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Abstract: In order to improve the performance of fiber sensors and fully tap the potential of optical
fiber sensors, various optical materials have been selectively coated on optical fiber sensors under
the background of the rapid development of various optical materials. On the basis of retaining
the original characteristics of the optical fiber sensors, the coated sensors are endowed with new
characteristics, such as high sensitivity, strong structure, and specific recognition. Many materials
with a large thermal optical coefficient and thermal expansion coefficients are applied to optical
fibers, and the temperature sensitivities are improved several times after coating. At the same time,
fiber sensors have more intelligent sensing capabilities when coated with specific recognition materials.
The same/different kinds of materials combined with the same/different fiber structures can produce
different measurements, which is interesting. This paper summarizes and compares the fiber sensors
treated by different coating materials.

Keywords: optical fiber sensor; polydimethylsiloxane (PDMS); Mach–Zehnder interference (MZI);
photonic crystal fiber (PCF); fiber Bragg grating (FBG)

1. Introduction

With the wide application of optical fiber sensors in industrial production and environmental
detection, the advantages of optical fiber sensors have been fully reflected. In order to meet the
requirements of different applications and improve the performance of optical fiber sensors, a variety
of sensors with different structures have emerged. However, the processing of the fiber structure
cannot fully develop the potential of the fiber sensor. In the context of the emergence of various optical
materials and the gradual perfection of optical fiber sensing theory, various optical materials are known
and applied to optical fiber sensors.

For basic fiber sensors, a variety of structures based on MZI (Mach–Zehnder Interference),
PCF (photonic crystal fiber), FBG (fiber Bragg grating), and F-P (Fabry–Pérot) are made. Sensors are
assigned different tasks depending on the workplace and the accuracy of the test. In temperature
sensing, the effective length and refractive index of the optical fiber sensor will change with temperature
fluctuation. However, the coefficients of thermal expansion and thermo-optic of SiO2 are small, and the
overall thermal sensitivity of the fiber sensor is relatively low. To improve the sensitivities of the sensors,
many materials with a higher thermo-optical coefficient are coated on the fiber. Sensors coated with
polydimethylsiloxane (PDMS), polyimide, UV-sensitive materials, or graphene were proposed to be
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used with various optical fiber structures. The same fiber sensor may have the ability to simultaneously
measure multiple parameters. Similarly, the same optical fiber structure coated with different materials
will have different response characteristics. Therefore, it is necessary to analyze the sensing principle
of various sensors.

In this review, studies are summarized according to the types of utilized materials and sensing
principles. In the first part of this review, we summarize the optical fiber sensors coated with PDMS
and discuss them according to the optical fiber structure. At the same time, the advantages of PDMS as
a coating material and its sensing function in different applications are introduced. In the second part
of the review, the role of polyimide as a coating material in humidity sensing is summarized. In the
third part of the review, the different applications of UV-sensitive materials in optical fiber sensing are
briefly introduced. In the rest, the performance of graphene, metal ions and other coating materials in
sensing is described.

2. Sensors Coated with the PDMS

In the development of PDMS, the preparation and performance testing of PDMS films are
indispensable steps. Through the discussion of the fabrication method and properties of the PDMS
membrane, a kind of film that can be loaded and unloaded repeatedly was prepared [1]. Due to
its excellent biocompatibility and biologically relevant mechanical properties, it has the potential
to be a fiber coating material. In the fabrication of integrated optical circuits and circuits [2–13],
PDMS is usually made into a special waveguide in an integrated system [14,15]. After a large
number of experimental studies, it was found that the integrated system prepared by PDMS has
the characteristics of low loss, high temperature stability, and sufficient mechanical stability, and the
sensitive characteristic of temperature and humidity also began to be concerned. At the same time,
many optical fiber waveguides directly made of PDMS were prepared [16–18]. Due to the good
plasticity of PDMS, optical waveguides can easily be fabricated into a variety of different structures,
such as knotted, twisted, and tapered fiber. In Table 1, the thermal expansion coefficients of common
materials are shown. It can be found that the value of PDMS is bigger than others. So, PDMS has the
potential to improve the temperature sensitivity of fiber sensors.

Table 1. The thermal expansion coefficients of materials at room temperature.

Materials Thermal Expansion Coefficient (/◦C)

PDMS 300 × 10−6

AL 23.03 × 10−6

Ti 8.35 × 10−6

Au 14 × 10−6

polyimide 20 × 10−6–30 × 10−6

SiO2 0.55 × 10−6

2.1. A Variety of Structures Based on Mach–Zehnder Interference

In the traditional optical fiber sensing principle based on Mach-Zehnder interference, the light in
the sensor can usually be divided into core-mode light (reference-mode light) and cladding-mode light
(sensing mode light) [19,20]. The energy distribution of the light field can be analyzed according to the
light intensity interference formula [20–23]:

I = I1 + I2 + 2
√

I1I2 cos(∆ϕ) (1)

In the above formula, I1 and I2 are the descriptions of the core light intensity and cladding light
intensity, respectively. ∆ϕ is the optical path difference formed when light travels through different
paths, at the same time; it can be expressed in another concrete form:

