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Abstract

Movement of organisms plays a fundamental role in the evolution and diversity of life. Ani-

mals typically move at an irregular pace over time and space, alternating among movement

states. Understanding movement decisions and developing mechanistic models of animal

distribution dynamics can thus be contingent to adequate discrimination of behavioral

phases. Existing methods to disentangle movement states typically require a follow-up anal-

ysis to identify state-dependent drivers of animal movement, which overlooks statistical

uncertainty that comes with the state delineation process. Here, we developed population-

level, multi-state step selection functions (HMM-SSF) that can identify simultaneously the

different behavioral bouts and the specific underlying behavior-habitat relationship. Using

simulated data and relocation data from mule deer (Odocoileus hemionus), plains bison

(Bison bison bison) and plains zebra (Equus quagga), we illustrated the HMM-SSF robust-

ness, versatility, and predictive ability for animals involved in distinct behavioral processes:

foraging, migrating and avoiding a nearby predator. Individuals displayed different habitat

selection pattern during the encamped and the travelling phase. Some landscape attributes

switched from being selected to avoided, depending on the movement phase. We further

showed that HMM-SSF can detect multi-modes of movement triggered by predators, with

prey switching to the travelling phase when predators are in close vicinity. HMM-SSFs thus

can be used to gain a mechanistic understanding of how animals use their environment in

relation to the complex interplay between their needs to move, their knowledge of the envi-

ronment and navigation capacity, their motion capacity and the external factors related to

landscape heterogeneity.

Introduction

Movement decisions of animals are driven by a complex interplay between their need to move

(e.g., food, shelter), the knowledge of the environment and navigation capacity (e.g., move

towards a known-rich area), the motion capacity (e.g., distance travelled per time unit) and the
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external factors related to landscape heterogeneity (e.g., movement barriers, corridors) [1, 2].

Using a relevant spatio-temporal scale, different phases of movement can be extracted from

trajectories of geolocalised individuals, each reflecting a behavioral state that can influence the

outcome of this complex interplay [3, 4]. For example, when foragers encounter a resource

patch, movement can become tortuous and slow, reflecting an area-restricted search [5],

whereas movement among resource patches are fast and relatively straight, depicting the cross-

ing of unsuitable foraging conditions [6]. These two movement modes have been called

“encamped” and “exploratory” or “travelling” [7, 8]. Therefore, multi-state analysis applied to

animal trajectories can be used to infer foraging phases through time, and provide information

on the spatio-temporal scale over which this foraging process occurs [3, 9].

Foraging and exploratory movements are not the only behaviors that can be identified from

multi-state analysis applied to individual trajectories. For example, Cagnacci, Focardi [10]

used characteristics of animal trajectories from five deer species to identify migratory and

non-migratory individuals together with the timing of migration, distance travelled and time

spent in the summer range. Such information is useful to understand space use strategies

allowing animals to exploit their temporally variable and spatially heterogeneous environ-

ments [11]. Since our understanding of the movement process might be biased when biologi-

cally relevant behaviors are omitted [12], the inclusion of more detailed and realistic behaviors

into movement models is also important to better understand how animals perceive and react

to their environment. For example, African wild dogs (Lycaon pictus) selected roads during

their travelling modes but avoided them during resting periods [7]. This behavior-specific

response to roads was, however, not detected when behavioral states were not considered in

the selection analysis [7].

Various mathematical and statistical tools have been used to identify behavioral bouts from

movement data, such as mixtures of random walks [6, 13], first passage time [3], semivariance

function [14], hidden Markov model [4], state-space model [15], k-means clustering coupled

with gap statistic [16], and acceleration tri-axial coupled with machine learning [17]. A criticism

of several of these approaches (e.g., first passage time, behavioral change point analysis, 3, 11) is

their lack of inclusion of spatial information, such as habitat attributes, to identify behavioral

bouts, an omission that limits our understanding of behavioral states in a biological meaningful

way [18, 19]. Mixtures of random walks or state space models can include landscape features to

assess how habitat attributes influence switching rates [13], and attract or repulse animal

depending on the movement mode [20, 21]. However, the implementation and computational

challenges required with such models often limit the number of parameters that could be esti-

mated [8, 19, 22]. Besides, such mechanistic models must assume an underlying movement pro-

cess [e.g., biased or correlated random walk, 15, 21], which can induce a discrepancy between

real and inferred animal movement behavior in case of misspecification [18, 22].

An alternative way to assess the behavior-specific response to habitat attributes consists of

performing habitat selection analysis as a second step [23, 24]. Such a 2-step analysis approach

first identified encamped and exploratory modes of movement in elephants (Loxodonta Afri-
cana) using a multi-state random walk movement model, followed by resource selection func-

tions applied to each state, to illustrate behavior-dependent habitat selection by elephants [25].

Although this approach was a first step towards a better mechanistic understanding of the

selection process, behavioral states were identified using only the characteristics of the move-

ment path (i.e., movement rate and turning angle) but no habitat covariates [7, 23, 25], thereby

risking incorrect inferences. Indeed, movement modes were assumed to be accurately known

when proceeding to the resource selection analysis whereas in fact, they were estimated from a

multi-state random walk movement model such that movement modes were uncertain. This

uncertainty was, however, not considered in the resource selection functions such that the
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error associated with the selection coefficient estimates might have been underestimated when

proceeding in a 2-step analysis.

Here we develop population-level models that account for both animal movement and local

habitat selection in a multi-state setting. The approach combines step selection functions [26]

and hidden Markov models to generate multi-state SSF (HMM-SSF) yielding state-specific

movement-habitat relationships [27]. A substantial weakness of the current HMM-SSF method-

ology is that it provides guideline only to model the movements a single individual, which

decreases its value for ecological research by preventing robust inference at the population level.

Here we show how to combine the HMM-SSF from several individuals to infer habitat selection

at the population level. Further, we demonstrate how to fit trajectories of individuals based on

irregular time intervals while including missing data, and how to test the predictive capacity of

the model using k-fold cross validation calculated for each behavioral state. We then illustrate

the versatility of HMM-SSF’s applicability to multiple ecological systems using simulated and

empirical movement datasets. We simulate three ecological scenarios from state-specific step

selection functions and three ecological scenarios from multi-state biased correlated random

walks to assess the ability and robustness of the HMM-SSF at detecting different movement

modes and state-specific habitat selection under different assumptions. We also compare state-

specific habitat selection estimates from the HMM-SSF and the 2-step approach. We then apply

the HMM-SSF to empirical trajectories to: 1) identify the onset of mule deer (Odocoileus hemio-
nus) migration together with habitat selection during the different phases of the migratory

behavior; 2) evaluate behavior-habitat relationships during movement modes of two forager

species (plains bison, Bison bison bison and zebra, Equus quagga); 3) assess the circumstances

over which a forager (plains bison) flees from a predator (wolf, Canis lupus) by identifying envi-

ronmental factors influencing transitions from encamped to travelling mode of movement.

Materials and methods

HMM-SSF overview

We suppose that we obtained T steps from T+1 geolocations collected every hour from one

individual. We define Zt = (xt, xt+1; yt, yt+1), t � {1,. . .,T}, the observed step at time t. In a single-

state step selection function analysis (SSF), a set of J random stepsare drawn for each observed

step Zt. Characteristics of the landscape and the movement path (i.e., turning angle and step

length), thereafter called covariates, can be compared between observed and random steps in a

discrete choice model framework [26], allowing to mechanistically assess how animal uses its

habitat while moving. We define Xjt, the vector with the value of q covariates for the j-th

(observed or random) step at time t, j = 0, . . ., J, with index j = 0 denoting the observed step.

In HMM-SSF, we consider that an individual can be in K different movement modes (i.e.,

behavioral phases or states) varying through time, each exhibiting a single-state step selection

behavior. Let St be the unobserved movement mode at step t. We assume that St is a K-state hid-

den Markov chain with transition probability matrix π. The (i, j)-th element of π is γij = P(St+1 =

j|St = i), i, j ε {1,. . .,K}2. The state-specific conditional likelihood of the observations is given by

P ZtjSt ¼ kð Þ ¼
expðXT

0tβ
kÞ

PJ
j¼0

expðXT
jtβ

kÞ
; ð1Þ

where βk, k � {1,. . .,K}, is the vector of q selection coefficients of the SSF when the animal is in

mode k. We use PðSt ¼ kjF 0

t� 1
Þ to denote the conditional probability to be in state k at step t

given the observed data history up to step t � 1;F 0

t� 1
. The interpretation of model parameter βk

are similar to the ones of a single-state SSF, except that they are now state-specific [26, 27].
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The model parameter γij indicates the constant probability of switching from movement

mode i to movement mode j between step t and step t+1. If γij is close to 1 and the animal is in

movement mode i at one step, it then has high odds to switch to movement mode j the next

step. If PðSt ¼ kjF 0

t� 1
Þ is close to 1, the animal is likely moving in mode k at step t, whereas if

PðSt ¼ kjF 0

t� 1
Þ is close to 0, the animal is likely moving in a different mode at step t.

