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Abstract: Rheumatoid arthritis (RA) is one of the inflammatory joint diseases that display features
of articular cartilage destruction. The underlying disturbance results from immune dysregulation
that directly and indirectly influence chondrocyte physiology. In the last years, significant evidence
inferred from studies in vitro and in the animal model offered a more holistic vision of chondrocytes
in RA. Chondrocytes, despite being one of injured cells in RA, also undergo molecular alterations
to actively participate in inflammation and matrix destruction in the human rheumatoid joint.
This review covers current knowledge about the specific cellular and biochemical mechanisms
that account for the chondrocyte signatures of RA and its potential applications for diagnosis and
prognosis in RA.

Keywords: rheumatoid arthritis; chondrocyte; cartilage

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease resulting in irreversible joint
destruction. It is characterized by synovial fibroblasts (also known as fibroblast-like synoviocytes)
activation, inflammation, angiogenesis, and invasion into the adjacent bone and cartilage, resulting
in degradation of extracellular matrix (ECM) and bone destruction [1–3]. The pathophysiology of RA
involves numerous cell types, including macrophages, lymphocytes, chondrocytes and osteoclasts, all of
which contribute to the destructive process [4–8]. For many years, other effector cells (lymphocytes,
macrophages, synovial fibroblasts, osteoclasts) have been the targets of intensive investigations.
In contrast, chondrocytes have received less attention in the past. However, a growing body of evidence
suggests that chondrocytes also actively participate in the progressive destructive process of RA.
This review would concisely summarize current understanding of the roles played by chondrocytes
in RA.
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2. Chondrocytes in Normal Physiology

Chondrocytes are the only cells in cartilage [9] and are the only cell type that produces and
maintains the cartilaginous matrix [10]. Cartilage acts as a key component of synovial joints, consisting
of chondrocytes and a dense and highly organized ECM synthesized by these chondrocytes, which
contains multiple matrix protein, such as type II collagen and glycosaminoglycans [11].

In addition to ECM, chondrocytes also synthesize lubricin/proteoglycan-4 (PRG4), a glycoprotein
that has multifaceted functions including boundary lubrication, which results in reduced
friction between apposed cartilage surfaces. Moreover, PRG4 also possesses the capability to
suppress inflammatory cytokines which induce proliferation of RA synovial fibroblasts [12–14].
In human, loss-of-function mutations in PRG4 result in human autosomal recessive disorder called
camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP), which is characterized by
progressive joint failure associated with noninflammatory synoviocyte hyperplasia and subintimal
fibrosis of the synovial capsule [12].

3. Chondrocytes in RA

In RA, multiple inflammatory mediators are present in the synovial joint. On the one hand,
chondrocytes act as target cells of these inflammatory mediators, resulting in chondrocyte dysfunction.
On the other hand, chondrocytes of RA also act as effector cells, exhibiting various alterations that
directly or indirectly facilitate joint damage of RA.

3.1. Chondrocytes Acting as Target Cells in RA

In RA, multiple proinflammatory molecules are involved, including increased interleukin (IL)-1β,
tumor necrosis factor (TNF)-α, IL-6, and IL-17 [15–17]. In addition to their well-established actions
on immune cells [18], these RA-relevant stimuli result in the molecular activation of catabolic and
inflammatory processes in human chondrocytes. For example, multiple cytokines produced by
inflammatory cells in RA, including TNF-α and interferon-γ, decrease viability and proliferation
of chondrocytes [19]. Enhanced chondrocyte apoptosis is found in the animal model of RA [20]
and clinical RA [21]. In addition to facilitating chondrocyte apoptosis, inflammatory mediators
also interfere with chondrogenesis. For example, TNF-α inhibits chondrogenic differentiation
through p38 mitogen activating protein kinase pathways [22]. Increased CD40 expression on articular
chondrocytes of patients with RA is found, and results in enhanced production of cytokines and matrix
metalloproteinases from chondrocytes [23].