∆ϕ =
2πL∆ne f f

λ
(2)
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It can be seen from the above equation that the effective length L and the effective refractive index
difference ∆ne f f of the sensor have an important influence on ∆ϕ. λ is the free space wavelength.
In practice, the change of these two parameters will indirectly affect the sensing performance of the
fiber. In the sensor test of parameters, such as temperature and the refractive index, L and ∆ne f f
will be changed accordingly with the change of the parameters to be measured. For the effective
length, when the fiber is combined with material, it is limited by both the fiber and utilized material.
A comprehensive thermal expansion coefficient αe f f is used to describe the α f iber of the fiber itself
and the αmaterial endowed by the utilized material. When the measured temperature changes ∆T,
the effective length changes as follows:

∆L = αe f f ∆TL (3)

The description of the effective refractive index is divided into two common cases: One is that the
material is coated outside the cladding of the fiber, and the other is that the material is filled inside
the fiber core. In the first case, the effective refractive index of cladding will be changed, while in the
second case, the effective refractive index of the core will be changed. For two different cases, ε1, ε2,
and εmaterial are defined as the thermo-optic coefficient of the core, cladding, and material, respectively.

When the material is filled into the core, εe f f
1 is used to describe the effective parameters of ε1 and

εmaterial. In the same way, εe f f
2 is used to describe the effective parameters of ε2 and εmaterial for the

material coated outside the cladding [20]. Depending on the situation, the difference of the effective
refractive index can be defined as:

∆ne f f = ne f f
core − ne f f

clad=
(
ε

e f f
1 ncore − ε

e f f
2 nclad

)
∆T (4)

When the excitation of the optical fiber sensors is a broadband light source, the dips of the
interference spectrum will appear at the particular location, and m is a positive integer:

λdip =
2∆L · ∆ne f f

2m + 1
(5)

The spectral drift is defined under the influence of many parameters:

∆λ =
[(
αe f f + ε

e f f
1 + ε

e f f
2

)
∆T

]
λ (6)

By coating the material on the optical fiber, the variables in the formula are modified, so as to
improve the sensitivity of optical fiber sensing. This is the principle used in this part of the sensor.
The performance of PDMS, which has a higher negative thermal optical coefficient (−4.66 × 10−4/◦C)
and thermal expansion coefficient (300 × 10−6/◦C), has been fully reflected in the sensor [19].

When PDMS is coated on the fiber cladding, in order to fully reflect the negative thermal optical
coefficient characteristic of the PDMS, the underlying fiber structure needs to be able to excite strong
evanescent waves. The core off-set fiber, tapered fiber, and bend fiber can excite a strong evanescent
wave, and it is characterized by simple preparation, strong plasticity, and low cost, which are widely
concerned [20–24]. A fiber structure composed of multi-mode fiber (MMF), thin-mode fiber (TMF),
and multi-mode fiber was used to verify the improvement of temperature sensitivity of the fiber sensor
by PDMS in [20]. Through several temperature experiments on the sensor before and after PDMS
coating, it was found that the sensitivity of the temperature changed from 47.14 pm/◦C to 75.04 pm/◦C,
and the sensitivity increased 1.6 times. Better temperature stability was shown through the long-term
temperature test. In the literature, the fiber was suspended on a scaffolding and kept perpendicular to
the ground. PDMS was added at the upper end of the sensing part with a glue head dropper. Under the
action of gravity, PDMS flowed down the fiber, and PDMS was coated on the fiber. This coating process
is very simple. The comparison of the original fiber, which is with just the cladding, and coated fiber is
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shown in Figure 1, where it can be found that the thickness of the PDMS film is relatively uniform,
which fully demonstrates the simplicity of the PDMS coating process.
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(b) Core-fiber with PDMS cladding [22]; (c) Bowknot taper fiber coated with PDMS [23];  
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The sensors of [21,23,24] were used to measure the temperature, and they can measure the 
pressure in [22,24]. Although the fiber structure and the measurement are different, PDMS plays a 

Figure 1. Microscopic images of sensors: (a) original fiber sensor. (b) PDMS-coated fiber sensor [20].

Various kinds of tapered fibers were made to measure different parameters. In [21], the tapered
fiber was obtained by tapering the standard single-mode fiber (SMF) [21], which can be used to
measure the temperature; the fiber is shown as Figure 2a. The cladding of a section of fiber is removed
and the new cladding of the fiber is replaced by a thicker PDMS layer [22], as shown in Figure 2b.
In [23], the bowknot-type taper was prepared by melting two single-mode fibers into balls. It is
a deformation of the tapered structure, as shown in Figure 2c. In Figure 2d, a section of fiber was
pulled into an s-shaped fiber taper (SFT) [24], giving it the ability to measure pressure by adding PDMS
blocks throughout the tapered area.
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The sensors of [21,23,24] were used to measure the temperature, and they can measure the pressure
in [22,24]. Although the fiber structure and the measurement are different, PDMS plays a role in
protecting the fiber, especially in the pressure test. A soft PDMS membrane is necessary for the fragile
tapered structure.