Dealing with irregular time intervals and missing data

We now suppose that we obtained geolocations of one individual every three hours two days a

week, and every hour five days a week. As model parameters are defined and interpretable for a

particular time interval, we cannot adjust the model using the dataset including both the 3-hour

observations and the 1-hour observations. A solution would be to resample the 1-hour observa-

tions to every three hours to obtain at the end only one-time interval. However, this approach cre-

ates a loss in accuracy of the individual’s trajectory and missing data could still remain after the

resampling. Another solution would be to only keep the 1-hour observations. In such case, groups

of data at 1-hour intervals are each separated from the next one by a gap of two days. Conse-

quently, calculation of PðSt ¼ kjF 0

t� 1
Þ is more complex. To approximate the general likelihood of

Eq 2.3 in [27] in this condition, we first calculated the likelihood of each group of successive steps,

then we multiplied the likelihoods of all groups. We thereby implicitly treated the groups of suc-

cessive steps as independent. Selection coefficient estimates will not be impacted by a violation of

this assumption, although estimates of variance of selection coefficients can be underestimated.

An evaluation of the predictive performance of the HMM-SSF (see section Evaluation of model

predictive capability) should thus be performed to assess the validity of the inferences.

Population level estimates

We now fit the HMM-SSF separately to N trajectories from N independent individuals. We

thus obtain N vectors bβn ¼ ð
cβ1
n;
cβ2
n; . . . ;cβK

n Þ; n � f1; . . . ;Ng each comprised of p =Kq selection

coefficients estimates, i.e., q for each of the K modes of movement, and N associated variance-

covariance matrices cVn ; n � f1; . . . ;Ng of size p�p. We then define cβall ¼ ð
bβ1

T; . . . ;cβN
TÞ

T
, the

vector of selection coefficients estimates from N individuals and dVall the corresponding block

diagonal matrix comprised of the N individual-level variance-covariance matrices,

dVall ¼

cV1 � � � 0

..

. . .
. ..

.

0 � � � cVN

2

6
6
6
4

3

7
7
7
5

ð2Þ

We also compute the following matrix:

Q ¼

1 . . . 0

..

. . .
. ..

.

0 � � � 1

..

.

1 . . . 0

..

. . .
. ..

.

0 � � � 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼ Ip
O

1N ; ð3Þ

the Kronecker product of the identity matrix of size p�p, Ip, and a vector of 1 of length N, 1N.
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Population level coefficients estimates, dβPop , can be estimated from a weighted average of

individual coefficients, using the inverse of the variance as weights [28], viz.

dβPop ¼ ðQ
TdVall

� 1QÞ� 1QTdVall
� 1cβall ð4Þ

and associated variance-covariance matrix, dVPop , is estimated using:

dVPop ¼ ðQ
TdVall

� 1QÞ� 1: ð5Þ

Using this approach implicitly takes into account the within-animal correlation to estimate

population level coefficients estimates [28].

Evaluation of model predictive capability

Following [29], we suggest to evaluate the predictive capability of the HMM-SSF using k-fold

cross validation. First, one HMM-SSF can be fitted to each individual’s trajectory, thereby leading

to a set of state-specific selection coefficient estimates, bβk
n ; k � f1; . . . ;Kg, for each individual n �

{1,. . .,N}. The conditional probability to be in state k, k � {1,. . .,K}, at step t, t � {1,. . .,T}, given the

observed data (i.e., PðSt ¼ kjF 0

t� 1
ÞÞ can be used to predict the movement mode at each step t of

the individual’s trajectory. Because PðSt ¼ kjF 0

t� 1
Þ ranges between 0 and 1, a threshold needs to

be set to define the mode at each step. The movement mode assigned at each step was the one

with the highest probability (i.e., the most probable) given the observed data. For example, in case

of two states, if PðSt ¼ 1jF 0

t� 1
Þ � 0:5, the individual is assumed to be in state 1 at step t and,

in state 2 otherwise. Then, one can randomly sample 80% of individuals and use their state-spe-

cific selection coefficient estimates to compute state-specific population level estimates,

dβk
Pop; k �f1; . . . ;Kg, using Eq 4. Then, dβk

Pop; k �f1; . . . ;Kg can be used to predict state-specific

selection probabilities (i.e., P(Zt|St = k), see Eq 1) along the 20% of non-sampled individual trajec-

tories, for both observed and random steps. By doing so, we evaluate the performance of

βk
Pop; k �f1; . . . ;Kg to predict selection probabilities knowing the state. Finally, state-specific

Spearman rank correlation (rs) for observed and random steps can be used to assess model predic-

tive capability. To do so, we first split up the steps of the 20% non-sampled individual’s trajectory

according to their predicted movement mode. Then for each step, we ranked observed and ran-

dom steps according to their selection probability. For example, if one observed step is coupled

with 20 random steps in a stratum, the observed step can thus obtain a rank between 1 and 21. Its

rank will be equal to one if its selection probability is the highest among the 21, whereas it will be

equal to 21 if its selection probability is the lowest. At last, Spearman rank correlation (rs) is per-

formed between the possible ranks [e.g., 1–21] and its associated frequency, separately for

observed and one randomly sampled random steps. Spearman rank correlation ranges between

-1 and 1 such that if it equals to 1, it means that the ranks of the steps are all equal to 1 (i.e., step

selection probabilities are always the highest), whereas if it equals to -1, it means that the ranks of

the steps are all equal to 21 (i.e., step selection probabilities are always the lowest). Finally, if the

Spearman rank correlation is equal to 0, it means that the ranks of the steps range uniformly

between 1 and 21 (i.e., step selection probabilities vary uniformly between 0 and 1). A good pre-

dictive capability of the HMM-SSF would thus lead to Spearman rank correlation for observed

steps close to 1, meaning that predicted step selection probabilities of observed steps are generally

higher than predicted step selection probabilities of random steps. The Spearman rank correlation

score for the one randomly sampled random steps should, on the other hand, be 0 or negative as

it would reflect that predicted selection probabilities of random steps are generally lower than
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predicted selection probabilities of observed steps. The calculation of Spearman rank correlation

can be repeated 100 times using each time a new 80%-20% sample of individuals, to calculate

means and ranges of rs for each movement mode and random or observed group.

Simulation studies

Simulations based on state-specific step selection functions. We simulated animal

movement in three ecological scenarios to illustrate the ability of the HMM-SSF to identify

and correctly predict behavioral modes and habitat selection process in different ecological set-

tings. Simulated individuals moved in a virtual landscape and behaved either as: 1. foragers

moving among resource patches, 2. foragers moving among resource patches while being

attracted to a distant target (thereafter called migrants), and 3. foragers moving among

resource patches and escaping a predator. Agents moved 300 (scenario 2) or 500 (scenarios 1

and 3) steps in a heterogeneous landscape and according to a state-specific step selection func-

tion. Two movement modes were defined: an encamped mode (k = 1) corresponding to forag-

ing movement (or intra-patch) and a travelling mode (or inter-patch, k = 2). In scenario 3, one

predator was also moving in the landscape according to a single-state SSF.

We randomly dispatched 500 resource patches of 25 ha over a 700 km2 surface (see the R

code provided on Open Science framework https://osf.io/v5pnc/). We set patch quality by

drawing an integer value between 1 and 10 independently for each patch. Quality outside

resource patch was set to 0. A target was placed at the center top of the map for the migration

scenario. The target could, for example, reflect the centroid of a previously visited calving area

that individuals tend to aim at while migrating (i.e., site fidelity).

Movement mode of the forager was set at each step according to individual’s location:

encamped if it was in a resource patch, travelling otherwise. In scenario 3 (i.e., presence of a

predator), the same rule applied except that if the predator was near the forager (i.e.,� 500 m),

the movement mode of the forager was set to travelling, independently of the cover type. By

assigning transition rules based on environmental covariates or predator proximity, we vio-

lated the HMM-SSF assumption that the transitions in movement modes are governed by a

Markov chain. Indeed, the HMM-SSF estimates movement modes and habitat selection

behavior associated with these modes assuming that the transitions are governed by a Markov

chain, i.e., by constant transition probabilities [27]. However, it is not representational of tran-

sition rules observed in nature since transition probabilities can depend on covariates varying

in space and through time [30]. We thus simulated individuals moving according to a two-

state step selection functions for which transition rules were, more realistically, based on envi-

ronmental covariates. We did so to assess how robust the HMM-SSF can be to correctly iden-

tify movement modes and correctly infer the underlying selection processes while not

accounting for the spatio-temporal variability in transition probabilities.