In conjunction with proinflammatory molecules, stroma cells of synovial joints also actively
modulate chondrocytes. In the past, genome-wide microarray analysis of synovial fibroblast-stimulated
chondrocytes disclosed a distinct expression profile related to cartilage destruction involving
marker genes of inflammation, cartilage degradation, and suppressed matrix synthesis [24].
Synovial fibroblasts and macrophages activated chondrocytes to produce multiple tissue-degrading
enzymes (matrix metalloproteinase (MMP)-1, -3, -13 and disintegrin and metalloproteinase with
thrombospondin motifs (ADAMTS)-4, -5), and upregulation of inflammatory mediator gene expression
(TNF-α, IL-1β, IL-6 and IKBKB) [25]. Synovial fibroblasts also decreased matrix synthesis of
chondrocytes [26]. These data all suggest the role of chondrocytes as target cells in RA.

3.2. Chondrocytes Acting as Effector Cells in RA

In addition to acting as target cells in RA, evidence also implicated chondrocytes as effector
cells in RA directly and indirectly, possibly through releasing multiple enzymes of ECM degradation,
facilitating angiogenesis, enhancing inflammation and immune responses, and crosstalk with related
cells, as detailed in the following sections.
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3.2.1. Chondrocytes Directly Involve in RA Through Releasing Multiple Enzymes of Extracellular
Matrix Degradation, Facilitating Angiogenesis, Enhancing Inflammation and Immune Responses

Evidence for this argument comes from production of the collagen and proteoglycan proteinases
MMP-1, MMP-3, MMP-10, MMP-12, MMP-13 by chondrocytes [27]. IL-6 stimulates MMP from
chondrocytes in addition to enhancing chondrocyte apoptosis [28,29], whereas IL-1 and TNF-α
stimulates aggrecanase production [30]. IL-1α and IL-17 stimulate MMP production [31,32]. Likewise,
chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9) [33].

It has also been proposed that chondrocytes themselves may be a source of pro-inflammatory
cytokines, which facilitate the process of joint destruction by increasing the breakdown of tissue and
suppressing repair mechanisms. As a result, cartilage is degraded faster than it can be repaired,
leading to destruction of the joint [34]. This would lead to impairment of the immune response at
the synovium, limitation in the ability of chondrocytes to respond to immune signaling and degrade
cartilage, or a combination of both mechanisms. Along with this, fibronectin fragments stimulate
expression of multiple cytokines and chemokines by chondrocytes, such as IL-6, IL-8, monocyte
chemoattractant protein (MCP)-1, and growth-related oncogene β [35]. Moreover, chondrocytes can
also express toll-like receptor (TLR)-1, TLR-2, and TLR-4, and activation of TLR-2 by IL-1, TNF-α,
peptidoglycans, lipopolysaccharide, or fibronectin fragments increases the production of MMPs,
prostaglandin E (PGE), and vascular endothelial growth factor (VEGF) [34], all of which are mediators
in inflammation and angiogenesis, the central step in RA pathogenesis [3]. In the same time, enhanced
nitric oxide (NO) production occurs in rheumatoid cartilage [36] and NO is a potent inducer of
chondrocyte apoptosis [37] and acts as a proinflammatory and destructive mediator in the process of
arthritis [8].

Apart from destruction of ECM, degraded cartilage matrix components are considered as
potential autoantigens in the induction and maintenance of RA synovial inflammation [34]. Several
cartilage proteins have been demonstrated to act as T-cell autoantigens, stimulate T-cell responses,
modulate cytokine secretion in RA [38,39]. In summary, through releasing proinflammatory
mediators, angiogenesis inducers, and matrix-degrading enzymes, and promoting immune responses,
chondrocytes directly participate in RA pathogenesis.

3.2.2. Chondrocytes Indirectly Involve in RA Through Crosstalk with Related Cells

Earlier report of chondrocyte-synovial fibroblast co-culture showed that the presence of living
chondrocytes stimulated synovial fibroblasts to induce cartilage degradation [40]. On top of this, these
structural changes in cartilage are important prerequisite for the attachment and invasion of inflamed
synovial tissue during destructive inflammatory arthritis [41], suggesting the importance of crosstalk
between chondrocytes and synovial fibroblasts.

