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1 |  INTRODUCTION

Various studies have shown that the carcinogenic effects of 
genes are mainly exerted by transcription and protein encod-
ing of genes.1-3 However, recent studies have shown that less 
than 2% of the human genome is coding genes, and over 90% 
of the genes are noncoding genes that play regulatory roles in 
most systems.4 Noncoding RNA (ncRNA) can regulate gene 
expression at different levels such as epigenetic modifica-
tion, transcription and posttranscription.5-7 NcRNAs can be 
divided into short ncRNAs, midsize ncRNAs and lncRNAs 
according to the length of their nucleotides.8 Their lengths 
are 50, 50‐200, and more than 200 nucleotides, respectively.9 

Long noncoding RNAs (lncRNAs) are longer than 200 nu-
cleotides, which participate in the development of tumors in 
many ways.10-12 LncRNAs can directly or indirectly interact 
with target genes at the transcriptional level.13 At the same 
time, they can regulate histone modification and chromatin 
remodeling,14,15 as well as affect other RNA generations.16 
Additionally, they can act as competitive endogenous RNAs 
(ceRNAs) or precursors to small RNA molecules.17,18

Small nucleolar RNA host genes (SNHGs) are host genes 
for snoRNAs. Primary RNA transcripts of host genes (includ-
ing all exons and introns with their snoRNAs) are spliced to 
many exons and introns. Exons can play roles in the cytoplasm, 
and the removed introns that contain snoRNAs are processed 
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further to mediated series of functions in the nucleolus (Figure 
1). SnoRNAs consist of 60‐300 nucleotides and are mainly 
located in the nucleolus. They can be directly related to the 
posttranscriptional modification of some spliceosomal RNAs 
and ribosomal RNAs, and play crucial roles in the procession 
of useful ribosomes. Host genes include coding genes and 
noncoding genes. Long non‐coding small nucleolar host genes 
are one of the classes of SNHGs. Most snoRNAs are located 
in the introns of their host genes.19 Some scientists proposed 
that they might be regulated by host genes through cotranscrip-
tion,19 but studies have also shown that the biological proper-
ties of host genes are independent of their snoRNA genes.20,21

In the human genome, there are 232 host genes, includ-
ing 15 non‐protein coding small nucleolar host genes,22 
while recent studies have revealed increasing lnc‐SNHG 
members in cancers. Previously, researchers recognized that 
non‐coding snoRNA host genes contained only short, con-
servative, open reading frames without any known functions. 
However, recent studies have overturned this assumption. 
Long non‐coding small nucleolar host genes are found to be 
involved in the development of various diseases, including 
cancer progression, cell apoptosis and survival.21 Scientists 
have investigated many lnc‐SNHGs in multiple cancers. For 
instance, Lan et al described that the inhibition of NUAK1 
by MIR‐145a‐5p could inhibit the AKT pathway and re-
duce nasopharyngeal tumor cell invasion. However, SNHG1 
impaired the capacity of MIR‐145a‐5p to increase NUAK1 
and promoted nasopharyngeal carcinoma distant metasta-
sis.23 Wang et al also discovered that SNHG1 could inhibit 
MIR‐302/372/373/520’s influence on TGFB1/SMAD3 and 
RAB11A/Wnt signaling pathway to promote pituitary tumor 
cell growth, migration and metastasis.24 Researches have also 
shown that most lnc‐SNHG members play vital roles in diges-
tive cancer progression. Li et al proposed that SNHG5 could 
upregulate CTNNB1, MYC and CCND1 expression to acti-
vate the Wnt signaling pathway and then induce Epithelial‐
mesenchymal transition (EMT) to promote liver cancer cell 
invasion.25 SNHG17 bound with EZH2 and inhibited the ex-
pression of CDKN2B and CDKN1C to promote gastric cancer 

cell cycle progression.26 However, since the biofunctions, 
molecular mechanisms and potential pathways of SNHGs in 
digestive cancers are complicated, and they have not yet been 
clearly defined. Thus, we try to review them here for a better 
clarification.