For each simulation, an individual’s starting point was randomly drawn either on the whole

map (scenarios 1 and 3), or in the southern portion of the map (scenario 2). Then, 20 random

locations were drawn within a disk of 2 km radius, centered on the individual’s current posi-

tion. Landscape attribute (i.e., patch quality at random location) and step characteristics (i.e,

step length and step direction) were extracted for each of the 20 available steps. The direction

toward target from the individual’s current location was also calculated for the migration sce-

nario. Then, a state-specific probability of being selected was assigned to each available step i �
{1,. . .20} using,

Pk
i ¼

expðAk
i Þ

P20

i¼1
expðAk

i Þ
; ð6Þ
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where

Ak
i ¼ b

k
DP � cosðDDPÞ þ b

k
SL � SLi þ b

k
log:ðSLÞ � logðSLiÞ þ b

k
Q � Qi þ b

k
T � cosðDTÞ; ð7Þ

where k = 1 if the state of the agent was encamped or k = 2, if the state of the agent was travelling,

ΔDP is the directional persistence (turning angle), SLi is the length of step i, Qi is the patch quality

at the end of step i and ΔT is the difference between the angles of the direction of the target and

the direction of step i. Vectors of values for the scenario- and state-specific selection coefficients,

βk,scenario, k � {1, 2}, scenario � {forager, migrant, forager with predator} were set as follows (same

order as in Eq 7): β1,forager = [0.0; −3.0; −0.5; 1.0; NA]; β2,forager = [1.0; −0.3; −0.05; 0.0; NA];

β1,migrant = [0.0; −3.0; −0.5; 1.0; 0.0]; β2,migrant = [1.0; −0.3; −0.05; 0.0; 1.0]; β1,forager with predator=

[0.0; −3.0; −0.5; 1.0; NA]; β2,forager with predator= [1.0; −0.3; −0.05; 0.0; NA].

In scenario 3, two walkers were simulated: a forager following the same movement rules as

presented above, and a predator tracking its prey resource. The predator had the same move-

ment rules as its prey, except that only one movement mode was modelled using the following

selection coefficients: βDP = 1; βSL = −0.3; βlog (SL) = −0.05; βQ = 0.1. All simulations were imple-

mented using R software (R code of the simulations is provided on Open Science framework

https://osf.io/v5pnc/).

For each scenario, 500 repetitions were produced to estimate population level state-specific

selection coefficients using 1) the HMM-SFF and 2) a 2-step approach. Specifically, the 2-step

approach consisted of identifying the movement mode for each step using a multi-state corre-

lated random walk and applying a single-state step selection function for each movement

mode. We then contrasted 1) population level state-specific selection coefficients from the two

approaches to the true parameters, 2) predicted states from the two approaches to the true

states and 3) model predictive performance using k-fold cross validation.

For each repetition, we first drew 20 random locations for each step along the individual’s

trajectory, within a buffer of 2 km around observed locations. Then, we extracted the same

covariates as in Eq 7 for both observed and random steps and used them to fit an HMM-SSF

to each individual’s trajectory. For each scenario, we calculated population level state-specific

selection coefficients and their standard errors using Eqs 4 and 5. We used a receiver-operating

characteristic (ROC) curve to compare true and predicted states. For the travelling state for

example, each step obtained both the value of 1 if the true state was travelling or 0 otherwise,

and the predicted conditional probability to be in travelling state from the HMM-SSF, which

were then contrasted in the ROC curve. Finally, we used the same scheme as presented in sec-

tion Evaluation of model predictive capability to perform the k-fold cross validation.

For each scenario, we fitted a 2-state correlated random walk (HMM-CRW) to the 500 indi-

vidual trajectories. A 2-state correlated random walk assumes that individual trajectories are a

combination of two correlated random walks, each having state-specific parameters for turn-

ing angle and step length distributions [6]. Each correlated random walk implies correlation in

movement directionality, which can be positive (e.g., when moving straight) or negative (e.g.,

moving back and forth). Movement modes were modelled using a 2-state hidden Markov

chain and transition probabilities between movement modes depended on environmental

covariates [31]. We chose the commonly used gamma and von Mises distributions for step

length and turning angle, respectively. We let the transition probabilities depend on patch

quality for the forager and migrant scenarios, and on both patch quality and the natural loga-

rithm of wolf distance for the forager with predator scenario. We implemented the

HMM-CRW using the moveHMM package in R software [30]. We used, a posteriori, the state-
Probs function of moveHMM to decode the probability of being in each movement mode at
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each step of the individual trajectories [30]. We used a ROC curve to compare true and pre-

dicted states from the HMM-CRW.

For the second part of the analysis, we first dichotomized the probabilities of being in trav-

elling and encamped mode to 0–1 using a 0.50 threshold and assigned each step to the

encamped or travelling group according to their dichotomized value. Then, we performed a

single-state SSF to each movement mode. We drew 20 random locations for each step of each

group along individual’s trajectory, within a buffer of 99th percentile of state-specific step

length distribution around observed locations (between 0.670 km and 0.750 km for the

encamped state, 2.0 km for the travelling state). Then, we extracted the same covariates as in

Eq 7 for both observed and random steps and used them to fit the single-state SSFs. We used

robust estimates of the variance of selection coefficients to calculate their 95% confidence

intervals [500 independent clusters, each being composed of the data of one individual, 32].

Finally, we performed k-fold cross validation developed for single-state SSF [31], for each

movement mode.

Simulations based on multi-state biased correlated random walk. We evaluated

whether the HMM-SSF successfully identifies movement modes and state-specific habitat

selection when simulation assumptions are different from the underlying assumptions of the

HMM-SFF. To do so, we used the simulation framework developed by [33] to simulate corre-

lated biased random walkers in heterogeneous landscapes. Their model simulates an animal

grazing across stationary resources that deplete and regenerate, and is based on three pro-

cesses: consumption and regeneration of resources, a walker’s resource memory, and state-

specific biased correlated movement process.

The instantaneous rate of change in habitat quality is modelled as:

dQ
dt

z; tð Þ ¼ R z; tð Þ � C z; tð Þð ÞQ z; tð Þ; ð8Þ

where Q(z, t) represents the habitat quality at location z and time t, R and C are the regenera-

tion and consumption functions, respectively. More precisely,

R z; tð Þ ¼ bR 1 �
Qðz; tÞ
Qðz; 0Þ

� �

ð9Þ

with βR being the regeneration rate, and

Cðz; tÞ ¼ bCfcðjz � ZjÞ; ð10Þ

with βC being the consumption rate, fc an isotropic spatial kernel with bivariate normal distri-

bution (N2ð0; g2
CIÞ) and Z the animal’s position. Consumption is maximal at the animal’s posi-

tion, i.e., when z = Z, but also occurs more or less widely in the vicinity of the animal

depending on the value of g2
C.

The memory map (M(z, t)) of the animal works as a combination of a long-term (L(z, t),
attractive effect) and a short-term (S(z, t), repulsive effect) memory. Specifically, the instanta-

neous rate of change in the long-term memory is modelled as:

dL
dt
¼ bLfL jz � Zjð Þ Q0 � Lð Þ � �LL; ð11Þ

where βL is the learning rate of the long-term memory, fL an isotropic spatial kernel with bivar-

iate normal distribution (N2ð0; g2
LIÞ) and ϕL is the decaying rate of the long-term memory. The
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instantaneous rate of change in the short-term memory is similarly modelled as:

dS
dt
¼ bsfS jz � Zjð Þ Q0 � Sð Þ � �SS; ð12Þ

where βS is the learning rate of the short-term memory, fS an isotropic spatial kernel with

bivariate normal distribution (N2ð0; g2
SIÞ) and ϕS is the decaying rate of the short-term mem-

ory. Finally, the attractive effect of the long-term memory and the repulsive effect of the short-

term memory are integrated in the memory map using,

M ¼ L � cMS: ð13Þ

M can thus vary between negative (i.e., repulsive effect) and positive (i.e., attractive effect)

values. ψM is used to makes S decaying faster than L such that a just-visited location will have a

M negative value.

The movement process of the animal is determined according to one of the two behavioral

states it can be in: either feeding (i.e., encamped) or searching (i.e., travelling). The individual

switches from feeding mode to searching mode when its instantaneous rate of consumption

drops below the average consumption rate, and inversely. In the encamped mode, the individ-

ual moves according to a continuous correlated random walk. In the travelling mode, the indi-

vidual moves according to a continuous biased correlated random walk, for which the bias is

determined from the memory map weighted by a spatial kernel of distance with exponential

distribution (Exp(γz)), such that the animal searches for known productive patches that are

also close [see 33]. The autocorrelation in movement direction (τ) is stronger in the searching

mode than in the feeding mode (τF>τS), and the individual also moves faster when searching

than feeding (vF>vS).

We generated three landscapes of 50×50 cells with different levels of patchiness using a

gaussian random field (S1 Fig). We used an exponential covariance function with variance = 1,

nugget = 0 and a set of patch concentration (μQ) and patch size (γQ) to obtain three level of

patchiness: low (μQ = -1.5, γQ = 2), intermediate (μQ = -0.5, γQ = 2) and high (μQ = 1, γQ = 10)

(S1 Fig). Following [33], negative values were truncated to 0 and landscapes were normalized

to sum to one. The RandomFields R package was used to produce the landscapes [34]. Each

landscape was associated to one scenario and 500 repetitions were produced for each scenario.