In the subsequent years, multiple lines of evidence about receptor activator of nuclear factor
kappa-B ligand (RANKL), TNF-α and IL-1β, IL-6, IL-8, IL-7, lymphotoxin α, MCP-4, urokinase
plasminogen activator (uPA), leukemia inhibitory factor (LIF), serum amyloid A, galectin-3,
hypoxia-inducible factor (HIF)-2α expression in chondrocyte suggested potential contribution of
these mediators in the crosstalk between chondrocyte and related cells.

a) RANKL: Articular chondrocytes synthesize RANKL and RANKL induces osteoclastogenesis,
contributing to juxta-articular bone loss in chronic arthritis such as RA [42].

b) TNF-α and IL-1β: Synovial fibroblasts and macrophages activate chondrocytes to produce
TNF-α and IL-1β [25], which stimulate synovial fibroblasts proliferation and invasion [14,43].

c) IL-6, IL-8: TNF also stimulates chondrocytes to release multiple inflammatory cytokines,
including IL-6 and IL-8 [44]. IL-6 stimulates RANKL expression by RA synovial fibroblasts [45] and
enhances the proliferation of synovial fibroblasts [46], and IL-8 is one of the important contributors to
the angiogenic activity of the inflamed RA synovial joint [47].

d) IL-7: Fibronectin fragments stimulate chondrocytes to produce IL-7, and IL-7 stimulates
chondrocytes to secrete MMP-13 and release proteoglycan from cartilage explants [48].
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In addition, IL-7 drives T-cell-dependent autoimmunity, induces inflammatory cytokines secreted by
macrophages/monocytes and leads to tissue destruction [49]. IL-7 also increases responsiveness of
CD4+T-cells and lowers the suppressive ability of regulatory T-cells [50], mediating RA pathogenesis
by inducing production of potent proangiogenic factors from macrophages and endothelial cells [51].
Furthermore, IL-7 induces bone loss by stimulating osteoclastogenesis that is dependent on RANKL [52].

e) Lymphotoxin α: IL-1β induces lymphotoxin α and enhances adhesiveness of T lymphocytes
to chondrocytes [53], and lymphotoxin α stimulates the proliferation of RA synovial fibroblasts,
and secretion of cytokines and metalloproteinases from synovial fibroblasts [54].

f) MCP-4: MCP-4 is significantly higher in cartilage from RA patients and enhances the proliferation
of synovial fibroblasts by activating the extracellular signal-regulated kinase mitogen-activated protein
kinase cascade, thereby leading to joint destruction in RA [55,56].

g) uPA: TNF increases chondrocyte expression of uPA [57], and uPA signaling facilitates synovial
fibroblasts invasion into adjacent tissues [58].

h) LIF: IL-1β induces LIF production from chondrocytes [59] and amplifies autocrine loop of IL-6
in synovial fibroblasts [60].

i) Serum amyloid A: Chondrocytes of RA serve as a source of intra-articular acute-phase serum
amyloid A protein that induces MMP production and TNF-α expression in synovial tissue [61,62],
promotes peripheral blood mononuclear cells recruitment, angiogenesis [63], and synovial cell
proliferation [64].

j) Galectin-3: Chondrocytes produce cartilage oligomeric matrix protein, and when synovial
fibroblasts adhere to cartilage oligomeric matrix protein, synovial fibroblasts produce increased
quantities of galectin-3, which augments synovial inflammation [65,66].

k) HIF-2α: HIF-2α is also upregulated in chondrocytes of RA [67] and when co-cultured
with HIF-2α-overexpressing chondrocytes, synovial fibroblasts show increased expression of matrix
degradation enzymes (MMP3, MMP9, MMP12, MMP13) and various inflammatory mediators [68] and
enhanced migration and invasion, while conditional knockout of HIF-2α in cartilage tissue inhibits
pannus formation in adjacent cartilage [69].

Taken together, this evidence highlights the crosstalk between chondrocytes and related cells
in the inflammatory condition of RA and show that chondrocytes are not only inflammatory victims
but also direct contributor to inflammation and matrix degradation in RA.

4. Molecular Mechanisms Underlying Chondrocytes Dysfunction in RA

Cellular dysfunctions including decreased chondrocyte proliferation, enhanced chondrocyte
apoptosis, and reduced ECM synthesis in RA have been known for a long time [21,70]. However,
the underlying mechanisms and associated molecules related to chondrocyte dysfunction is
not completely understood. During the last decades, substantial knowledge has accumulated
on the pathogenesis of chondrocyte dysfunction, implicating the involvement of multiple noncoding
RNA, signaling pathways, and cellular proteins in RA chondrocytes dysfunction (Figure 1).
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Figure 1. Mechanisms of chondrocytes dysfunction in rheumatoid arthritis. Noncoding RNA
and activation of necroptosis pathway, pyroptosis pathway, hedgehog signaling, mitogen-activated
protein kinase (MAPK) pathway, Janus kinase/Signal transducer and activator of transcription protein
(JAK/STAT) cascade, AP-1 pathway, c-Jun N-terminal kinase 2 (JNK-2) pathway, combined with
enhanced aquaporin-4 (AQP4) expression and CCAAT/enhancer binding protein β (C/EBPβ) contribute
to increased chondrocyte death, ECM degradation and inflammation.