2 |  LNC‐SNHGS IN DIGESTIVE 
CANCERS

In 1997, Mark et al first reported the small nucleolar RNA 
host gene SNHG1 as the host gene of SNORD22. They de-
tected the location of SNHG1 in chromosome 11q13 and 
SNORD22 in the nucleolus. There was little protein cod-
ing ability for the host gene of SNORD22.27 Subsequently, 
SNHG3,28 GAS5,29 SNHG530 were reported in succession, 
and hundreds of the genes have been researched to date. 
The Lnc‐SNHG family includes many members, in which 
the most associated with digestive cancers are SNHG1, GAS 
(SNHG2), SNHG3, SNHG5, SNHG6, SNHG7, SNHG8, 
SNHG9, SNHG12, DANCR (SNHG13), SNHG14, SNHG15, 
SNHG16, SNHG17, SNHG18 and SNHG20. Multiple mo-
lecular regulatory mechanisms of each SNHG member are 
involved in different human cancers. Some SNHGs can act 
as sponges of microRNAs to inhibit the roles of microRNAs 
in tumorigenesis and affect tumor progression.23,31,32 On the 
other hand, they can also bind proteins to influence target 
genes or impact tumorigenesis via different signaling path-
ways, including the EMT, Wnt, PIK3CA, NF‐κB, and TP53 
signaling pathways.33-35 Moreover, the relationship with tran-
scriptional activation also participates in the progression.36 
The biological effects are mainly exerted through the above 
mechanisms. However, additional studies are needed to learn 
more about the regulation and control of SNHG members. 
Here, according to the reported results, we have constructed 
a table describing each SNHG member's alternative name, 
relative snoRNAs, chromosome location, subcellular loca-
tion, related pathways and associated digestive cancers types 
(Table 1).

F I G U R E  1  Primary RNA transcripts of host genes are spliced to many exons and introns. The removed introns that contain snoRNAs are 
processed further to mediated series of functions in the nucleolus
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3 |  BIOLOGICAL FUNCTIONS 
AND MECHANISMS OF SNHGS IN 
DIGESTIVE CANCERS

3.1 | SNHGs in colorectal cancer

Among the causes of death from malignant tumors, colon 
cancer ranks the fourth in China.37 Although surgical resec-
tion is radical, the recurrence rate is still high. Moreover, 
some patients lost the chances of surgery when they are diag-
nosed. It is increasingly important to study the treatment of 
related genes in colon cancer. Higher SNHG1 expression in-
dicated a poor prognosis in colon cancer. SNHG1 was deter-
mined to be an independent indicator for the poor prognosis 
of colorectal cancer.38,39 SNHG1 is located in both cytoplasm 
and nucleus. But different researchers have different conclu-
sions about whether SNHG1 mainly exists in the nucleus or 
cytoplasm. Bai J et al and Tian T et al showed that SNHG1 
was mainly located in the cytoplasm.40,41 SNHG1 could 
sponge MIR‐497/MIR‐195‐5p to influence EMT to facilitate 
cancer cell migration and invasion,40 and sponge MIR‐145 
to increase the expression of MIR‐145’s targets, to promote 
colorectal cancer cell proliferation.41 On the contrary, Xu et 
al confirmed the presence of SNHG1 mainly in the nucleus 
by performing in situ hybridization and nuclear slurry sepa-
ration experiments. In the nucleus, SNHG1 combined with 
protein EZH2 to decrease the epigenetic impact of KLF2 and 
CDKN2B.42 Additionally, downregulation of SNHG1 could 
promote apoptosis and reduce the size and weight of tumors 
in vivo.38 Yuan Shen et al33 also found that SNHG1 could 
undergo nuclear residency on activation of doxorubicin, and 
nuclear‐resident SNHG1 competitively binds HNRNPC to 
weaken the association between HNRNPC and TP53, and 
to increase TP53’s expression level, transcriptional activity 
and phosphorylation, leading to TP53‐dependent apoptosis 
of colon cancer cells.33 SNHG1 also accelerated colorectal 
cancer tumorigenesis by affecting MYC, CTNNB1, MMP9, 
and activated the Wnt signaling pathway.33