It is different from the all-fiber sensor based on the Mach–Zehnder interference. The Mach–Zehnder
sensors in [25,26] completed the sensor arm and the reference arm. From Figure 3a, the PDMS microfiber
was the reference arm, which transmitted light steadily, and the light intensity was relatively stable.
Because the micro-nano fiber made by PDMS had good flexibility, it can be stretched in a certain range.
With the increase of the distance between the two fiber ends, the light intensity in the air arm decreases,
resulting in the change of the interference spectrum, so as to measure the micro-displacement [25].
A sensor with a real sensor arm is shown in Figure 3b. By coating the sensor arm with PDMS, it is
made more sensitive to temperature sensing [26]. Different from the structure in [26], the temperature
sensing experiment was completed in [27] with only one micro-nano fiber ring, and the sensitivity
increased 9 times, from 183 to 1.67 nm/◦C.
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Figure 3. Applications of PDMS and Mach–Zehnder structure: (a) Sensor consists of the PDMS
microfiber and air arm [25]; (b) Sensor consists of a bend arm and straight arm [26].

In the literature described above, PDMS was coated outside the cladding of the fiber as a coating
material. In [28–30], PDMS was filled into the fiber as a special fiber core. As you can see in Figure 4,
a section of the cladding and core of the standard single-mode fiber was removed, and the damaged
area of the fiber was filled with PDMS with a certain thickness [28]. PDMS acts as the cladding and core
at the same time. In order to give the fiber structure greater mechanical strength, a segment of hollow
core fiber (HCF) filled with PDMS can be connected within the sensor [29]. In a similar fiber optic
structure, two air chambers are added to both ends of the PDMS [30]. At the same temperature change,
the PDMS size has the potential to change even more, making it possible for the fiber to achieve higher
sensitivity. However, this delicate manipulation is more difficult.
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2.2. A Variety of Structures Based on FBG/LPFG (Long-Period Fiber Grating)

Among the many kinds of optical fiber sensor components, FBG has become the highest commercial
optical fiber sensor due to its better stability and lower price. Although the stability of FBG in the
sensor is far less than that of other sensors, the fact that its sensors are less sensitive cannot be ignored.
Usually, methods of making FBG with special materials and coating the material outside FBG are
selected to improve the sensitivity of the sensor [31–34]. The sensor principle of FBG is also discussed
from two aspects, stress and temperature.

The Bragg resonance wavelength (λB) will appear in the following position [32]:

λB = 2ne f f Λ (7)

In the above equation, ne f f and Λ represent the effective refractive index of the core and grating
pitch, respectively. Obviously, ne f f and Λ are the two main factors affecting the sensitivity. They will
change according to the external environment; the related formula can be obtained [32–34]:

∆λB

λB
=

∆ne f f

ne f f
+

∆Λ
Λ

(8)

When FBG is subjected to external strain, the grating constant changes as the length of FBG
becomes longer, and the refractive index of FBG changes under the elasto-optical effect. A classic
description is summed up to describe this change, where Pe is represented by the photoelastic constant,
and ε is represented by the strain induced:

∆λB

λB
= (1− Pe)ε (9)

In the temperature test, the grating constant and refractive index of the grating are affected by the
thermal expansion coefficient (α) and thermo-optic coefficient (ξ), respectively. The total effect of the
temperature on the wavelength drift is as follows:

∆λB

λB
= (α+ ξ)∆T (10)

After a comprehensive treatment of temperature and strain, a comprehensive formula is
summed up: ∆λB

λB
= (1− P)ε+ (α+ ξ)∆T (11)

Whether PDMS is coated outside FBG or filled inside FBG, it can be discussed through the four
aspects in the above equation.
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A kind of LPFG composed of tapered fiber and PDMS grating was made [31], as shown in Figure 5.
Before processing, the tapered fiber was passed through the mold with a periodically recessed structure.
The PDMS was injected into the mold, in order to ensure that PDMS had good fluidity and could
fill the entire mold, and the temperature was kept at 110 ◦C for 10 min. After the PDMS solidified,
the outer mold was removed, and one LPFG was finished. For the current high-precision processing
technology, this process is very simple, and the PDMS grating produced by this method has good
controllability in the micron size. In the temperature test, a temperature sensitivity of −1.328 nm/◦C
was shown, which is not possible for conventional LPFG.
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Figure 5. The schematic diagram of LPFG made up of PDMS [31].

Different from the preparation method in [31], the method of coating PDMS on the outer layer of
the sensor is more acceptable. In [32,33], PDMS was selected to increase the temperature sensitivity.
As expected, the temperature sensitivities of the FBG and LPFG could be effectively improved by
4.2 times [32] and 4 times [21], respectively. Comparing the principles of Figure 6a,b, the functionality
of PDMS is different. The light field is distributed only in the fiber core for FBG. Therefore, when the
temperature increases, the size of PDMS will become longer and the length of FBG will increase. Af and
Ap represent the starting position and end position of the PDMS jacket after expansion [32], respectively.
For the LPFG, there is part of the light intensity in the cladding. Under the effect of the evanescent
wave, light waves will interact with the external materials. Therefore, when considering the effect of
thermal expansion on the size of LPFG, the effect of PDMS on the effective refractive index of cladding
should also be considered [33]. In [34], an FBG coated with PDMS was designed and manufactured
to detect chemical reagents. Because of the selective tensile effects of the PDMS, in different volatile
organic compound (VOC) solutions, the length of PDMS will change, which will provide power for
the size change of FBG [34]. This provides a new idea for the application of PDMS.
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2.3. A Variety of Structures Based on F-P