Model parameters for each scenario were initialized based on [33] and are reported in S1

Table. The continuous time model was implemented in Java, with time discretized with small

regular intervals Δt approximating dt. Simulation duration was fixed to 500 time steps.

For each repetition, we first drew 20 random locations for each step along the individual’s

trajectory, within a buffer of 99th percentile of scenario-specific step length distribution around

observed locations. Then, for both observed and random steps, we extracted the following

covariates: the cosine of step turning angle, the step length, the natural logarithm of step

length, the patch quality at the end of the step and for the high and intermediate patchiness

scenarios the distance to closest habitat patch. We then used those covariates to fit an

HMM-SSF to each individual’s trajectory. We used the distance to habitat patch because indi-

viduals could feed even though they were outside of resource patch due to the continuous con-

sumption process implemented with the spatial kernel fc (Eq 10). For each scenario, we

calculated population level state-specific selection coefficients and their standard error using

Eqs 4 and 5. We used a ROC curve to compare true and predicted states. Finally, we used the

same scheme as presented in section Evaluation of model predictive capability to perform

the k-fold cross validation. As true parameter values for the state-specific step selection func-

tions were unknown, we could not compare the estimates to the true values.
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Case studies

Ethical statement. The investigation was carried out in compliance with the institutional

ethical standards and norms in force. Permits for bison and wolf research came from the Ethi-

cal Committee Comité de protection des animaux de l’Université Laval (#2017001–1) and the

research permit came from Parks Canada Agency (PA- 2016–21697). Mule deer permit was

provided by the Wyoming Game and Fish Department. The zebra research was authorized by

the Zimbabwe Parks and Wildlife Management (permit numbers: REF:DM/Gen/(T) 23(1)(c)

(ii): 03/2009, 01/2010, 25/2010, 05/2011, 06/2011, 12/2012, 15/2012, 08/2013).

Identifying the onset of migration and habitat selection during the different phases of

the migratory behavior. We used GPS locations of 15 mule deer relocated every three hours

from 2011 to 2012 in Medicine Bow National Forest (MBNF, Wyoming-Colorado, USA, Fig

1). In total, 13,444 relocations were used in the analysis. The study area is located in a semi-

arid mountainous region, mainly covered with shrub (47%), coniferous or deciduous forest

(32%) and herbaceous grassland or wetlands (18%). In winter, deer range in valleys around

MBNF then migrate during spring (between April and June) to spend summer at higher eleva-

tion of MBNF (Fig 1), then return back to lower elevation during fall (between October and

December).

We used landscape attributes known to influence mule deer movements during spring

migration. Plant productivity and biomass in MBNF was depicted with the Integrated Normal-

ized Difference Vegetation Index (INDVI), calculated using NDVI time series from 2012

MOD09Q1 data product [35]. Canopy cover (%) was obtained from the 2011 National Land

Cover Database (30 m resolution), aspect (ranging from -1 as southerly to 1 as northerly

aspects), and slope degree were derived from the US Geological Survey National Elevation

Dataset [35]. To evaluate whether deer oriented their 2012 migration movement toward sum-

mer area visited in 2011, we identified the centroids of their GPS locations while they were on

their summer range in 2011. To do so, we plotted the net squared displacement (NSD) of each

individual over time, and manually identified the end of spring migration and the start of fall

Fig 1. Trajectories of 42 plains bison geolocalised every hour between 2005 and 2016, during summer season in

Prince Albert National Park (SK, Canada), 15 mule deer geolocalised every 3 hours during 2012 spring migration

in and around Medicine Bow National Forest (WY-CO, USA) and 17 zebras geolocalised every half hour between

2012 and 2014, during dry hot season in Hwange National Park (Zimbabwe). The conditional probability of being

in travelling mode of movement at each step, estimated from the HMM-SSF, is represented using a blue (low) to red

(high) gradient.

https://doi.org/10.1371/journal.pone.0272538.g001
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migration [see Appendix S3 of 36]. We used geolocations within this time interval to calculate

2011 summer range centroid for each individual. On average, 585 geolocations (range: 181–

1165) were observed within 2011 summer range.

Mule deer data included 2012 geolocations that were collected from one week prior spring

migration to one week after the end of spring migration. We then built individual trajectories

using successive GPS-locations at three hours intervals. We drew 20 random locations for each

observed step, within a buffer around the location at the start of the step. The buffer’s radius

(i.e., 3.8 km) was determined using the 99th percentile of the step length distribution obtained

from the trajectories of all individuals combined. The radius was thus the same for all behav-

ioral phases since we did not know a priori the distance travelled in each movement mode. By

doing this, we might overestimate landscape attributes available to the individuals in the

encamped mode, since they travel smaller distances in this movement mode. For each

observed and random step, we then extracted, at locations at the end of the step: the aspect, the

slope degree, the INDVI and the % of canopy cover. We also calculated the directional bias

toward the 2011 deer summer range and computed step length and turning angle for both

observed and random steps.

We used the conditional probability of being in travelling mode at each step, estimated

from the HMM-SSF, to identify the start date of migration for each individual. Specifically, we

first dichotomized the probability to 0–1 using a 0.50 threshold. Then, we identified the date of

the first step in travelling mode. We then compared those dates to the date obtained from the

NSD. By doing this, we did not evaluate whether the HMM-SSF can identify migration onset

from an entire year but instead, whether it can assist in the determination of a more accurate

start date from a coarse estimation.

Evaluating behavior-habitat relationship during movement modes of foragers. We

used GPS relocations of 42 plains bison from 2005 to 2016 in Prince Albert National Park (Sas-

katchewan, Canada), and data from 18 zebras collected from 2012 to 2014 in Hwange National

Park (Zimbabwe) (Fig 1). Bison were relocated every hour, whereas zebras were relocated

every half hour. We based our analysis on 94,686 and 72,730 relocations for bison and zebras,

respectively.

Bison occupy a relatively flat area composed of deciduous and conifer stands (85%), mead-

ows (10%) and water bodies (5%). Zebras in Hwange National Park occupy an area dominated

by bushlands (>60%), with small patches of grasslands and larger patches of woodlands. Dur-

ing the dry hot season (August through October), zebra strongly rely on waterholes artificially

supplied with pumped groundwater.

For both bison and zebra, we included landscape attributes important for their foraging

behavior. Specifically, we used a supervised classification of a SPOT-5 multispectral image

(August 2008, 10 m resolution) to delimit meadows, forest, water bodies and roads in Prince

Albert National Park [37]. Bushlands, grasslands and woodlands were delimited in Hwange

National Park using an unsupervised classification of Landsat-7 ETM+ satellite images

(August 2002, November 2002 and April 2003, 30 m resolution, [38]. Finally, we also consid-

ered the location of 67 artificial waterholes that are distributed within zebra range [39].

Bison and zebra data encompassed geolocations that were collected from May to August

(summer season) and from August to October (dry hot season), respectively. We then pro-

ceeded similarly as for the mule deer system: we drew 20 random locations for each observed

step, within a buffer around the location at the start of the step. The buffer’s radius (i.e., 1.6 km

for bison and 1.3 km for zebra) was determined using the 99th percentile of the step length dis-

tribution obtained from the trajectories of all individuals combined. For each observed and

random step, we then extracted the system-specific covariates, at locations at the end of the

step: for bison, four binary variables indicating whether the location fell within a meadow, a
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forest patch, a water body or a road; and for zebras, a categorical variable indicating whether

the location fell within a bushland, a grassland or a woodland, and the Euclidean distance to

the closest artificial waterhole. Finally, we also computed step length and turning angle, for

both observed and random steps.

We first ran one HMM-SSF on each individual of every dataset. We considered that an

individual could have two modes of movement, representing encamped (k = 1) and travelling

(k = 2) modes. We included the different system-specific landscape covariates presented above

to fit the individual HMM-SSF. Euclidean distance to waterhole was log-transformed and the

bias towards previously visited summer range was included using the cosine of the difference

between the direction toward the centroid of 2011 summer range and step direction. In addi-

tion, we include the cosine of step turning angle, together with step length (in km) and log

(step length) to characterize movements in both modes [27]. Specifically, we used

1þbk
log:step length

� bk
step length

; k � 1; 2f g; to calculate average travelled distance in each movement mode when

b
k
step length < 0 and b

k
log:step length > � 1 as this yields a gamma distribution for distance (see S1

Appendix). However, when b
k
step length > 0 or b

k
log:step length < � 1, this is not the density of a

gamma distribution anymore such that we used Metropolis algorithm to simulate 20,000 dis-

tances from the density corresponding to b
k
step length and b

k
log:step length, and averaged the last 10,000

to obtain average travelled distance (see S1 Appendix).

For each population, we calculated state-specific coefficient estimates using the individual

HMM-SSF estimates and Eq 4. Finally, we assessed each model’s predictive capability using k-

fold cross validation as presented in section Evaluation of model predictive capability. Statis-

tical analyses were conducted using R software [40]. The datasets, together with R code for fit-

ting individual models, estimating population level parameters, conducting k-fold cross-

validation, and using the Metropolis algorithm are provided on Open Science framework

(https://osf.io/v5pnc/).