SNHG2, known as GAS5, is a tumor suppressor gene that 
has been thoroughly studied previously. Downregulation 
of GAS5 was significantly connected with high malignant 
level and lymphatic metastasis.43 Reduced GAS5 facilitated 
colon cancer cell migration, proliferation and invasion.44 
Downregulated GAS5 also promoted the cell cycle in the G0/
G1 stage and prevented apoptosis. Increased GAS5 was an 
independent marker of a longer overall survival and better 
prognosis.43,45Yuan et al found that co‐overexpressed GAS5 
and SNORD44 could significantly repress tumor growth and 
they could induce cancer cells apoptosis in both vivo and 
vitro.46 The overexpression of GAS5 could suppress colon 
cancer cells proliferation and promote apoptosis by inhibiting 
the expression of MIR‐182‐5p and MIR‐221, but upregulating 
FOXO3a.43,44

SNHG3 acted as an oncogene and accelerated cancer 
cell growth in tumorigenesis.47 In colorectal cancer, SNHG3 
could augment the expression of MYC and MYC’s target 
genes CCNB1, CCND2, CDK4 and E2F1. Combining the 
results of GSE54632 database and starBase2.1, Huang et al 
found that MIR‐182‐5p was the only gene that could target 
MYC and at the same time, be sponged by SNHG3. SNHG3 
obstructed MIR‐182‐5p's suppression on MYC to promote 
tumor growth.47

SNHG5 sponged MIR‐132‐3p and positively regulated 
CREB5 to inhibit colon cancer cell apoptosis but promoted 
cancer cell proliferation, migration and invasion.48 The up-
regulation of SNHG5 led to the increased mRNA expression 
of SPATS2, and SNHG5 played this role by decreasing the 
effect of the protein STAU1 on SPATS2 to promote colon 
cancer proliferation.49 Li and Li et al verified that the expres-
sion of SNHG6 in colon cancer tissues was higher than that in 
normal tissues.50,51 SNHG6 could induce EZH2 to bind with 
the promoter of CDKN1A and inhibit the CDKN1A function, 
leading to the growth of cancer cells.51 In the cytoplasm, 
SNHG6 sponged MIR760 and upregulated its target gene 
FOXC1 to promote colon cancer cell proliferation, migration 
and invasion.52 SNHG7 was located in the cell cytoplasm in 
colon cancer and was highly expressed in colon cancer tis-
sues.32 Although several mRNAs, including B3GLCT, FUT2, 
MFNG, MGAT4A, GALNT1, GALNT5, GALNT7, ST3GAL5, 
and ST6GALNAC2 were related, GALNT7 was the  most 
commonly associated with SNHG7. The overexpression of 
SNHG7 and GALNT1 could enhance cell proliferation and 
invasion. Additionally, GALNT1 was the direct target gene 
of MIR216B, and SNHG7 could act as a ceRNA to sponge 
MIR216B, and rescue GALNT1 to facilitate colon cancer cell 
invasion. Li Y et al further pointed out that the PIK3CA/
AKT/MTOR signaling pathway might play a crucial role 
in the mechanism induced by SNHG7.53 SNHG7 also could 
sponge MIR216B, to increase GALNT1 and activate EMT 
to promote colorectal cancer cell migration and invasion.32 
Wang et al put forward that SNHG12 augmented colon cancer 
proliferation, cell cycle progression and inhibited apoptosis 
by inhibiting the related proteins CDK4, CDK6 and CCND1, 
and suppressing CASP3.54 Shorter overall survival rate and 
disease‐free survival rate were correlated with higher DANCR 
expression. It was determined as an individual poor prognosis 
factor in colon cancer.55,56 DANCR could upregulate colon 
cancer cell proliferation and migration ability by sponging 
MIR577 and increase the expression of HSPB1.56 Huang et al 
and Zhang et al concluded that SNHG15 and SNHG16 were 
both highly expressed in colon cancer samples.57-59 SNHG15 
could only increase the protein level of SNAI2 but not the 
mRNA level through preventing SNAI2’s ubiquitin.58 Wnt 
signaling pathway and ceRNA mechanism might participate 
in the progression of SNHG16.59 SNHG17 could bind with 
EZH2 and regulate CDKN1C to promote cell proliferation.60 
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SNHG20 promoted cancer cell proliferation, migration and 
invasion, but the flow cytometry results showed that SNHG20 
was only related to cell cycle progression and had no relation-
ship with cell apoptosis.61