According to the characteristics of PDMS, it is usually used to change the effective sensing length
and effective refractive index of P-F sensors. PDMS is generally coated at the end of sensors or filled
into the cavity, because it adopts the sensing mode of endpoint measurement [35–39].
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Five F-P sensors with a similar structure are summarized for comparison in Figure 7, and their
infrastructure is a standard single mode fiber (SMF). In [35], PDMS was dropped at the end of SMF and
formed a hemispherical structure when PDMS solidified; the sensor is shown as Figure 7a. After leaving
the SMF, the light in the fiber core will continue to spread in PDMS and will be emitted on the basic
surface of PDMS and air, and the forward-propagating light will interfere with the back-propagating
light. When the temperature changes, the length and refractive index of PDMS change, and the position
of the interference wavelength changes significantly, while the peak intensity does not [35]. A segment
of the hollow core fiber (HCF) was fused to SMF and a layer of PDMS film was applied to the end of
the HCF [36], which is shown as Figure 7b. With the same function as PDMS in [34], the sensors were
used to measure VOCs.
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Figure 7. The descriptions of different F-P sensors: (a) The F-P sensor consists of SMF and PDMS [35];
(b) F-P sensor consists of SMF, HCF, and PDMS [36]; (c) F-P consists of SMF, HCF filled with PDMS and
a PMMA (polymethylmethacrylate) protective layer [37]; (d) Sensor structure consists of SMF, air cavity,
and two-PDMS layers [38]; (e) Sensor consists of SMF with the TiO2 layer and PDMS [39].

Different from the structure of [36], PDMS was filled into the core of a hollow silica capillary (HSC)
to prevent PDMS leakage, and polymethylmethacrylate (PMMA) was applied to the outside of the
sensor for sealing [37]. In the temperature range of 35 to 45 ◦C, its sensitivity can be up to 1.509 nm/◦C.
In Figure 7c, the positions of PDMS and PMMA are clearly marked.

An air cavity was also applied to the F-P structure in [38]. Instead of using HCF directly, a hollow
will be created by heating the paraffin, which is coated between the optical fiber and PDMS [38].
In Figure 7d, two layers of PDMS can be seen, where the outer PDMS acts to protect the sensor.
The length of PDMS will change after adsorption of toluene vapor. In [39], a thin layer of TiO2 was
coated on one port of fiber, before two SMFs were fused, and an F-P structure was introduced into
the fiber. TiO2 (red section) is shown in Figure 7e. Through the analysis of the above examples,
it can be found that PDMS not only plays a role in temperature sensing but is also widely used in
chemical measurement.
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2.4. A Variety of Structures Based on SPR (Surface Plasmon Resonance)

In the above fiber-optic sensor example, we have seen that PDMS is widely used but PDMS is
not a panacea. In order to meet the needs of optical fiber sensing, we can choose other materials for
replacement, and we can also combine PDMS with other materials to improve the sensing performance
of PDMS [40]. Especially for fiber optic sensors based on SPR, the combination of metal materials and
PDMS is very important [41–44]. PCF is used in sensors due to its inherent air hole and good sensing
performance. PDMS was filled into the air holes to improve the ability to reduce the energy loss with
the temperature rising [41]. The micrograph is shown in Figure 8.
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In [42], in order to excite the evanescent wave required for the SPR principle, the PCF was fused
in the middle of the MMF. At the same time, gold and PDMS were coated on the PCF in turn [42].
The evanescent wave generated by the SPR effect can penetrate the metal layer and interact with PDMS,
where the change of the refractive index of PDMS played a major role in the sensing as the fiber length
was limited by gold, which is shown as Figure 9. The temperature sensitivity was −1.551 nm/◦C.
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Figure 9. The description of PCF coated with PDMS based on SPR [42].

A sensor with a relatively simple MMF-SMF-MMF structure was applied to the SPR sensors [43,44].
Similar to the sensor in [42], Au was coated outside the SMF to excite SPR. What is interesting is that
PDMS was only applied to half of the SMF; the description is shown as Figure 10. The sensor coated
with PDMS was sensitive to temperature while, at the same time, the bare sensor was better at detecting
the refractive index. The temperature and refractive index can be measured simultaneously [43].
In [44], graphene-gold-Au@Ag NPs-PDMS were coated on a sensor of the same MMF-SMF-MMF
structure. In this work, the graphene-gold-Au@Ag NPs showed an ability to excite SPR as a special
metal, and PDMS was used to increase the temperature sensitivity [44]. More importantly, a good
ability to combine with other materials was fully demonstrated.
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2.5. SPR Sensors Based on LPFG

A necessary mechanism for the SPR effect is to have a sufficiently strong evanescent wave to excite
the SPW (surface plasmon wave). When the propagation constant of the light wave in the cladding
matches that of the SPW, the energy of the cladding mode will be converted into the energy of SPW,
so that the light energy of the corresponding band of the transmission spectrum will suddenly drop
and a resonance absorption peak will appear, whose position is the SPR resonance wavelength [45–47].
Therefore, the fiber optic sensor needs to be configured with a special structure to stimulate a strong
evanescent wave, which is described in Section 2.4. However, the special fiber structure will not
only destroy the mechanical strength of the fiber but also increase the difficulty of sensor preparation.
LPFG with an original characteristic of the strong evanescent wave is more suitable to be combined
with the SPR principle [45–48].

