped to define the putative

function of miRNA families by in-

vestigating the functional categories

enriched among their targets. To further

develop this topic, we defined the con-

cept of ‘‘miRNA communities’’ (miRCos)

as groups of miRNA sharing a significant

proportion of target genes as revealed by

co-expression analysis. To this aim, we

measured the proportion of genes shared

by all possible pairwise combinations of COOL clusters. This

procedure resulted in the identification of 87 miRNA commu-

nities (miRCo1-87) (Fig. 6A). Most of these miRCos are com-

posed of only a few members: eight communities include >10

miRNAs (Supplemental Fig. 3), with two of them (miRCo1,

miRCo2) containing more than 20 miRNAs. Remarkably, miR-519d

and miR-93, which behaved similarly in our experimental analysis,

mapped to the same community, miRCo16 (Fig. 6B). This com-

munity also includes miR-17, miR-20, and miR-106, which were

previously described as being involved in the regulation of TGFb

signaling (Petrocca et al. 2008b).

Figure 3. Overview of COOL clusters with known and predicted functions. Analyses of miR-155 (A), miR-1 (B), miR-130a (C ), miR-519d (D), miR-190
(E), and miR-340 (F). The graphs represent the COOL heat-maps of putative targets generated according to their reciprocal expression relationships. (Red
and yellow boxes) Clusters with an R2 value higher or lower than the set threshold, respectively. (PTs) Predicted targets. Some of the functional categories
enriched in the significant miRNA clusters are indicated.

Figure 4. miR-519d, miR-190, and miR-340 in the TGFb signaling pathway. Schematic of the net-
work of interactions between genes and proteins involved in TGFb signaling. Putative targets of miR-
519d (purple), miR-190 (orange), and miR-340 (yellow) are indicated. (Double vertical lines) The cell
membrane; (dotted vertical line) the nuclear membrane; (dotted horizontal lines) links to other cellular
pathways.
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We inferred the biological functions associated with each miRCo

by calculating their hypergeometric enrichment of GO and KEGG

terms compared with the whole set of significant co-expression

clusters (Supplemental Table 3). Emerging functional macro-

categories included the same wide spectrum of biological func-

tions as single miRNAs, and the relative proportions were also

similar (Fig. 6C). Exceptions were categories associated with de-

velopment and signaling, which were relatively more represented

in miRCos (;70% and ;40% more frequent than in single miRNA

analysis, respectively). This could be interpreted as a lower ten-

dency of these categories to group into communities with shared

targets, which copes with their regulatory role, i.e., differentiated

by definition. Literature analysis confirmed the reliability of the

functional categories associated with miRCos (Supplemental Table 4).

miRNA communities are likely to be involved in the synergistic

modulation of cohorts of genes that regulate similar processes, which

adds a new layer of complexity to the reg-

ulatory functions of human miRNAs.

In summary, our results demonstrate

that co-expression meta-analysis performed

by using widespread, non-miRNA-specific

microarray platforms is a powerful tool to

define miRNAs’ downstream gene net-

works, biological roles, and functional

communities.

CoMeTa website

To enable researchers to retrieve associa-

tions between miRNAs, genes, and bi-

ological functions of interest, we have or-

ganized all of the information generated

by CoMeTa into an interactive on-line da-

tabase that is publicly available at http://

cometa.tigem.it/site/index.php. The web-

site includes the CoMeTa corank lists and

additional targets for all of the human

miRNAs, their associated pathways result-

ing from COOL analysis, and miRNA com-

munities with their corresponding enriched

functional categories. The CoMeTa website

is searchable by miRNA, target gene, or

biological function of interest, and rep-

resents a unique resource to gain insight

into miRNA-controlled gene networks and

functions.

Discussion
It was previously suggested that different

miRNAs might contribute to the regula-

tion of the same functions by cotargeting

similar sets of genes (Tsang et al. 2010;

Ulitsky et al. 2010; Sass et al. 2011; Su

et al. 2011). Here, we have introduced co-

expression-based gene network analysis

as a means for inferring genes and func-

tions associated with the transcriptional

control of specific miRNAs. Network anal-

yses were performed by elaborating the

information associated with hundreds of

different cellular and tissue conditions, an

ensemble that is capable of capturing an impressive number of re-

lationships between gene regulatory dynamics. Previous computa-

tional methods for the identification of miRNA targets have solely

relied on sequence analysis of miRNA–mRNA target sites (Bartel

2009). More recently, a number of tools introduced the use of high-

throughput expression analysis to improve predictions of miRNA

targets (Huang et al. 2007; Ulitsky et al. 2010) and the identification

of gene networks controlled by miRNAs (Friard et al. 2011; Huang

et al. 2011; Jayaswal et al. 2011; Le Bechec et al. 2011; Liu et al. 2011;