3.2 | SNHGs in gastric cancer
Gastric cancer is the third leading cause of death world-
wide.62,63 As described previously in colon cancer tissues, 
the patients also showed the short life time when the ex-
pression of SNHG1 was significantly high. Knocking down 
the expression of SNHG1 could reduce the tumor size and 
suppress cell proliferation and colony formation. Similarly, 
SNHG1 also sponged miRNA in the cytoplasm. SNHG1 in-
hibited the expression of MIR140 and upregulated the ex-
pression of ADAM10 to increase the ability of proliferation 
and invasion of gastric cancer cells.64 Additionally, SNHG1 
could also promote the proliferation of gastric cancer cells 
by upregulating the expression of DNMT1.65

GAS5, a tumor inhibitor gene, inhibits gastric cancer 
cell proliferation, blocks the cell cycle and promotes 
cell apoptosis.34,36,66 Li Y et al and Liu X et al showed 
that GAS5 sponged MIR222 and MIR23A in gastric 
cancer tumorigenesis.34,67 Li et al further studied that 
GAS5 could bind MIR222 and regulate the PTEN/AKT/
MTOR pathway to decrease gastric cancer prolifera-
tion.34 Another study verified that GAS5 combined with 
the 3'UTR of MIR23A and inhibited the effect of MT2A 
to impair gastric cancer progression.67 Additionally, 
the downregulation of GAS5 could only  obstruct 
the protein level of  transcriptional activator Y‐box 
binding protein 1 (YBX1), but not reduce its mRNA 
level.  Downregulated GAS5 interacted with YBX1 
to reduce the expression of CDKN1A and promote  the 
cell cycle.36 In accordance with GAS5, SNHG5 could 
also facilitate gastric cancer cell apoptosis.68 Moreover, 
it could  reduce cancer cell proliferation and migra-
tion.31 The subcellular location of SNHG5 was mainly 
in the cytoplasm.69 SNHG5 was found to be the target 
gene of L‐methionine‐α‐deamino‐γ‐mercaptomethane‐
lyase (METase). Increased METase promoted gastric 
cancer cell apoptosis by upregulating the expression 
of SNHG5. Upregulated SNHG5 reduced MIR20A and 
led to the overexpression of the apoptosis proteins 
BECN1, ATG5, ATG7 resulting in increased propor-
tion of LC3‐II/LC3‐I.68 Additionally, SNHG5 could 
sponge MIR32, and MIR32 could reduce the migration 
and proliferation effects of SNHG5 on gastric cancer 
cells. Conversely, when MIR32 inhibited its target gene 
KLF4, the overexpression of SNHG5 could partially 
prevent MIR32 function.31 Moreover, Zhao et al found 
that upregulation of SNHG5 could prevent MTA2 lo-
cating to the nucleus  from the cytoplasm, and inhibit 

gastric cancer cell migration and invasion.69 They also 
found that when SNHG5 was overexpressed, the protein 
levels of MMP2, MMP9 and EGFR were reduced, while 
CDH1 and CDKN1A were upregulated.69