According to the basic principle of LPFG, the position of the light intensity and the interference
spectrum of the evanescent wave can be controlled by adjusting parameters, such as the grating period.
For the LPFG sensors, there are many active modes of light within the cladding that interact with the
material coated outside the cladding. Different from the plate-SPR principle, SPR is considered as
a new mode outside the cladding for LPFG-SPR.

An SPR sensor based on side-polished LPFG was applied to continuous glucose monitoring
in [49]; the concrete schematic diagram can be found in Figure 11a. At the same time, the similar fiber
structure is shown in Figure 11b in [50]. In [49], the composite metal thin layer of chromium, gold,
and graphene was used to excite the SPR; however, the metal layer was replaced by chrome and gold
in [50]. The biocompatible borate polymer, PAA-ran-PAAPBA, was coated on the metal layer part
of the two sensors. The purpose of using multiple layers of metal is to get a stronger SPW and the
PAA-ran-PAAPBA is a carrier that can be specifically identified with glucose, while the sensors have
the function to monitoring the glucose [49,50].
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Figure 11. The description of the SPR sensors: (a) The jacket of LPFG is side-polished and coated with
multilayer materials [49]; (b) LPFG sensor coated with chrome, gold, and the functional material [50].

In [51], in the gas sensor shown in Figure 12, part of the cladding on LPFG was removed. This led
to a more intense evanescent wave because the light path was reduced, and Ag and graphene were
used to excite the SPR. Because the surface of graphene is loose and porous, the gas can act well on the
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SPP. So, the sensor has a high sensitivity of the gas. In this study, the sensitivities of LPFG, LPFG + Ag,
and LPFG + Ag + graphene were compared, and the result showed that the sensitivity of LPFG + Ag +

graphene was much higher than the other two cases [51].
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Figure 12. The gas sensor based on SPR-LPFG with Ag and graphene [51].

Novel reflected SPR sensors based on LPFG were proposed in [52,53], the schematic diagram is
shown in Figure 13. They were different from the two SPR sensors mentioned above, as this type of
sensor not only needs to coat the cladding with metal material but also needs to ensure that the fiber
cross-section is flat enough to ensure that enough light is returned to the OSA. This sensor can be used
in a wide range of exploration fields due to its more flexible and compact structure [52,53]. In the
experiment, there is a noticeable spectral drift of different concentrations of alcohol.
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3. Sensors Coated with Polyimide, Acrylate, and Materials for Cryogenic Applications

Unlike PDMS, which is mostly used for temperature measurement, polyimide is mostly used for
humidity measurement while measuring temperature. With a strong structural strength, polyimide
can still exist stably in an environment of 400 ◦C and can be used for a long time in the temperature
range of −200 to 300 ◦C [54–76].

The application of sensors coated with different materials is becoming more and more abundant at
cryogenic temperatures. It is worth discussing the coating materials to improve cryogenic temperature
sensitivity. In [54], fiber sensors coated with different coating materials, such as acrylate, tin,
indium-bismuth, and lead-tin, were described in the temperature range from 4.2 to 61 K. The results
showed that the fiber coated with indium-bismuth had minimal sensitivity variation compared to
the others [54]. Aluminum and PMMA, which are two contrast materials, were applied on FBG to
verify the temperature sensitivities in the temperature range from 80 to 300 K [56]. The temperature
sensitivity of the PMMA substrate, which was 0.04 nm/K, was twice as large as that of the aluminum
substrate at 100 K. In [57], the sensitivities of bare FBG, acrylate-coated FBG, and polymer-coated FBG
were compared and analyzed at temperatures from −180 to 25 ◦C [57]. The FBG coated with polymer
had the biggest value of 48 pm/◦C, which was 10 times bigger than that of the bare FBG. The same type
of experiment was conducted in [60], where different materials, such as Ni, Cu, Zn, and Sn, were coated
on the FBGs [60]. The temperature sensitivities of them were 1.5 times, 2 times, 2.5 times, and 3 times
more than that of the bare FBG, respectively [60]. Equally important, the structures of fiber sensors
were not damaged under the cryogenic temperatures [54,62,63]. It is an essential advantage for fiber
sensors to be applied in the field of cryogenic measurement.
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When the fiber is bent, not only the loss of light intensity will increase but also the structure of
the fiber will become weak. At very low temperatures (77 K), the fiber made up of SiO2 will become
very fragile. This is disastrous for fiber optics applications in ultra-low temperatures [64]. In [64],
polyimide was coated on the outer layer of the curved fiber to improve the frost resistance of the
fiber. The stability of the optical fiber sensor in a high-temperature test was discussed by the sensor
coated with polyimide, copper, aluminum, or gold [75]. By analyzing the experimental results in
detail, we found that polyimide and copper had good stability. However, copper oxidizes easily at
high temperatures, thus polyimide is the best option. An FBG was made by the fiber, which was made
up of polyimide, to measure the temperature in the range of 30–180 ◦C [76].