Assessing the circumstances over which a forager flees a predator. We assessed how the

movements of a forager can be influenced by the presence of a predator by studying the envi-

ronmental factors influencing the transitions from encamped to travelling mode of

movement.

We used the conditional probabilities of being in encamped or travelling mode at each

step given the observed data (i.e., PðSt ¼ kjF 0

t� 1
Þ; k � f1; 2g; t � f1; . . . ;Tg; [27]. Let Pthres-

hold be such that when PðSt ¼ 1jF 0

t� 1
Þ > Pthreshold, the movement mode at step t is

encamped. We assumed that there has been a transition from encamped to travelling mode of

movement when PðSt ¼ 1jF 0

t� 1
Þ > Pthreshold and PðStþ1 ¼ 1jF 0

t Þ � 1 � Pthreshold. We

assumed that the animal remained encamped when PðSt ¼ 1jF 0

t� 1
Þ > Pthreshold and

PðStþ1 ¼ 1jF 0

t Þ > Pthreshold. We performed the analysis using several Pthreshold values (i.e.,

0.5; 0.6; 0.7; 0.8). Note, however, that more and more data are discarded from the analysis with

increasing values of Pthreshold.

For both transition and non-transition, we used the location at the end of step t, which also

corresponds to the location at the start of step t+1, to extract environmental factors that could

influence transitions. We first performed the analysis using simulated data (i.e., scenario 3);

that is for each location associated to a transition or a non-transition, we extracted patch qual-

ity and the Euclidean distance between the forager location and the predator location at the

same time. Given the movement rules imposed to agents, the analysis should indicate that sim-

ulated foragers switch from encamped to travelling mode when patch quality is null or the

predator is close (i.e.,� 500 m).
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We then performed the analysis using the bison dataset: we assessed how wolves influenced

bison movement in Prince Albert National Park, by using two indices of wolf space use com-

puted from the GPS relocations of 17 adult wolves from 5 packs between 2007 and 2016. More

specifically, we first used Brownian bridge movement kernels (UD) to calculate a relative long-

term intensity of space use each year (for more detailed description of kernel computation [for

more detailed description of kernel computation, see 41]. We restricted locations of bison to

95% of core territories of wolf packs and extracted kernel value for each retained location, serv-

ing as a proxy for the spatial pattern in relative risk of wolf encounter. Secondly, we used the

Euclidean distance between a given collared bison and the nearest wolf every time a bison was

relocated. To account for the potential effect of other environmental factors on bison move-

ment, we also extracted the following information: we divided each day into three time periods

(i.e., dawn and dusk: 03:00–06:59 and 16:00–21:59; day: 07:00–15:59; night: 22:00–02:59, see

S4 Fig), and used it as an explanatory factor (3 levels) since bison movement can change

through daytime [29]. Finally, we included a binary variable indicating whether the location

fell within a resource patch for bison (i.e., a meadow).

We compared environmental factors related to transition (Y = 1) and non-transition

(Y = 0) using a generalized linear mixed-effects model with binomial distribution. We

included a random intercept for each individual’s ID to control for the non-independence and

the unbalanced design in the number of observations per individual. Model covariates

included period of day, meadow, wolf kernel, distance to nearest wolf (in km) and the interac-

tion between wolf kernel and wolf distance. Because wolf presence should have an effect on

bison movement solely when they are in close vicinity, we used a truncated index of wolf dis-

tance (dwolf) calculated as follows,

~dwolf ¼
dwolf ; if dwolf � dthreshold

dthreshold; otherwise
ð14Þ

(

and used ~dwolf as model covariate instead. We ran 50 models for which we varied dthreshold from

0.1 km to 5 km, and identified the optimal dthreshold by investigating the log-likelihood profile.

Statistical analyses were conducted using the lmerTest package in R software [40].

We also estimated state-specific selection coefficients for the bison population using a

2-step approach similarly to the one presented in section Simulation studies > Simulations

based on state-specific step selection functions > Statistical analysis. Specifically, we fit a

2-state correlated random walk to all bison trajectories with Gamma and von Mises distribu-

tions for step length and turning angle, respectively. We let the transition probabilities depend

on the following covariates (presented in section Potential environmental factors influencing

transition from encamped to travelling mode): the period of day, the binary variable

meadow, the wolf kernel, the natural logarithm of distance to nearest wolf and the interaction

between wolf kernel and the natural logarithm of wolf distance. The natural logarithm trans-

formation should mimic the truncated index of wolf distance (Eq 14). Then, we performed a

single-state SSF to each movement mode. We drew 20 random locations for each step of each

group along each individual’s trajectory, within a buffer of 99th percentile of state-specific step

length distribution around observed locations (0.14 km and 2.0 km for the encamped and trav-

elling state, respectively). Then, we extracted the same covariates as for the bison HMM-SSF

and used them to fit the single-state SSFs. We used robust estimates of the variance of selection

coefficients to identify the significant covariates (42 independent clusters each composed of

the data of one individual, 32). Finally, we performed k-fold cross validation for both single-

state SSFs [29].
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Results

Comparison of the HMM-SSF and the 2-step approach performance using

simulations

Both approaches successfully identified true movement modes from the simulated individual tra-

jectories as the area under the ROC curve were all higher than 0.97 for the HMM-SSF and the

HMM-CRW, in all three scenarios (AUCForager
HMM� SSF ¼ 0:98; AUCMigrant

HMM� SSF ¼ 0:97; AUCHMM� SSF For
ager with pred: ¼ 0:98; AUCForager

2� step ¼ 0:98; AUCMigrant
2� step ¼ 0:98; AUCForager with pred:

2� step ¼ 0:98). The

simulation analysis also showed that both the HMM-SSF and the 2-step approach performed rela-

tively well at predicting habitat selection along the trajectory of simulated individuals (Table 1).

Indeed, k-fold cross-validation indicated that models yielded accurate predictions of habitat selec-

tion for each movement mode, in the sense that selection probabilities estimated from either the

HMM-SSF or the 2-step approach for the observed steps were higher than selection probabilities

estimated for random steps, in all three scenarios (Table 1). However, estimation of population

level state-specific selection coefficients for the travelling phase varied between the HMM-SSF and

the 2-step approach, in all three scenarios (Fig 2). While the HMM-SSF provided rather similar

selection coefficient estimates for the encamped phase than the 2-step approach, the HMM-SSF

outperformed the 2-step approach for the estimation of some model parameters in the travelling

state. Indeed, selection coefficient estimates of step length, its natural logarithm and patch quality

for the travelling phase were closer to the true parameters from the HMM-SSF than from the

2-step approach (Fig 2).

HMM-SSF performance under multi-state biased correlated random walk

simulations

Despite simulations from the multi-state biased correlated random walks differ from

HMM-SSF assumptions, the HMM-SSF still successfully identified true movement

modes from the simulated individual trajectories as the area under the ROC curve were all

higher than 0.75, in all three scenarios of landscape patchiness (AUCLow patchiness
HMM� SSF = 0.75;

AUCInterm: patchiness
HMM� SSF ¼ 0:79; AUCHigh patchiness

HMM� SSF ¼ 0:78). k-fold cross-validation also indicated that

models yielded accurate predictions of habitat selection for each movement mode, in the sense

Table 1. Assessment of the HMM-SSF predictive capability in comparison to a 2-step approach from simulations based on state-specific step selection functions, to

predict habitat selection along encamped and travelling movement in three ecological scenarios, using k-fold cross validation. Means, minimums and maximums

([min; max]) of 100 Spearman rank correlation are reported for each movement mode and both observed and random steps.

Scenario Encamped Travelling

Forager Observed HMM-SSF 0.99[0.96; 1.0] 0.99[0.99; 1.0]

2-step 0.98[0.97 ; 1.0] 0.99[0.99 ; 1.0]

Random HMM-SSF -0.59[-0.91; -0.26] -0.63 [-0.84; -0.18]

2-step 0.01[-0.59 ; 0.57] 0.01[-0.52 ; 0.63]

Migrant Observed HMM-SSF 0.97[0.91; 1.0] 0.99[0.99; 1.0]

2-step 0.98[0.96 ; 0.99] 0.99[0.99 ; 1.0]

Random HMM-SSF -0.58[-0.80; -0.30] -0.65[-0.93; -0.32]

2-step -0.05[-0.63 ; 0.54] -0.03[-0.56 ; 0.55]

Forager with predator Observed HMM-SSF 0.99[0.97; 1.0] 0.99[0.99; 1.0]

2-step 0.98[0.97 ; 0.99] 0.99[0.99 ; 1.0]

Random HMM-SSF -0.62[-0.84; -0.17] -0.65[-0.86; -0.23]

2-step -0.01[-0.57 ; 0.58] 0.04[-0.55 ; 0.66]

https://doi.org/10.1371/journal.pone.0272538.t001

PLOS ONE Multi-mode movement decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0272538 August 11, 2022 14 / 28

https://doi.org/10.1371/journal.pone.0272538.t001
https://doi.org/10.1371/journal.pone.0272538


that selection probabilities estimated from either the HMM-SSF were higher than selection

probabilities estimated for random steps, in all three scenarios (Table 2). Finally, the

HMM-SSF identified different selection behaviors that were in accordance with the state-spe-

cific movement rules used to simulate individual trajectories, in all three scenarios. Indeed,

individuals selected patches of high quality in the travelling state (i.e., when searching),

whereas they were closer to resource patches in the encamped state (i.e., when feeding), for

both the intermediate and high levels of patchiness (Table 2). For the low level of patchiness,

the landscape was composed of one large resource patch covering almost the whole map (S1

Fig), such that simulated individuals remained most of the time in this resource patch. Still,

individuals selected locations of high resource quality within that patch, but the selection was

even stronger in the travelling state than in the encamped state, according to the HMM-SSF

(Table 2).