In gastric cancer, SNHG6 was significantly highly 
expressed in gastric cancer tissues and in serum.70,71 
Yan K et al suggested that high expression of SNHG6 
was related to the tumor grade and lymph node metas-
tasis, which predicted a poor prognosis for patients.70 
Yan et al and Li et al both proposed that SNHG6 existed 
not only in the cytoplasm but also in the nucleus, and 
the proportion in the cytoplasm was nearly 67.5%‐80%. 
It participated in both transcriptional and posttranscrip-
tional regulation.70,71 In the cytoplasm, SNHG6 could 
suppress MIR‐101‐3p, upregulate ZEB1 and CDH2, and 
accelerate EMT progression.70 In the nucleus, SNHG6 
could recruit EZH2 to the promoter of CDKN1B to play 
the transcriptional regulatory role.70 In another study, 
downregulation of SNHG6 could augment the phos-
phorylation level of MAPK1, MAPK8 and MAPK14, 
while increasing the expression of TP53 and decreas-
ing the expression of EZH2. Reduced SNHG6 enhanced 
the expression of CDKN1A via the JNK signaling path-
way to participate in tumor growth.71 Down‐ regulated 
SNHG7 could arrest gastric cancer cell cycle progres-
sion in the G0‐G1 period probably because it aug-
mented the expression of CDKN2B and CDKN2A.72 
Yang et al and Zhang et al raised the idea that not only 
SNHG12 accelerated gastric cancer cell proliferation 
and invasion, but it also determined the adverse events 
prediction.73,74 SNHG12 could sponge MIR‐199a/b‐5p 
and MIR320 to promote tumorigenesis.73,74 DANCR and 
SNHG14 were also upregulated in gastric cancer and 
could promote cancer cell proliferation, invasion and 
migration.75-77 Mao et al described that DANCR could 
also regulate another lncRNA. They found DANCR in-
hibited the expression of NPTN‐IT1 by binding with 
EZH2 and HDAC3.76 SNHG14 suppressed the inhibi-
tion of MIR‐145 on SOX9, and activated the PIK3CA/
AKT/MTOR signaling pathway to accelerate cell pro-
liferation and invasion.77 SNHG15 was expressed at a 
higher level in cancer tissues, with expression increased 
by over 1.5‐fold compared to the normal tissues. It pro-
moted cell invasion and migration by increasing MMP2 
and MMP9.78 SNHG17 bound with EZH2 and inhib-
ited the expression of CDKN2B and CDKN1C to pro-
mote gastric cancer cell cycle progression in the G0/
G1 phase.26 Liu et al further proposed that SNHG20 
could facilitate gastric cancer cell proliferation and 
invasion.35 Another study showed SNHG20 was lo-
cated in the cytoplasm, and SNHG20 interacted with 
MIR‐495‐3p to upregulate ZFX, and promoted gastric 
tumor growth and invasion.79
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3.3 | SNHGs in liver cancer
The morbidity and mortality of liver cancer are still high in 
the world.80,81 α‐fetoprotein (AFP) was a crucial factor in 
predicting the occurrence and recurrence; however, Gao et al 
found that the high expression of SNHG1 in the blood plasm 
was superior to AFP to distinguish liver cancer from the con-
trol group, and the combination of SNHG1 and AFP could 
further improve the ability of distinguishing hepatic cancer.82 
Gao et al pointed out that upregulated SNHG1 was associated 
with advanced tumor, TNM stage and AFP level, but did not 
correlate with age and smoking status.82 SNHG1 promoted 
liver cancer cell cycle and inhibited apoptosis by suppressing 
the expression of TP53’s target genes, including BAX, FAS, 
and CDKNIA.83 Li et al further found that SNHG1 reduced 
TP53 by binding the protein DNMT1, and the overexpression 
of TP53 could partially impair the effect of SNHG1 on can-
cer tumorigenesis.84 Other scientists researched the impact of 
SNHG1 on sorafenib resistance.85 Overexpression of SNHG1 
could significantly enhance the sorafenib resistance of liver 
cancer.85 Moreover, SNHG1 sponged MIR195 to promote 
cancer cell proliferation and metastasis.86

On the contrary, reduced expression of GAS5 was associ-
ated with poor differentiation, advanced TNM stage, tumor 
size, lymph node metastasis and acted an independent poor 
prognosis marker for liver cancer.87,88 GAS5 could downreg-
ulate MIR21 to prevent cancer cell migration and invasion.89 
Chang et al indicated that GAS5 repressed cell proliferation 
by means of reducing VIM, increasing CDH1 and influenc-
ing EMT pathway.90