a) Noncoding RNA: For example, long noncoding RNA HOTAIR increases chondrocyte proliferation,
decreases inflammatory cytokine from chondrocytes, and alleviates RA in the animal model [71],
while micro RNA-23a (miR-23a) inhibits IL-17-mediated proinflammatory mediator expression
via targeting IκB kinase α (IKKα) in articular chondrocytes [32]. Downregulated miR-26a is
found in articular chondrocytes of RA rats, and upregulation of miR-26a reduces swelling and
inflammation of joints, diminishes cartilage damage, apoptosis of chondrocytes, and inflammatory
injury [72]. Moreover, miR-26a promotes proliferation and counterbalances apoptosis of
inflammatory articular chondrocytes [72]. Expression level of miR-27b-3p is decreased in RA,
and overexpression of miR-27b-3p significantly reduces the expression of pro-apoptotic protein
caspase 3 and increases the expression of anti-apoptotic Bcl-2 in chondrocytes [73].

b) Necroptosis pathway: Activation of necroptosis pathway molecules (receptor interacting protein
(RIP) 1, RIP3 and mixed lineage kinase domain-like protein phosphorylation (p-MLKL)) are
detected in adjuvant arthritis (AA) rat articular cartilage and RIP1 inhibitor necrostatin-1 (Nec-1)
could reduce articular cartilage damage and necroinflammation in AA rats [74].

c) Pyroptosis pathway: Extracellular acidosis, which accompanies joint inflammation of RA,
significantly increases the expression of acid-sensing ion channel 1a (ASIC1a), IL-1β, IL-18,
apoptosis-associated speck-like protein (ASC), neuronal apoptosis inhibitor protein, class
2 transcription activator, of the major histocomplex, heterokaryon incompatibility and
telomerase-associated protein 1 (NACHT), leucine-rich repeat (LRR) and PYRIN domain
(PYD) domains-containing protein 3 (NLRP3) and caspase-1 and mediates chondrocyte
pyroptosis [75,76].

d) Hedgehog signaling: Expression of hedgehog signal pathway (Shh, Ptch1, Smo, Gli1) in articular
cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis,
and hedgehog signal inhibition promotes ECM production [77].

e) MAPK pathway: TNF-α activates mitogen-activated kinase (MEK)/ extracellular regulated kinase
(ERK) pathway and subsequent early growth response 1 (Egr1) DNA binding activity, which are
required for TNF-α regulated catabolic and anabolic gene expression of chondrocytes [78].
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Furthermore, acidosis also acts via ASIC1a, leading to intracellular Ca2+ elevation, ERK
phosphorylation, culminating in articular chondrocyte apoptosis [79]. MAPK pathway also
contributes to IL-1β-stimulated MMP-13 production in RA chondrocytes [80].

f) JAK/STAT cascade: IL-6 could enhance acid-induced articular chondrocyte apoptosis, which might
partially be involved in regulating the activation of ASIC1a-dependent JAK/STAT pathway [29].

g) AP-1 pathway: Stromal cell-derived factor (SDF)-1, significantly higher in RA, acts through
CXCR4 to activate ERK and the downstream transcription factors (c-Fos and c-Jun), resulting
in the activation of AP-1 on the MMP promoter and contributing to MMP secretion of
chondrocytes [81].

h) JNK-2 pathway: IL-1 signals via TRAF-6/TAK-1/MKK-4/JNK-2 axis to cause JNK-2-dependent
shedding of LRP-1 and subsequent ADAMTS-5-mediated aggrecanolysis [82].

Membrane protein: Overexpression of membrane protein aquaporin 4 (AQP4) in articular
chondrocytes exacerbates chondrocyte dysfunction of adjuvant-induced arthritis in rats [83].

i) Intracellular protein: C/EBPβ mediates expression of MMP-13 in human articular chondrocytes
in inflammatory arthritis [84].