Xu et al. 2011). All of the above procedures are based on the com-

parison of paired data sets of miRNA and mRNA expression data

generated from specific microarray platforms. CoMeTa is the first

tool to integrate computational and expression analysis by relying

exclusively on the extraordinary resource of mRNA transcriptome

data sets available in public databases. Our tool does not require

expression data from miRNA-specific probes and is effective in the

Figure 5. miR-519d, miR-190, and miR-340 modulate TGFb signaling. Analysis of cell proliferation, cell
morphology, and cell scattering following miRNA transfection in A549 cells, with or without TGFB1 ad-
dition. All data and confocal microscope images are representative of at least three experiments for each
miRNA. Cell proliferation is expressed in relative luminescence units (RLU), determined by luminescence-
based cell viability assays. Confocal microscopy was performed after staining with FITC-phalloidin (green)
and DAPI (blue). Cell scattering was quantified by digital image analysis of local cell density.
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Figure 6. miRNA community networks. (A) Graphical representation of the community organization of human miRNA downstream transcriptional
networks. (Gray circles) miRNAs. miRNAs that belong to the same community are linked with edges of the same color. For each community an exemplar
(center of the miRNA community) was chosen and is indicated with a blue triangle. (Red triangle) miRNAs that link together different communities. (B)
Enlarged section from A, showing the composition of miRCo16 and the mutual relationships of its miRNAs and shared target genes. (C ) Frequency
distribution of functions assigned to miRCOs as grouped in macrocategories. The number of miRCOs associated with each macrocategory is shown in
parenthesis.
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recognition of miRNA targets, including those missed by sequence-

based prediction tools (Fig. 1B; Supplemental Table 1). Recent

observations reported that target mRNA abundance may dilute

miRNA activity based on concentration/competition effects

(Arvey et al. 2010), which could limit the inference of miRNA-

target mRNA relationship based on the observation of expression

variations. However, CoMeTa is based on the use of Pearson cor-

relation scores among variations in mRNA expression, which de-

pend on relative and not absolute variations. Therefore, CoMeTa’s

performance is unaffected by possible concentration/competition

effects, as long as the effect of a miRNA on its target genes is mea-

surable by microarray experiments.

Interestingly, while testing the CoMeTa procedure, we did not

observe any significant differences in the behaviors of targets

previously ascertained at the translational level (DS2) versus tar-

gets reportedly controlled at the transcript level (DS3). Since the

CoMeTa procedure is based on the analysis of transcript levels, our

results indicate that the effects of miRNAs on the expression levels

of their mRNA targets is a widespread phenomenon that is not

limited to a restricted subset of targets, thus strengthening the

emerging view that miRNA-mediated regulation acts predominantly

at the transcript level (Lim et al. 2005; Guo et al. 2010).

The central hypothesis of our study was that genes targeted by

the same miRNA are co-expressed with each other under multiple

conditions. We demonstrated this hypothesis by showing that

miRNAs identify clusters of co-expressed genes, which were sub-

sequently used to infer miRNA functions. We assigned specific

biological roles to more than 500 human miRNAs that identified

significant co-expression clusters. The high overlap with miRNA

functions supported by published experiments (135 cases, see

Supplemental Table 2) demonstrates that our procedure is both

reliable and general, and endorses the predictions associated with

miRNAs for which a biological role has not experimentally been

established yet. However, one cannot exclude that in some in-

stances a significant degree of co-expression between miRNA pre-

dicted targets may reflect the presence of alternative sources of tran-

scriptional controls such as transcription factors. Therefore, to further

demonstrate the causal relationship between gene co-expression

clusters and miRNA functions, we decided to experimentally in-

vestigate three miRNAs (miR-519d/miR-190/miR-340), which our

procedure associated with modulation of the TGFb pathway. We

indeed showed that miR-519d and miR-190 inhibit, whereas miR-

340 mimics the effects of TGFB1 on cell proliferation, morphology,

and scattering. Interestingly, miR-519d is part of a miRNA com-

munity with several miRNAs (miR-17/20a/106b/93) known to be

involved in TGFb regulation (Fig. 6B; Petrocca et al. 2008a), which

supports the concept that these communities underlie a common

regulatory function. While no information is available on the role

of miR-190 in cell proliferation and tumorigenesis, a recent study

showed that miR-340 has tumor-suppressive roles in the aggressive

variants of breast cancer, in which miR-340 expression inversely

correlates with tumor progression and metastasis (Wu et al. 2011).

In summary, we have characterized miR-519d, miR-190, and miR-

340 as novel regulators of the TGFb pathway, thus providing po-

tential therapeutic targets for the treatment of invasive tumors.

The analysis of other miRNA communities illustrated the

multiplicity of functions associated with synergic miRNA control.