The overexpression of SNHG3 predicted high rates of 
larger tumor size, portal vein tumor thrombus, sorafenib re-
sistance and relapse.91,92 It directly combined with MIR128 
to upregulate the expression CD151, and activated EMT to 
promote cell invasion.91 Li found that the overexpression of 
SNHG5 inhibited the suppressive influence of MIR‐26a‐5p on 
GSK3B to promote liver cancer tumorigenesis. Additionally, 
when SNHG5 increased GSK3B expression, CTNNB1, 
MYC, and CCND1 were upregulated to activate the Wnt sig-
naling pathway and then induced EMT to promote cancer cell 
invasion.25 Cui et al analyzed several datasets from TCGA 
and GEO database. They found two significantly differen-
tially expressed lncRNAs, named PVT1 and SNHG7. Cell 
biofunction experiments verified that SNHG7 could increase 
cell invasion ability,93 which implied that SNHG7 acted as an 
oncogene to promote tumorigenesis. Dong et al regarded that 
SNHG8 promoted liver cancer tumorigenesis and pulmonary 
metastasis via sponging MIR149.94 SNHG12 was the host 
gene of four small nucleolar RNAs—SNORA44, SNORA61, 
SNORA16A and SNORD99. SNHG12 was expressed at a sig-
nificantly higher level in cancerous tissues than in  normal 
tissues. But the change of the expression of SNHG12 did 
not cause expression fluctuation in the four small nucleolar 

RNAs.95 SNHG12 located mainly in the cytoplasm. Its high 
expression was related to tumor size, TNM stage, vascular 
invasion, and relapse and predicted a poor prognosis but was 
not involved in the AFP level, portal vein tumor thrombosis, 
tumor differentiation, gender and age. SNHG12 promoted 
liver cancer cell proliferation and invasion, and resulted in 
a marked reduction in apoptosis.95 SNHG12 also sponged 
MIR‐199a/b‐5p, which directly targeted the key markers of 
the NF‐κB signaling pathway.95 Similar to SNHG1, the high 
expression level of DANCR might be a more advanced marker 
than AFP to identify hepatic cancer no matter in the sensitiv-
ity or specificity. DANCR might promote cancer cell prolifer-
ation and invasion by inhibiting protein CTNNB1.96 On the 
contrary, Xu et al showed that SNHG16 acted as an antionco-
gene in hepatocellular carcinoma. SNHG16 was expressed at 
a lower level in the cancerous tissue than normal tissue, and 
SNHG16 could alleviate 5‐FU resistance.97 Liu J et al showed 
that SNHG20 played an oncogenic role in liver cancer, and 
promoted the EMT pathway in cancer progression.98

3.4 | SNHGs in esophageal cancer
Esophageal cancer is a common digestive system tumor99 
with the number of cases increasing annually; more than 
300,000 people die from this cancer each year.100 In 2016, 
the numbers of new cases and fatal cases of esophageal 
cancer in the United States were approximately 16 910 and 
15  910, respectively,101 indicating the increased  morbidity 
and mortality of esophageal cancer. The discovery of long 
noncoding RNAs provides further clinical idea for the diag-
nosis and treatment of esophageal cancer. SNHG1 was sig-
nificantly upregulated in esophageal cancer tissues. It also 
promoted the proliferation, cloning, and invasion of esopha-
geal cancer cells.6,102 SNHG1 could activate the NOTCH and 
EMT pathway to augment cancer cell invasion and growth, 
while SNHG1 sponged MIR338 to increase the expression 
of CST3 and to downregulate CASP8/3.6,102 Regarding 
GAS5, in contrast to other digestive cancers types, Li W et 
al showed that GAS5 no longer acted as a tumor suppres-
sor gene but acted as an oncogene in esophageal cancer. It 
could sponge MIR301A to affect Wnt and NF‐kB signaling 
pathways to promote cancer cell proliferation, migration and 
invasion but reduced cell apoptosis.103 However, Ke et al in-
sisted that GAS5 was an anticancer gene in esophageal tumor. 
Overexpression of GAS5 significantly impeded tumorigen-
esis via EMT.104 Huang et al verified the influences of GAS5 
on proliferation, invasion and migration, which was consist-
ent with Ke K’s opinions.105 SNHG6 and SNHG7 were both 
expressed higher in esophageal cancer tissues than normal 
tissues, and promoted cancer cell proliferation and metasta-
sis.106-108 Xu et al suggested that CDKN2B and CDKN2A 
were partially connected to SNHG7 in the proliferation and 
metastasis progression.106 Additionally, reduced SNHG16 
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resulted in the downregulation of key markers of the Wnt 
signaling pathway, such as MYC, CTNNB1, and CCND1.109 
Furthermore, SNHG16 showed a positive correlation with 
ZEB1 to promote esophageal cancer tumorigenesis by spong-
ing MIR‐140‐5p.110