In summary, these implicated noncoding RNAs, signaling pathways, and cellular proteins
participate in various aspects of disturbed chondrocyte homeostasis, which might provide new
therapeutic targets for chondrocyte dysfunction in RA.

5. Inhibitors of Chondrocyte Dysfunction in RA

The complexity of molecules involved in chondrocyte dysfunction of RA and advanced knowledge
about their roles on chondrocyte present abundant opportunities for therapeutic manipulation in RA.
Interestingly, current literature claimed several compounds exhibited the capability to modulate
above-mentioned dysregulated pathways in chondrocytes (Figure 2).

Resveratrol, which interfered with lymphotoxin α induced signaling pathways, abrogated
inflammatory pathway/degradative/apoptotic changes activated by lymphotoxin α in articular
chondrocytes [85], reduced articular damage in the animal model of RA and displayed clinical
efficacy [86,87]. Necrostatin-1, which are necroptosis pathway inhibitors, ameliorated articular
chondrocyte injury in the animal model [74]. Hyaluronan-inhibited MAPK pathway activation thus
suppressed fibronectin fragment-stimulated NO production and reduced IL-1β-stimulated MMP-13
in human RA chondrocytes [80,88,89]. Paclitaxel suppressed AP-1 activity and decreased IL-1-induced
MMP-1 and MMP-3 synthesis by chondrocytes [90]. Of these described compounds, resveratrol and
hyaluronate showed some clinical benefits in human RA [87,91,92]. Their potential as treatment
modality in human RA needs further investigation and validation in larger clinical studies.

Apart from pharmacological treatment of chondrocyte dysfunction in RA, tissue engineering
approaches for the repair of joint cartilage have been considered as another alternative choice. In tissue
engineering, mesenchymal stromal cells (MSCs) have been of special interest as cell candidates [93].
MSCs, originally isolated from the bone marrow, can also be isolated from various tissues and
organs, including cartilage, bone, synovial fluid, synovial membrane, muscle, adipose tissue, amniotic
fluid, placenta, and umbilical cord [94]. MSCs play a vital role in tissue repair, and possess high
chondrogenic potential [93]. In addition to improving regeneration, MSCs also exhibit various
desirable properties such as (a) reduce inflammatory cell infiltration and inflammatory cytokine release;
(b) activate regulatory feedback mechanisms [93], and (c) increase chondrocyte proliferation [95].
As such, MSCs are attractive targets for immunomodulation, particularly in the treatment of cartilage
injuries and diseases such as RA, since modulation of resident synovial MSCs could lead to control
of the inflammatory immune response and restore chondrocyte homeostasis in RA. However, these
possibilities in human RA need to be explored by future clinical trials.
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Figure 2. Inhibitors of chondrocytes dysfunction and corresponding targeting pathways. Resveratrol
interferes with lymphotoxin α signaling, necrostatin-1 inhibits necroptosis pathway, hyaluronan blocks
MAPK pathway, and paclitaxel suppresses AP-1 activity which contribute to chondrocyte dysfunction
in rheumatoid arthritis.

To sum up, there is various evidence regarding potential therapeutic targeting of chondrocytes in RA,
although some are obtained from in vitro studies and animal models. Whether chondrocyte-directed
therapies could be another step toward better treatment of RA needs further study.

6. Relationship Between Current Treatment of RA and Chondrocytes

Even though an inflammatory microenvironment in RA resulted in the molecular activation of
various pathological processes in human chondrocytes, as mentioned above, these alterations were
not irreversible. These inflammatory signatures could be partially reversed by current medication for
treatment of RA, such as glucocorticoid, methotrexate, sulfasalazine, leflunomide, hydroxychloroquine,
infliximab, etanercept, and tofacitinib [96]. For example, genome-wide expression analysis revealed
glucocorticoid and methotrexate normalized expression of catabolic and anabolic mediators stimulated
with supernatant of RA synovial fibroblasts in chondrocytes [97]. Hydroxychloroquine, methotrexate
and leflunomide restrained IL-1β-induced inducible NO synthase (iNOS) expression and NO
production in chondrocytes [98]. Infliximab and etanercept suppressed cytokine-induced expressions
of catabolic and inflammatory genes in chondrocytes [99]. Sulfasalazine and tofacitinib neutralized
the effects of IL-1β on the protein profiles of chondrocytes [100]. In human articular chondrocytes,
the active metabolite of leflunomide raised the production of IL-1 receptor antagonist [101], which
ameliorated joint destruction in experimental RA and clinically significantly slowed radiographic
progression of RA in human [102]. Overall, although current treatment modality of RA did not
target specifically on chondrocytes, they still displayed some favorable effects for RA chondrocytes
in the same time of controlling inflammatory responses. In spite of these beneficial characteristics,
whether currently approved pharmacological agents for RA can repair cartilage destruction has yet
to be demonstrated in longitudinal studies. Therefore, innovative and novel strategies aimed at
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both reducing inflammation and promoting chondrocyte regeneration are urgently needed to inhibit
the progression of RA.