We identified 87 such communities based on the overlap among

miRNA gene networks: analysis of the available literature showed

an impressive concordance with the functions associated by clus-

ter enrichment analysis (Supplemental Table 4). This analysis

revealed that all of the miRNAs examined (with only one excep-

tion) are associated in communities with other miRNAs, indicating

that the sharing of downstream regulatory networks is a general

tendency of human miRNAs. Our analysis also established con-

nections between different miRNA communities, which resulted

in a general assessment of the network of interactions of the entire

human miRNome.

As previously stated, CoMeTa relies on the analysis of a vast

data set of publicly available transcriptome data generated from

hundreds of different cellular and tissue conditions, which ensures

an appropriate coverage of the diverse biological roles controlled

by miRNAs. This particular aspect further distinguishes CoMeTa

from a number of previous efforts, which utilized gene expression

analysis to infer putative miRNA functions as the latter focused on

the evaluation of more restricted, and often tissue-specific, ex-

pression data sets (Ulitsky et al. 2010; Jayaswal et al. 2011; Liu et al.

2011; Su et al. 2011). While, on one hand, ensuring the identifi-

cation of a broader variety of miRNA-controlled biological func-

tions, the use of such a massive expression data set could lead, on

the other hand, to a slightly less-efficient performance of CoMeTa

in dissecting miRNA-controlled pathways that are specific for hu-

man tissues (e.g., the retina) that are, as yet, poorly represented in

the expression data set used to seed the procedure. In those in-

stances, it will be necessary to generate a more comprehensive

starting data set of transcriptome data. However, it is expected that,

thanks to the expected increase of high-resolution transcriptome

data facilitated by the advances and cost reduction of next-gener-

ation sequencing approaches (Ozsolak and Milos 2011), the cur-

rent gap in adequate transcriptome coverage of some human tis-

sues will be filled, and therefore this possible caveat for the efficacy

of the CoMeTa procedure will soon be overcome.

In summary, we have used gene network analyses to assign

hundreds of functions to human miRNAs, of which only a small

fraction had been previously reported. Our data indicate that

miRNAs control an important portion of cellular metabolism and

accurately describe known and novel functions of specific miRNAs

and miRNA communities. The resulting biological hypotheses and

novel functional associations, along with the development of an

innovative research paradigm, represent valuable resources for

future investigations aimed at dissecting out miRNA functions.

Methods

The CoMeTa procedure
The full set of human miRNAs was retrieved from miRBase (release
13.0) (Griffiths-Jones et al. 2008). For co-expression data analysis,
250 microarray data sets were downloaded from GEO (http://
www.ncbi.nlm.nih.gov/geo/), based on the Affymetrix HG-U133A
GeneChip array (GPL96, Feb 19, 2002). Each data set was pre-
processed and normalized independently, and the data matrices
with less than three arrays, or more than 200 missing values, were
removed. This resulted in a final list of 217 data sets. For each
human miRNA, we collected the full list of predicted targets from
miRanda (Betel et al. 2008) (September 2008 release), and the tar-
gets conserved in mammals from TargetScan (Friedman et al. 2009)
(release 5.1; April 2009) and PicTar (Krek et al. 2005) (March 2007
release). All targets were pooled together in a single list of predicted
targets. To evaluate co-expression, we first associated each gene
with a ‘‘co-expression’’ list consisting of all other genes of the
Affymetrix platform, ranked by their Pearson correlation score
relative to the expression behavior in each single experiment.
Then, for each gene on the list we generated a co-expression score
that was set equal to its number of occurrences in the top third
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percentile of each ranked list, across all expression data sets ana-
lyzed (Gennarino et al. 2009; Sardiello et al. 2009; Palmieri et al.
2011). Thus, each pair of genes had a unique co-expression score as
a result of this procedure. Subsequently, to generate the co-rank list
associated to each single miRNA, we collected the co-expression
lists of all pooled putative targets, averaged the co-expression scores
of all ranked genes, and extracted only the data associated with the
specific putative targets.

Additional miRNA target genes

Human 39UTR sequences were retrieved from the Primate UTRef
collection of the UTRdb (Grillo et al. 2010). The 3UTRef.Pri.dat
flatfile database downloaded from http://utrdb.ba.itb.cnr.it con-
tains 39UTRs from the RefSeq database (http://www.ncbi.nlm.nih.
gov/RefSeq/). To associate each human 39UTR with its correspond-
ing probe on the HG-U133A GeneChip, we used the Affymetrix
annotation file HG-U133A.na30.annot.csv.zip, downloaded from
the Affymetrix website (http://www.affymetrix.com). Collected
human 39UTRs were searched for canonical, 7–8-nt seed-matched
sites (Bartel 2009). Custom Perl scripts were used to perform the
analyses, making extensive use of the Bioperl toolkit.