In practical applications, there are many parameters to be measured, and the method of cascading
two FBGs is used to obtain a stronger sensing capability [77]. As shown in Figure 14, a sensor
consisting of two FBGs was used to measure temperature and salinity. When salinity changes, the water
absorption capacity of polyimide will change, leading to a change in the length of the sensor. So,
the FBG coated with polyimide was sensitive to both temperature and salinity. However, the acrylate
cannot absorb water and was only sensitive to the temperature. The sensor can compensate for salinity
while measuring the temperature. In [78], the polyimide was also coated on FBG for the temperature
test. For FBG with the same parameters, different thicknesses of polyimide will also change the
measurement results [79]. The effect of the polyimide film thickness on temperature sensing was
discussed in [79]. Coated FBGs with effective diameters of 170 and 143 um were tested in a radiation
hard humidity range of 0 to 100. To ensure the accuracy of the results, the experiments were completed
at 20, 0, and −15 ◦C, respectively. It was found that the thicker sensor had a higher sensitivity.
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Figure 14. The FBG sensor coated with polyimide and acrylate [77].

A composite structure of FBG was produced to complete the measurement of cell growth and
temperature in [80]. A complete FBG was partially etched and a polyimide silica hybrid membrane
(PSHM) was coated on the etched FBG [80]. The configuration of the FBG is shown in Figure 15.
Compared with the sensor of [77], the structure of [80] was compacted; however, the process was
more difficult.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 24 

 

When the fiber is bent, not only the loss of light intensity will increase but also the structure of 
the fiber will become weak. At very low temperatures (77 K), the fiber made up of SiO2 will become 
very fragile. This is disastrous for fiber optics applications in ultra-low temperatures [64]. In [64], 
polyimide was coated on the outer layer of the curved fiber to improve the frost resistance of the 
fiber. The stability of the optical fiber sensor in a high-temperature test was discussed by the sensor 
coated with polyimide, copper, aluminum, or gold [75]. By analyzing the experimental results in 
detail, we found that polyimide and copper had good stability. However, copper oxidizes easily at 
high temperatures, thus polyimide is the best option. An FBG was made by the fiber, which was 
made up of polyimide, to measure the temperature in the range of 30–180 °C [76]. 

In practical applications, there are many parameters to be measured, and the method of 
cascading two FBGs is used to obtain a stronger sensing capability [77]. As shown in Figure 14, a 
sensor consisting of two FBGs was used to measure temperature and salinity. When salinity changes, 
the water absorption capacity of polyimide will change, leading to a change in the length of the 
sensor. So, the FBG coated with polyimide was sensitive to both temperature and salinity. However, 
the acrylate cannot absorb water and was only sensitive to the temperature. The sensor can 
compensate for salinity while measuring the temperature. In [78], the polyimide was also coated on 
FBG for the temperature test. For FBG with the same parameters, different thicknesses of polyimide 
will also change the measurement results [79]. The effect of the polyimide film thickness on 
temperature sensing was discussed in [79]. Coated FBGs with effective diameters of 170 and 143 um 
were tested in a radiation hard humidity range of 0 to 100. To ensure the accuracy of the results, the 
experiments were completed at 20, 0, and −15 °C, respectively. It was found that the thicker sensor had 
a higher sensitivity. 

 
Figure 14. The FBG sensor coated with polyimide and acrylate [77]. 

A composite structure of FBG was produced to complete the measurement of cell growth and 
temperature in [80]. A complete FBG was partially etched and a polyimide silica hybrid membrane 
(PSHM) was coated on the etched FBG [80]. The configuration of the FBG is shown in Figure 15. 
Compared with the sensor of [77], the structure of [80] was compacted; however, the process was 
more difficult. 

 
Figure 15. The configuration of the FBG with PSHM [80]. 

In [81], an FBG coated with polyimide was installed in the rhombus metal structure; the relative 
positions of FBG and rhombus are shown in Figure 16. The sensor was used for the strain at a high 
temperature, and the function of polyimide was the stability sensing performance [81], which is the 
same as that in [75]. 

Figure 15. The configuration of the FBG with PSHM [80].

In [81], an FBG coated with polyimide was installed in the rhombus metal structure; the relative
positions of FBG and rhombus are shown in Figure 16. The sensor was used for the strain at a high
temperature, and the function of polyimide was the stability sensing performance [81], which is the
same as that in [75].
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When sensing, the change of the refractive index and the length of polyimide are the main factors
used to enhance the sensing performance. Adding different compounds to polyimide will greatly
improve its basic performance. Various pore-foaming agents, such as lithium chloride, acetone, methyl
alcohol, and activated carbon, have been added into the polyimide to explore the effects on sensitivity
in [82,83]. By comparing the sensitivities of different doped materials, the sensitivity of a sensor coated
with polyimide-lithium chloride was nearly three times that of the other sensors [82].