Fig 2. Difference between population level state-specific selection coefficients and their true parameters used to

simulate individual’s trajectory, from state-specific step selection functions, in three ecological scenarios.

Estimation from the HMM-SSF are represented in blue and estimation from the 2-step approach in red. 95%

confidence interval of the difference is also shown with error bars. For each scenario, 500 trajectories were simulated

from state-specific rules of movement and used to estimate population level state-specific selection coefficients.

DP = directional persistence (cosine), SL = step length, log(SL) = natural logarithm of step length, Q = patch quality

and T = target (see Eq 7).

https://doi.org/10.1371/journal.pone.0272538.g002
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Overall, the HMM-SSF shows robustness to the misspecification of the underlying pro-

cesses that generates movement modes and transitions such that it can be used to make valid

inferences on the underlying selection processes associated to movement modes from different

ecological behaviors. Besides, the HMM-SSF provides more reliable population level state-spe-

cific selection coefficients than a commonly applied 2-step approach (Fig 2).

Case studies

The HMM-SSF estimated different selection coefficients for the two distinct movement

modes, encamped and travelling, in all three ecological systems (Table 3). K-fold cross-valida-

tion indicated that models yielded accurate predictions of habitat selection for each movement

mode, in the sense that selection probabilities estimated from the HMM-SSF for the observed

steps were higher than selection probabilities estimated for random steps, in all three scenarios

(Table 3).

Table 2. State-specific selection coefficient estimates along with their standard-error (SE) and associated P-value (P) of the HMM-SSF used to predict simulated

animal movements according to encamped or travelling mode, in landscapes with varying levels of patchiness. For each scenario, 500 trajectories were simulated

from multi-state correlated random walk and used to estimate population level state-specific selection coefficients. Means (�rs ), minimums and maximums ([min; max]) of

100 Spearman rank correlation are reported for each movement mode and both observed and random steps. Average travelled distances were calculated using step length

and log-transformed step length coefficient estimates (see S1 Appendix).

Scenario Encamped Travelling

Low patchiness Selection coefficient Estimate SE P Estimate SE P

cos(Dir.pers) 0.91 0.01 < .01 3.52 0.02 < .01

Step length -5.59 0.03 < .01 -1.22 0.01 < .01

log(Step length) 3.49 0.02 < .01 1.99 0.02 < .01

Patch quality (x100) 5.24 0.32 < .01 23.19 0.29 < .01

k-fold ( �rs ) [min-max]

Observed 0.98 [0.96; 0.99] 0.83 [0.75; 0.91]

Random -0.65 [-0.90; -0.30] -0.68 [-0.90; -0.38]

Average travelled speed (in cells/step) 0.80 2.45

Intermediate patchiness Selection coefficient Estimate SE P Estimate SE P

cos(Dir.pers) 0.91 0.01 < .01 3.42 0.02 < .01

Step length -5.35 0.03 < .01 -0.89 0.01 < .01

log(Step length) 2.42 0.02 < .01 1.53 0.02 < .01

Patch quality (x100) -0.16 0.03 < .01 1.29 0.04 < .01

Distance to closest resource patch -0.80 0.02 < .01 -0.47 0.01 < .01

k-fold ( �rs ) [min-max]

Observed 0.98 [0.93; 1.0] 0.85 [0.80; 0.94]

Random -0.62 [-0.90; -0.25] -0.69 [-0.92; -0.39]

Average travelled speed (in cells/step) 0.64 2.84

High patchiness Selection coefficient Estimate SE P Estimate SE P

cos(Dir.pers) 0.91 0.01 < .01 3.74 0.02 < .01

Step length -5.55 0.03 < .01 -0.93 0.01 < .01

log(Step length) 2.50 0.02 < .01 1.69 0.02 < .01

Patch quality (x100) -0.17 0.01 < .01 0.44 0.02 < .01

Distance to closest resource patch -0.69 0.01 < .01 -0.48 0.01 < .01

k-fold ( �rs ) [min-max]

Observed 0.99 [0.97; 1.0] 0.89 [0.83; 0.93]

Random -0.63 [-0.93; -0.25] -0.67 [-0.94; -0.39]

Average travelled speed (in cells/step) 0.63 2.89

https://doi.org/10.1371/journal.pone.0272538.t002
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Table 3. State-specific selection coefficient estimates along with their standard-error (SE) and associated P-value (P) of the HMM-SSF used to predict animal move-

ments according to encamped or travelling mode, in three ecological systems. A. Habitat selection during the different phases of the migratory behavior, B. and C. Hab-

itat selection during the different phases of the foraging behavior. Estimates of model parameters from a 2-step approach are also shown for the bison dataset (B). Analysis

were performed using 13,444, 94,686 (50592 for the 2-step approach) and 72,730 geolocations from 15 mule deer, 42 plains bison and 18 zebras over 2 (2011–2012), 11

(2005–2016) and 3 (2012–2014) years of monitoring, respectively. The predictive capabilities of the HMM-SSF and the 2-step approach (B) were assessed using k-fold vali-

dation repeated 100 times, means and ranges of Spearman rank correlation (�rs ) are reported for each behavioral mode of movement and both observed and random steps.

Average travelled distances were calculated using step length and log-transformed step length coefficient estimates (see S1 Appendix).

A. Migratory behavior in mule deer

State Encamped Travelling

Selection coefficient Estimate SE P Estimate SE P

cos(Dir.pers) 0.18 0.04 < .01 0.61 0.10 < .01

Step length -2.85 0.11 < .01 0.50 0.08 < .01

log(Step length) -0.10 0.03 < .01 -1.03 0.06 < .01

Directional bias towards previously
visited summer area (cos)

0.19 0.05 < .01 1.19 0.11 < .01

Aspect -0.12 0.05 0.01 -0.02 0.09 0.83

INDVI -0.001 0.004 0.83 0.01 0.01 0.02

Slope degree 0.02 0.004 < .01 0.04 0.01 < .01

Treecover -0.003 0.002 0.12 -0.01 0.004 0.08

k-fold ( �rs ) [min-max]

Observed 0.91 [0.83; 0.97] 0.86 [0.67; 0.95]

Random -0.31 [-0.72; 0.15] -0.15 [-0.56; 0.43]

Average travelled speed (in km/h) 0.11 0.35

Proportion of time spent in each state 0.83 0.17

Mean and range of duration of each

state (in hour)

63.0 [3.0; 777] 14.5 [3.0; 102]

B. Foraging behavior in plains bison

State Encamped Travelling

Selection coefficients Estimate SE P Estimate SE P

HMM-SSF 2-step HMM-SSF 2-step HMM-SSF 2-step HMM-SSF 2-step HMM-SSF 2-step HMM-SSF 2-step

cos(Dir.pers) 0.05 -0.44 0.01 0.01 < .01 < .01 1.21 0.82 0.02 0.02 < .01 < .01

Step length -3.68 -25.11 0.05 1.16 < .01 < .01 -0.40 -2.64 0.05 0.07 < .01 < .01

log(Step length) -0.55 -0.20 0.01 0.03 < .01 < .01 -0.27 0.22 0.02 0.02 < .01 < .01

Water body -2.23 -1.45 0.11 0.26 < .01 < .01 -2.03 -2.58 0.18 0.10 < .01 < .01

Forest patch -0.54 -0.44 0.03 0.06 < .01 < .01 -0.23 -0.26 0.07 0.05 < .01 < .01

Meadow 0.31 0.09 0.03 0.06 < .01 0.09 1.27 0.71 0.07 0.06 < .01 < .01

Road 0.05 -0.07 0.07 0.20 0.46 0.72 1.17 0.76 0.10 0.08 < .01 < .01

HMM-SSF 2-step HMM-SSF 2-step

k-fold ( �rs ) [min-max]

Observed 0.99 [0.94; 1.0] 0.97 [0.96; 0.99] 0.98 [0.92; 1.0] 0.96 [0.93; 0.99]

Random -0.57 [-0.83; -0.15] 0.01 [-0.53; 0.51] -0.42 [-0.80; -0.01] -0.01[-0.68; 0.79]

Average travelled speed (in km/h) 0.12 0.03 1.83 0.46

Proportion of time spent in each state 0.83 - 0.17 -

Mean and range of duration of each

state (in hour)

10.0 [1.0; 95.0] - 1.0 [3.0; 47.0] -

Transition frequency

To encamped 0.05 - - -

To travelling - 0.05

C. Foraging behavior in zebra

State Encamped Travelling

Selection coefficient Estimate SE P Estimate SE P

(Continued)
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Identifying the onset of migration and habitat selection during the

different phases of the migratory behavior

The HMM-SSF identified the onset of mule deer migration between 11 March (first migration)

and 4 May (last migration, Fig 3). Overall, the starting date of migration identified by the

HMM-SSF was similar to that obtained by net squared displacement analysis (Fig 3), but the

HMM-SSF provided information on selection behavior of individuals according to their

movement modes.