3.5 | SNHGs in pancreatic cancer
The incidence of pancreatic cancer ranks the eleventh world-
wide. The incidence and mortality of pancreatic cancer in 
developed countries are higher than those in developing 
countries. In 2012, approximately 338 000 people had pan-
creatic cancer, and the number of deaths exceeded 331 000. 
Li et al found that SNHG1 not only promoted pancreatic 
cancer tumorigenesis, but also was differently expressed in 
gemcitabine‐resistant and gemcitabine‐sensitive pancreatic 
cells, which suggested that SNHG1 could play an important 
role in tumor therapy. The phosphatidylinositol 3‐kinase‐
AKT signaling pathway might affect this drug resistance.111 
Cui et al suggested that SNHG1 could upregulate the key 
markers of the NOTCH signaling pathway to affect pan-
creatic cancer proliferation and invasion.112 Additionally, 
SNHG1 also played a crucial role in pancreatic ductal ad-
enocarcinoma. The PIK3CA/AKT signaling pathway was 
activated when SNHG1 was overexpressed.39 Gao et al put 
forward that GAS5 reduced the drug resistance of cancer cells 
through  regulating MIR‐181c‐5p and Hippo pathway.113 
Moreover, GAS5 could downregulate MIR‐32‐5p and in-
crease the PTEN protein level.114 SNHG9 was expressed at 
a lower level in cancer tissues and serum than in normal tis-
sues, and there were negative correlations with cancer stage, 
lymph node metastasis, disease prognosis. SNHG9 played 
an antioncogenic role and decreased pancreatic cancer cell 
proliferation.115 SNHG15 was mainly located in the nucleus; 
high expression of SNHG15 predicted a poor differentiation 
of pancreatic cancer. In the nucleus, SNHG15 could bind 
with EZH2 to the promoter of CDKN2B and KLF2 to inhibit 
their expression.116,117

3.6 | SNHGs in other digestive cancer types
Cholangiocellular carcinoma is a type of tumor with high 
invasive character.118 The survival time of most patients is 
only 2 years after the diagnosis.119 Yang et al120 researched 
The Cancer Genome Atlas CCA, RNA Sequencing data 
and Gene Expression Omnibus GSE76297 and concluded 
that SNHG1 was expressed at a higher level in cholan-
giocarcinoma tissues than in normal tissues. Upregulated 
SNHG1 could promote cholangiocarcinoma cell prolifera-
tion, migration, and cell cycle but reduce apoptosis,121,122 
and the interaction between SNHG1 and EZH2 could 
target CDKN1A to promote the biological behavior of 
cholangiocarcinoma.120

4 |  SMALL NUCLEOLAR HOST 
GENES AND SNORNAS

SnoRNAs could be regulated by their host genes, copy num-
ber variation, and DNA methylation.19 Some scientists pointed 
out that the host genes may affect the expression of snoRNAs 
by cotranscription19; however, other scholars reported that the 
functions of some SNHG members were independent of their 
snoRNAs.21 Moreover, recent studies have shown that some 
snoRNAs are also related to cancer tumorigenesis.21 Scholars 
have reported that some snoRNAs can produce smaller prod-
ucts during nucleolytic processing, and these products, like 
microRNAs, can play important roles in tumor progression.123 
Some researchers call these products as sno‐miRNAs.124 Long 
noncoding RNAs can sponge microRNAs in the cytoplasm, but 
it is still unclear whether there is a potential pathway by which 
lnc‐SNHGs and snoRNAs jointly regulate microRNAs, which 
is worthy of further exploration.

5 |  CONCLUSION

It has been shown that the irregular expression status of 
SNHGs is significantly related to digestive tumors stage, me-
tastasis, infiltration, and poor prognosis in cancers. SNHGs 
also act as prognostic factors in most malignant tumors. 
Many studies have implied that SNHG members regulate the 
development of tumor diseases by the means of  mediating 
its sponge miRNAs, activating different signaling pathways, 
and regulating the expression of key markers. However, these 
studies are just preliminary discussions; further mechanistic 
studies on SNHG members and snoRNAs will be required in 
the future.
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