In [84], a salinity sensor consisting of a PCF loop coated with polyimide was used to measure the
temperature and liquid, which is shown in Figure 17. The experimental results show that the sensitivity
of salinity, which was 0.742 nm/(mol/L), was 45 times than that of FBG coated with polyimide [84].
When polyimide absorbs water, the volume increase will generate pressure in the radial direction of
the loop. Because the length of the loop was 20.8 cm, which was larger than the traditional sensor,
the sensitivity of salinity was ideal. The FBG was only sensitive to temperature, and it can compensate
for the temperature. An F-P sensor consisting of SMF, HCF, and polyimide membrane is shown in
Figure 18. When the salinity is changed, the length of the air chamber will change by the shrinkage of
polyimide [85]. The influence of temperature on the interference spectrum can be removed by adjusting
the length of HCF, so a temperature-independent fiber salinity sensor is thus successfully produced.
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An MZI sensor was proposed by welding SMF, MMF, and SMF in turn [86], and the sensor had
a stable sensitivity of 0.0115 nm/◦C in the range of 30–300 ◦C by coating polyimide on the sensor.
In Figure 19, two 3-dB couplers are connected together by SMF and PIMF (polyimide microfiber) [87].
PIMF was connected at both ends of sharp tapers as an amplifier for temperature and salinity. When the



Sensors 2020, 20, 4215 14 of 24

length of PIMF was changed, the spectrum of interference changed accordingly. At the same time,
the sensitivities of different diameters/length of PIMF were discussed, and sensitivity increased as the
diameter/length increased. This suggested that a larger PIMF is more responsive to measurement.
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4. Sensors Coated with UV-Sensitive Materials

Compared with other materials, the fabrication of coating UV-curable polymer on the fiber is
relatively simple, because UV-curable polymer has the characteristic of curing when exposed to UV
light [88–94]. In the absence of UV light at room temperature, UV-curable polymer can maintain the
state of the liquid for a long time, which makes it possible to manipulate it on sensors. When UV-curable
polymer is irradiated by UV light, the volume of it will shrink with the curing process. So, the shrinkage
of cured volume was explored in [88]. A lensed fiber was proposed, which consisted of SMF, CSF
(coreless silica fiber), and a hemisphere of UV-curable polymer. The description is shown in Figure 20a.

The fabrication is similar to that in [35], where the F-P sensor based on SMF was used again.
The sensors of Figure 20 were tested in [90,91], where the difference is that the sensor was used to
measure the temperature and refractive index in [81], while it was used to measure temperature and
pressure in [91]. This fully shows the potential of UV-curable polymer in fiber sensing.
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Figure 20. The description of the structures: (a) The lensed fiber consists of SMF, CSF, and UV-curable
polymer [90]; (b) Sensor consists of SMF and UV-curable polymer [91].

A compact M-Z sensor was developed by fusing SMF and graded index fiber (GIF) [92].
From Figure 21, it can be found that GIF has a tiny cavity filled with UV-curable polymer. When light
propagates in GIF, due to the different refractive indexes of GIF and UV-curable polymer, the optical path
of the two parts is different, and an interference phenomenon will occur. Through many experiments, it
was found that the sensor has a good stability, which is also the embodiment of UV-curable polymer’s
performance. In order to fully understand the performance of UV-curable polymer, various elements
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were doped in it for temperature experiments. A PCF filled with the mixture of CdSe/ZnS quantum
and UV curing adhesive was demonstrated in [93].
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The combination of UV-curable adhesive and SPR is indispensable in many kinds of sensors.
In [94] and Figure 22, an SPR sensor was proposed based on SMF, UV-curable adhesive, and gold film.
The whole sensing area was completely enclosed by UV-curable adhesive, which enhanced the sensing
function while protecting the fiber structure. To ensure the accuracy of the temperature sensitivity,
experiments were carried out at 25 to 100 ◦C and 100 to 25 ◦C.
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Figure 22. The SPR sensor consists of UV-curable adhesive and gold film [94].

5. Sensors Coated with Graphene, Metal Ions, and Others

In recent years, different kinds of graphene and metal ions have been widely studied and used in
optical fiber sensors. Many sensors, although coated with different materials, are based mostly on SPR
principles [95–119]. Because the effective surface area of the optical fiber is small, it is difficult to coat
the material on the optical fiber. A prism coated with material was used in the SPR sensor [95–97]; at the
same time, it is the original structure based on SPR. However, in prism experiments, the instruments
are more expensive and the process more complex. Once again, the focus of the experiment goes back
to the fiber.