Table 3. (Continued)

cos(Dir.pers) 0.42 0.01 < .01 2.210 0.030 < .01

Step length -6.50 0.11 < .01 -2.135 0.072 < .01

log(Step length) -0.58 0.01 < .01 0.238 0.023 < .01

Landcover�

Grassland 0.27 0.03 < .01 0.825 0.033 < .01

Woodland -0.10 0.03 < .01 -0.228 0.040 < .01

Distance to closest waterhole (log) 0.61 0.06 < .01 -1.020 0.029 < .01

k-fold ( �rs ) [min-max]

Observed 0.98 [0.96; 1.0] 0.98 [0.92; 1.0]

Random -0.51 [-0.80; -0.21] -0.487 [-0.86; 0.05]

Average travelled speed (in km/h) 0.13 1.16

Proportion of time spent in each state 0.77 0.23

Mean and range of duration of each

state (in hour)

8.0 [0.5; 94.5] 2.0 [0.5; 18.5]

�reference category is bushland

https://doi.org/10.1371/journal.pone.0272538.t003

Fig 3. Net squared displacement over time for 4 mule deer geolocalised every 3 hours between April and July 2012

in Medicine National Bow Forest (WY-CO, USA). Net squared displacement is measured as the square of the

Euclidean distance between location at a specific time t and start location (i.e., at time 1). Estimated mode of

movement (red for travelling and blue for encamped) during the 2012 migration was based on the conditional

probabilities of being in encamped and travelling mode at each step, as estimated from the HMM-SSF, and

dichotomized to 0–1 using a 0.50 threshold.

https://doi.org/10.1371/journal.pone.0272538.g003
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While migrating (i.e., travelling mode) mule deer moved toward the area they used the pre-

vious summer, at an average speed of 0.35 km/h (Table 3, Figs 3 and 4). During stopovers (i.e.,

encamped mode), they moved shorter distances (Table 3), but still with a slight bias towards

their known summer range (Table 3, Fig 4). Deer selected biomass-rich locations while migrat-

ing whereas they selected southerly aspect locations during stopovers (Table 3, Fig 4). They

also selected steep terrain, but the selection coefficient was larger for the travelling mode than

for the encamped mode (Table 3, Fig 4).

Fig 4. A. Distribution of directional bias (in radians) towards summer range visited in 2011 by mule deer in Medicine

Bow National Forest, while they were migrating during spring 2012, according to the mode of movement estimated by

the HMM-SSF at each step (either encamped or travelling). Estimated mode of movement was based on the

conditional probabilities of being in encamped and travelling mode at each step, truncated to 0–1 using a 0.50

threshold. The arrows indicate the average directional bias. B. State-specific selection coefficient estimates from the

HMM-SSF of different covariates influencing mule deer spring migration. DP = directional persistence (cosine),

SL = step length, log(SL) = natural logarithm of step length, Prev. SR = directional bias towards previously visited

summer ranger (cosine).

https://doi.org/10.1371/journal.pone.0272538.g004
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Evaluating behavior-habitat relationship during movement modes of

foragers

As expected, both bison and zebras moved longer distances and in a more oriented way during

inter-patch movements (i.e., travelling mode) than during intra-patch movements (i.e.,

encamped mode, Table 3, Fig 4). Moreover, selection coefficient estimates for resource patches

(i.e., meadow for bison and grassland for zebra) were larger during inter-patch movements

than during intra-patch movements, indicating that once they have left a patch they search for

another (Table 3). Finally, bison selectively used roads to move among resource patches,

whereas zebras selected locations close to nearby waterholes, along their way to another patch

(Table 3, Fig 4 and S2 Fig).

Comparison to the 2-step approach applied to bison population. Although k-fold cross

validation indicated that the 2-step approach yielded accurate predictions of habitat selection

for each movement mode, some coefficient estimates from the 2-step approach were highly

different, even opposed, to estimates from the HMM-SSF, in both movement modes

(Table 3B). For example, in the encamped mode, the estimate of the directional persistence

was positive from the HMM-SSF whereas negative from the 2-step approach, the estimates of

step length was 8 times stronger from the 2-step approach than from the HMM-SSF and the

estimates of meadow selection was positive for the HMM-SSF while not significant for the

2-step approach (Table 3B).

Assessing the circumstances over which a forager flees a predator

The transition model revealed that the simulated foragers had a higher probability of switching

from encamped to travelling mode when foragers were in a non-resource patch (i.e., patch

quality = 0) and when simulated predators were in close vicinity of the foragers (S2 Table).

Thus, the transition model correctly identified the behavior of fleeing from predators that was

created in the simulation. In addition, the estimates from the transition model behaved simi-

larly than the estimates from the HMM-CRW, which directly incorporates covariates in the

transition probabilities of the Markov chain using a multinomial logit link (S2 Table).

The movement response of bison to wolf presence was context dependent. Bison were

more likely to change from encamped to travelling mode when in close vicinity of wolves

together with a high relative risk of wolf encounter (i.e., high UD, Table 4 and S3 Table, Fig 5).

This effect of wolf proximity in places of high wolf UD lessened gradually with distance from

the nearest wolf, and vanished when bison were> 3.6 km from a wolf (Fig 5 and S3 Fig). Two

other factors influenced the switch from encamped to travelling mode. First, a switch had

higher probability to occur during dawn or dusk than during the day or at night (Table 4 and

S3 Table). Second, bison had higher probability of switching to the travelling mode when they

were outside resource patches (Table 4 and S3 Table). The estimates from the transition model

also behaved also similarly than the estimates from the HMM-CRW (Table 4).

Discussion

We extended the HMM-SSF in a way that it can now be used, with large datasets that include

missing data and irregular time intervals, to assess population-level habitat selection during

sequential behavioral bouts along animal trajectories, in different ecological contexts. Our sim-

ulation analysis illustrated the robustness of the HMM-SSF to adequately characterize factors

creating movement biases during alternative movement modes under various ecological con-

texts. We also demonstrated that the HMM-SSF provided more realistic habitat selection esti-

mates than a 2-step approach. Further, we used empirical movement data to illustrate the
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versatility of the HMM-SSF. Accordingly, the HMM-SSF could become a prevailing tool to

assess how animal species use their environment in relation to the complex interplay between

their need to move, their knowledge of the environment and navigation capacity, their motion

capacity, and the external factors related to landscape heterogeneity.

To date, the tools that have been developed to identify behavioral bouts are, for the most

part, applied to movement data from a single individual and without considering habitat selec-

tion [8, 21, 42] [but see also 30], thus limiting the scope of potential conclusions. Here, we first

fit a HMM-SSF to each individual’s trajectory, then we combined them using an appropriately

weighted average (see Eq 4) of the HMM-SSF of all individuals to infer habitat selection at the

population level. To do so, we took advantage of the fact that the maximum likelihood estima-

tors of the selection coefficients in each individual HMM-SSF have a distribution that is

approximately normal with variance matrix that is easily estimated [27, 43]. Some studies have

assessed habitat selection for each behavioral mode by proceeding in a second analysis [23,

25], however habitat covariates are not included to identify movement modes making them

less biologically relevant. Additionally, parameters of the selection model are also less accu-

rately estimated with this approach, due to an underestimation of the error in selection coeffi-

cient estimates. We clearly demonstrated that the HMM-SSF performed better to assess

behavior-specific habitat use from large datasets of movement data including multiple individ-

uals than a 2-step approach. The HMM-SSF has large scope since strong predictive power on

Fig 5. Estimated probability of switching from encamped to travelling mode of movement and 95% confidence

interval, in plains bison during summer, according to wolf distance and local intensity of wolf utilization

distribution (wolf UD). Coefficient estimates and standard errors were obtained from the fit of a mixed-effects

generalized linear model with binomial distribution on 27,101 geolocations from 32 plains bison followed between

2007 and 2016 in Prince Albert National Park (SK, Canada). Probabilities were calculated here, by setting period of day

and meadow variables to day and 1, respectively (see Table 3).

https://doi.org/10.1371/journal.pone.0272538.g005
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animal space use fundamentally relies on gaining a mechanistic understanding of animal

movement modes [44, 45]. Specifically, the HMM-SSF provides a tool to identify movement

modes together with their underlying cause and interplay with environmental attributes, in

different contexts. For example, the HMM-SSF revealed that zebras selected locations closer to

waterholes during inter-patch movements (i.e., in travelling mode) whereas they selected loca-

tions further from waterholes during intra-patch movements (i.e., in encamped mode, Table 3,

Fig 4 and S3 Fig). Thus, these contrasted selection patterns could not be perceived when habi-

tat selection was assessed without considering different phases of animal behavior (one state

SSF suggested selection for areas closer to water, not shown).