7. Utility of Chondrocyte Products as Diagnostic and Prognostic Markers of RA

In the process of inflammation, ECM produced by chondrocytes underwent breakdown and
release, and thus was detectable in the peripheral circulation. The amount present in the circulation
reflected the extent of cartilage breakdown. Therefore, the presence of these chondrocyte products
in peripheral blood potentially served as markers of RA with their quantities proportional to the degree
of cartilage destruction in RA. The utility of several proteins as biomarkers have been investigated
in previous studies (Figure 3). Serum cartilage oligomeric matrix protein (COMP) has been found
to be a strong predictive biomarker for response to abatacept treatment in RA [103]. Furthermore,
serum COMP level correlated to disease activity of RA [104] and had superior sensitivity, specificity,
and accuracy for diagnosis of RA [105]. Serum collagen type I (TXI) was also associated with RA
disease activity [106]. Serum levels of C1M (a product of MMP-cleavage of type I collagen) and
C3M (MMP-9-mediated type III collagen degradation product) were able to discriminate between
the undifferentiated arthritis and RA diagnosis [107]. Moreover, serum C1M was significantly
correlated to disease activity and predicted radiographic progression of RA [108]. Serum C2M,
a MMP-generated neo-epitope of type II collagen, allowed discrimination between nonerosive and
erosive disease in RA [107]. RA chondrocytes expressed increased YKL-40, which was also called human
cartilage glycoprotein-39 (HCgp-39), correlated with disease activity [109,110], predicted radiologic
progression [111], and stimulated angiogenesis [112]. Melanoma inhibitory activity (MIA), produced
by chondrocytes, was associated with radiographic signs of joint destruction [113]. Temporal course of
ratio between type II collagen-related neoepitope (C2C) and type II procollagen carboxy-propeptide
(CPII) was also correlated to radiographic progression [114]. In addition, urinary type II collagen
(CTX-II) levels predicted long-term radiographic progression in patients with RA [115]. In general,
a multitude of chondrocyte products displayed the potential as biomarkers for diagnosis and prognosis
stratification in RA.
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Figure 3. Utility of chondrocyte products as diagnostic and prognostic markers. Cartilage oligomeric
matrix protein (COMP), collagen type I (TXI), C1M, C2M, C3M, YKL-40, MIA, C2C/CPII ratio, and type
II collagen (CTX-II) were reported to have diagnostic prognostic significance for disease activity,
treatment response, radiographic progression, and angiogenesis.
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8. Conclusions

Study on the importance of synovial fibroblasts, osteoclasts, and immune cells in RA pathogenesis
had substantial progress in the past decade. However, a multitude of evidence supports the notion
that chondrocytes are also actively involved in RA pathogenesis [56]. Current evidence suggests that
chondrocytes are not just consequences (egg) of RA pathogenesis, but are also causes (chicken) of
RA pathogenesis. Furthermore, reports also emphasize the importance of chondrocytes and cartilage
in RA. For example, cartilage damage rather than bone erosions appears to be more clearly associated
with irreversible physical disability in RA [116], and articular cartilage damage is the most significant
determinant of functional impairment in longstanding experimental arthritis [117]. Chondrocyte
transplantation reduces inflammation of RA [118]. These altogether highlight the therapeutic potential
of chondrocyte manipulation for management of RA. However, current treatment modality of RA
mainly targets immune cells rather than chondrocytes. With the advance of knowledge about
chondrocyte biology, it is hoped that a drug directing chondrocyte dysfunction could be developed
in the future and applied to RA treatment, a disease whereby patients sustain irreversible joint damage
despite clinical remission [119].
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