For sensors coated with graphene, in [99], a U-shaped sensor coated with graphene/AgNPs was
proposed by SPR [99]. In [100], the cladding of SMF was removed, the graphene oxide encapsulated
gold nanoparticle was coated on the core, and a novel cladding was made [100]. A structure that
was similar to that in [28,94] was mentioned again, except that the coated material became graphene.
Without exception, such sensors are also structurally weak. To solve this problem, a section of HCF
internally filled graphene quantum dots were used to strengthen the optical fiber structure [102].
The approach is also suitable for sensors that use alcohol as a sensor. The PCF filled with alcohol was
proposed to avoid alcohol evaporation [103]. In [104], a microfiber made up of poly methyl methacrylate
(PMMA) was connected with silica microfiber as shown in Figure 23. Under the evanescent wave,
the light in the silica microfiber will be transmitted to the PMMA microfiber. When the temperature
changes, the interference spectrum will vary with the length of the PMMA microfiber.
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With the development of coating technology and fiber processing methods, more and more
materials, such as ITO [107], TiO2 [108], gold nanoparticles [109–113], and ZnO [118,119], have been
applied to fibers. In addition to the usual temperature and refractive index measurements, different
chemicals were added to the coating material to enable the sensor to gain specific recognition.
For example, the silver nanoparticles/PVP/PVA hybrid was used to measure ammonia [115].

In Table 2, the sensors mentioned above are classified according to the different coating materials
and fiber structure. The serial numbers of the corresponding documents are filled in the form.
According to the number of studies, we can find that PDMS materials and sensors based on MZI and
FBG/LPFG are widely used.

Table 2. A conclusion of the sensing function and sensitivities.

MZI SPR F-P FBG/ PCF

LPFG

PDMS

20 29 35 41

75.04 pm/◦C 42 −240.425 dB/RI 32

21 −1.551 nm/◦C 385.46 pm/◦C 0.042 nm/◦C

3101.8 pm/◦C 4613.73 nm/RIU 36 (VOCs) 33

22 (Refractive Index Unit) 1.17 pm/ppm 255.4 pm/◦C

applied pressure 43 (Parts Per Million) 34

23 2323.4 nm/RIU 37

0.1957 nm/◦C −2.850 nm/◦C 1.509 nm/◦C

24 44 38 (toluene)

−29.03 nm/N 2.17 nm/◦C −1.02 nm/◦C 1.4 nm/g.m3

25 1224 nm/RIU 39

applied 0.13 dB/◦C

displacement

26

−41.58 pm/◦C

27

1.67 nm/◦C

28

−0.4409 nm/◦C

29

580.6 pm/◦C

30

−384 pm/◦C
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Table 2. Cont.

MZI SPR F-P FBG/ PCF

LPFG

polyimide

86 84 76

0.0115 nm/◦C 85 12.7 pm/◦C

87 0.45 nm/(mol/L) 1.2 pm/µε

0.09648 nm/◦C (salinity) 77

60.5 pm/%� 0.0094 nm/◦C

(salinity) 0.0165 nm/M

(salinity)

78

79

80

1.97 mmol/L/h

(cell growth)

81

1.814 pm/µε

82

1.71 pm/%RH

(humidity)

84

0.742 nm/(mol/L)

(salinity)

UV-sensitive
materials

92 94 90 93

24611.54 nm/RIU 8800 nm/RIU 0.19 nm/◦C 0.057 nm/◦C

−13.27 nm/◦C −0.978 nm/◦C 260 dB/RIU

91

249 pm/◦C

1130 pm/MPa

graphene

96 49 49 (glucose)

8.25 × 102/RIU 51 51 (gas sensors)

97 102 0.344 nm%−1

99 123.7 pm/◦C

100

2.449 ∆A/RIU

(sucrose)

101

alcohol
103

6.6 nm/◦C

methyl
methacrylate

104

58.5 pm/◦C

Sol-gel derived Ti,
SiO2

105

1067.15 nm/RIU
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Table 2. Cont.

MZI SPR F-P FBG/ PCF

LPFG

Au-Ta2O5-Pd/Au

50 50 (glucose)

106 (hydrogen sensor) 113

109 −17.93 nm/RIU
37.31 dB/RIU

110

111

765 nm/RIU

112

TiO2

107 45 108 45

5.4 RH/nm (DNA aptamer) 69.38 dB/RIU (DNA aptamer)

(humidity)

Ag/PVP/PVA

51 51

52 52

114

67.6 nm/RIU

115

0.9 counts/ppm

(ammonia)

Zn/ZnO
117

49.59 pm/◦C

6. Conclusions

In this review, fiber sensors based on different structures and materials were summarized and
analyzed. Through the analysis of the sensing principle, it can be found that most coated materials have
a large thermal expansion coefficient and thermal light coefficient. When the amount of temperature
change is the same, the coated material can provide the sensor with a greater change of effective
parameters, thus enabling the sensor to obtain a higher sensitivity. For the fiber sensor that needs
to be coated, the performances of the material are very important, and the stability and reliability
of the fiber structure are equally important. So, sensors based on FBG/LPFG are more widely used,
while FBG/LPFG have better production technology and theoretical analysis. The same fiber structure
with different coating materials will be given different sensing properties, and the combination of
fiber and material is therefore flexible. However, it is not necessary to make the fiber structure with
a fragile structure in order to better excite the material performance. In the future, more varieties of
fibers coated with materials will be produced. With the development of chemical materials, materials
with specific recognition functions will be applied to fiber sensors, which will bring the application of
optical fiber sensing to a new milestone.
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