In addition to the improved accuracy of the estimates provided by the HMM-SSF, our

extensions also contribute to a more practical framework. Particularly, we developed the

HMM-SSF such that it is now able to deal with data that are missing or collected at irregular

time intervals. In such case, an individual trajectory is made of several successive segments sep-

arated by gaps or missing data. We assumed and treated those segments as independent to

each other and multiplied their likelihood to estimate model parameters for an individual tra-

jectory. A violation of this assumption could lead to biased estimates of variance of selection

coefficients, although our evaluation of model performance using k-fold cross validation

revealed very high predictive capacity for all models (Table 3). Such extension is a crucial asset

of the HMM-SSF since it avoids the preliminary step of data regularizing often compulsory

due to gaps and irregular time intervals commonly observed in movement datasets obtained

from telemetry [42, 46]. Besides, the HMM-SSF provides a framework that only requires draw-

ing random distances and random angles to sample random steps, and extract landscape attri-

butes associated to observed and random steps which makes it easy-to-use with relatively low

computational cost. Indeed, the HMM-SSF took between several hours to several days (<1

Table 4. Coefficient estimates along with their 95% confidence interval (95% CI) of the mixed-effects generalized linear model with binomial distribution

(HMM-SSF + GLMM) and the multi-state correlated random walk model (HMM-CRW) to predict probability that a bison switched from encamped to travelling

mode during its travel in summer. In the HMM-SSF + GLMM analysis, we used a probability threshold of 0.50 (Pthreshold) to determine transition and non-transition

from the conditional probabilities of being in encamped or travelling state, as estimated from the HMM-SSF. Mixed-effects generalized linear model was fitted using

27,101 geolocations from 32 GPS-collared plains bison in Prince Albert National Park (SK, Canada). ~d~

wolf was set to the actual distance between bison and wolf (dwolf)

when dwolf� dthreshold and dthreshold, otherwise. log(dwolf) is the natural logarithm of dwolf.

Effect Estimate 95% CI

HMM-SSF + GLMM HMM-CRW HMM-SSF + GLMM HMM-CRW

Intercept -2.92 -0.59 [-3.24; -2.60] [-0.66; -0.51]

Period of day�

Dawn-Dusk 0.53 0.17 [0.42; 0.64] [0.11; 0.23]

Night -1.51 -2.09 [-1.74; -1.28] [-2.19; -1.98]

Meadow -0.21 -0.11 [-0.32; -0.10] [-0.16; -0.05]

Wolf UD 0.17 0.09 [0.05; 0.28] [0.04; 0.14]

~d~

wolf
0.04 - [-0.04; 0.12] -

Interaction (Wolf UD, ~d~

wolf )
-0.05 - [-0.09; -0.01] -

log (dwolf) - 0.03 - [0.0; 0.06]

Interaction (Wolf UD, log (dwolf)) - -0.03 - [-0.06; 0.0]

Random (variance)

ID 0.18 - - -

�reference category is day

https://doi.org/10.1371/journal.pone.0272538.t004
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week) to fit the different datasets. Finally, the HMM-SSF is not restricted by the number of

parameters, which can be computationally demanding in other types of state-space models [8,

31, 47].

Simulation analysis illustrated the robustness of the HMM-SSF even though the assump-

tions of the HMM-SSF are violated. For example, in the simulations based on state-specific

step selection functions, we simulated transition rules based on environmental covariates

whereas the HMM-SSF supposes that transition are governed by a Markov chain [27]. Because

this assumption is likely not biologically reasonable [5], misspecification could potentially lead

to false inference [18]. For example, Gurarie et al. [18] revealed that, out of four tools tested,

the first passage time analysis was the only one to perform well at correctly partitioning a simu-

lated trajectory into movement modes, when the behavioral switch was defined in terms of

spatial attributes. However, the first passage time provided only distinct movement modes but

no habitat selection analysis [3, 18]. From our analysis of the simulated data, the HMM-SSF

showed high predictive power in both the simulation studies and empirical applications

(Tables 1–3). The HMM-SSF proceeded iteratively to both identify the movement modes

along individual trajectories and estimate selection coefficient for each mode, thereby increas-

ing the power of the method to characterize the hidden states [27]. Thus, the HMM-SSF pro-

vided valid inferences on the underlying selection processes associated to movement modes

from different behavioral processes.

We also illustrated the versatility of the HMM-SSF by assessing behavior-specific habitat

selection along individual trajectories in three different ecological contexts. Multi-state analysis

applied to individual trajectory has classically been used to assess the spatio-temporal scale

over which foraging process occurs [3, 48]. Here, we illustrate how the HMM-SSF can be help-

ful to assist in the identification of the onset of migration and evaluate how movement is dic-

tated by habitat features during the different phases of the migratory behavior [49].

Considering the different phases of the migratory behavior into habitat selection analysis of

migratory movement can increase our mechanistic understanding of animal space use during

migration [10]. Mule deer use stopovers as stepping stones during their migration, from which

they derive foraging benefits [49, 50]. Whereas Merkle et al. [35] showed that aspect generally

influenced mule deer movements during migration, the HMM-SSF revealed that deer selected

southerly aspect locations solely during stopovers and not during travelling mode (Table 3).

This makes sense as mule deer spend 95% of their time on stopovers foraging on early green-

up occurring on southerly aspects in spring [50]. Mule deer also oriented their migratory

movement towards their previously visited summer range (Fig 3), a typical behavior among

migrants [51, 52]. Not only does our approach provide results consistent with previous studies,

but it does so by providing statistical models of 2-state migratory behaviors that accounted for

the entire dataset in a single analysis. The approach further provides the relative probability,

over space and time, that deer were in traveling mode instead of at a stopover.

In addition, we evaluated behavior-habitat specific relationship during movement modes of

resident animals and assessed the circumstances over which a forager avoids a nearby preda-

tor. The model showed that bison response to the presence of wolves was strongly context

dependent. Bison appeared especially apprehensive when they were in areas used intensively

by wolves, as they reacted more promptly to the nearby presence of a wolf by being more likely

to switch to travel mode. Similarly, zebras are far more likely to flee immediately than stay

when an encounter with lion (Panthera leo) occurs in bushy areas, where zebras are more eas-

ily ambushed [38]. As the spatial and temporal dynamics of reactive prey response to predator

encounter remains poorly known [38], we illustrated how the HMM-SSF can help identifying

the spatial context over which prey respond to predator presence. The HMM-SSF could poten-

tially be used to assess additional spatial processes that involve successive behavioral bouts
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(e.g., dispersal behavior, central place foraging, [53]). Besides, the HMM-SSF can also accom-

modate more than two movement modes when the temporal frequency of GPS relocations is

high enough to distinguish between the resting and the foraging periods [7, 54].

In conclusion, HMM-SSF provides a robust, flexible and relatively straightforward tool to

gain a mechanistic understanding of animal movement in different ecological contexts and

properly assess which strategies animals use to exploit a heterogeneous environment. Specifi-

cally, our model identifies behavioral phases along animal trajectories, together with the inter-

play between movement modes and environmental attributes. The HMM-SSF can also be

used to determine the factors influencing transitions between movement modes, thus giving

an opportunity to identify the underlying mechanisms of the temporal dynamics of animal

movement.
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γQ = 2) and 3) high (μQ = 1, γQ = 10).

(PDF)

S2 Fig. Distribution of distance to the closest waterhole according to the mode of move-

ment estimated from the HMM-SSF for 18 zebras in Hwange National Park during the dry
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hot season. The conditional probabilities of being in each state, obtained from the fit of the

HMM-SFF, were dichotomized to 0–1 based on a 0.5 threshold to determine the state of the

individual at each step on its trajectory.

(PDF)

S3 Fig. Log-likelihood profile from mixed-effects generalized linear model with binomial

distribution to predict probability of switching from encamped to travelling mode of

movement, according to a gradient of threshold distance, dthreshold.

(PDF)

S4 Fig. Total number of switches from encamped to travelling mode of movement accord-

ing to day time, estimated using conditional probabilities of being in each state, obtained

from the fit of the HMM-SFF to plains bison trajectories followed during the summers

2005–2016. We then separated the day in four periods: Night: 22:00–02:00, Dawn: 03:00–

06:00, Day: 07:00–15:00 and Dusk: 16:00–21:00.

(PDF)
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