COOL analysis

For each miRNA, the collected predicted targets were used to
generate a co-expression matrix according to the co-expression
scores obtained with the CoMeTa procedure. This matrix was then
processed with MultiExperiment Viewer, to obtain the hierarchical
clustering (Saeed et al. 2006). The first node was selected to obtain
two clusters of predicted targets, for which two respective co-rank
lists were calculated. We reasoned that co-expressed genes would
generate a co-rank list with nonrandom enrichment of co-expressed
entities in the top positions, and that their associated values would
deviate from normality because of this enrichment. To test this hy-
pothesis, we compared the distributions of co-expression values from
each cluster with a randomly generated gene list of the same size
using Quartile-Quartile (Q-Q) plot analysis (Chambers et al. 1983)
against a hypothetical standardized normal distribution. To evaluate
the deviation from the normality hypothesis, a normal probability
plot was drawn for each COOL cluster (see Supplemental Fig. 2) and
regression analysis was performed. The corresponding R2 value was
used as the index for measuring the deviation of the co-rank list from
normality: The lower the R2 value, the greater the deviation from
normality. Using this procedure, we observed that the distribution of
co-expression values associated with random lists were close to nor-
mality, with R2 values ranging from 0.91 to 0.98. However, R2 values
associated with COOL clusters were distributed in a biphasic fashion,
typically with only one of the two clusters for each miRNA associated
with an R2 value lower than 0.91 (and therefore far from random-
ness). We only considered clusters with R2 #0.91 for the subsequent
analyses. Overall, for the COOL analysis we started from a total
number of 410 million possible pairs of miRNA target gene co-ex-
pression interactions. Following all of the above described filtering
steps, only 30% of these interactions were left for further analysis.

Gene-set enrichment analysis

Gene-set enrichment analysis was performed as previously de-
scribed (Gennarino et al. 2011). The cumulative distribution
function was constructed by performing 1000 random gene-set
membership assignments. A nominal P-value <0.01 and a false
discovery rate (FDR) <0.25 were used to assess the significance of
the enrichment scores. The microarray expression data used in this
study have GEO accession numbers GSE12091 and GSE12092
(Gennarino et al. 2009).

miRCos procedure

To identify the communities of miRNAs, we used the Affinity
Propagation clustering algorithm, APcluster (Frey and Dueck
2007), which groups items into communities of items. APcluster
considers a similarity (or distance) between the items and itera-
tively groups them via a message passing paradigm, minimizing
a scoring function until convergence is reached. APcluster does not
require the number of communities to be specified by the user,
which is the main advantage compared with other clustering al-
gorithms. The algorithm generated a list of 87 communities and
automatically assigned an ‘‘exemplar’’ node to each community.
The network of miRNAs was displayed using Cytoscape (Shannon
et al. 2003). In the graphical representation, only the interactions
among miRNAs from the same community were kept.

Gene Ontology (GO) analysis

GO analysis was performed using the ‘‘database for annotation, vi-
sualization, and integrated discover’’ (DAVID) web tool and default
parameters (http://david.abcc.ncifcrf.gov/). We used Biological
Process FAT (BP_FAT) and KEGG pathway analysis to infer enriched
terms. Only BP_FAT categories with FDR #5 and KEGG pathways
with FDR #20 were retained. For miRCos, enrichments were cal-
culated by considering significant clusters from COOL analysis as
the background.

Cell transfection assay

Non-small cell lung cancer A549 cells were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine
serum, penicillin (100 U/mL), and streptomycin (100 ng/mL) at
37°C in an atmosphere of 5% CO2. SiRNA transfection of these
A549 cells was performed using Interferin (Polyplus transfection),
according to the manufacturer’s protocol. The cells were trans-
fected with miRIDIAN Dharmacon microRNA Mimics at a final
concentration of 20 nM.

Cell proliferation assays

Transfected cells were seeded in triplicate in opaque-walled 96-well
plates (Corning). The medium was changed the following day and
supplemented with 5 ng/mL of TGF-b1 (TGFB1) (Sigma-Aldrich)
where indicated. Viable cells were counted using the CellTiter-Glo
Luminescent Cell Viability Assay (Promega Corporation).

Immunofluorescence and cell-scattering analysis

Cells were transfected with miRNA Mimics and seeded on cover-
slips in 24-well plates (Corning). After 24 h, the medium was
changed and supplemented with 5 ng/mL TGF-b1 (TGFB1) where
required. After 72 h, the cells were fixed with 4% paraformaldehyde
and stained with FITC-phalloidin (Sigma-Aldrich) and DAPI. Im-
aging was performed using a 103 objective on a Zeiss LSM710
confocal microscope. Local cell density was evaluated as the number
of cell nuclei within a square area (10,000 px2ffi 18,000 mm2) centered
on each cell nucleus detected in pictures using CellProfiler 2.0 soft-
ware. An average of ;1000 cells was analyzed for each condition.
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