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The Role of 3’ Regulatory Region Flanking Kinectin 1 
Gene in Schizophrenia

ABSTRACT

Objective: Schizophrenia is often associated with volumetric reductions in cortices and 
expansions in basal ganglia, particularly the putamen. Recent genome-wide association 
studies have highlighted the significance of variants in the 3’ regulatory region adjacent 
to the kinectin 1 gene (KTN1) in regulating gray matter volume (GMV) of the putamen. 
This study aimed to comprehensively investigate the involvement of this region in 
schizophrenia.

Methods: We analyzed 1136 single-nucleotide polymorphisms (SNPs) covering the entire 
3’ regulatory region in 4 independent dbGaP samples (4604 schizophrenia patients vs. 
4884 healthy subjects) and 3 independent Psychiatric Genomics Consortium samples 
(107 240 cases vs. 210 203 controls) to identify consistent associations. Additionally, 
we examined the regulatory effects of schiz​ophre​nia-a​ssoci​ated alleles on KTN1 mRNA 
expression in 16 brain areas among 348 subjects, as well as GMVs of 7 subcortical nuclei in 
38 258 subjects, and surface areas (SA) and thickness (TH) of the entire cortex and 34 corti-
cal areas in 36 936 subjects.

Results: The major alleles (f > 0.5) of 25 variants increased (β > 0) the risk of schizophrenia 
across 2 to 5 independent samples (8.4 × 10−4 ≤ P ≤ .049). These schiz​ophre​nia-a​ssoci​ated 
alleles significantly elevated (β > 0) GMVs of basal ganglia, including the putamen (6.0 × 
10−11 ≤ P ≤ 1.1 × 10−4), caudate (8.7 × 10−4 ≤ P ≤ 9.4 × 10−3), pallidum (P = 6.0 × 10−4), and 
nucleus accumbens (P = 2.7 × 10−5). Moreover, they potentially augmented (β > 0) the SA 
of posterior cingulate and insular cortices, as well as the TH of frontal (pars triangularis 
and medial orbitofrontal), parietal (superior, precuneus, and inferior), and temporal (trans-
verse) cortices, but potentially reduced (β < 0) the SA of the whole, frontal (medial orbito-
frontal), and temporal (pole, superior, middle, and entorhinal) cortices, as well as the TH of 
rostral middle frontal and superior frontal cortices (8.9 × 10−4 ≤ P ≤ .050).

Conclusion: Our findings identify significant and functionally relevant risk alleles in the 3’ 
regulatory region adjacent to KTN1, implicating their crucial roles in the development of 
schizophrenia.

Keywords: KTN1, schizophrenia, cortex, subcortical structure, putamen, gray matter vol-
ume, surface areas, thickness

Introduction

Schizophrenia manifests as a debilitating behavioral syndrome characterized by profound 
emotional, cognitive, and social impairments. Neuroimaging studies consistently reveal alter-
ations in various brain regions in individuals with schizophrenia, including widespread reduc-
tions in cortical volumes or thickness across frontal, occipital, parietal, temporal, insular, and 
limbic regions.1-24 Surprisingly, contrary to these cortical changes, reports indicate increased 
gray matter volumes (GMVs) within the basal ganglia among schizophrenia patients,25-33 
with particular emphasis on the enlargement of the putamen as a prominent neural risk mar
ker.26,30,31,34-37
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Recent genome-wide scans investigating GMVs of subcortical nuclei, 
including the basal ganglia (putamen, pallidum, caudate, and nucleus 
accumbens), amygdala, hippocampus, and thalamus, have consis-
tently pinpointed a robust association between putamen GMV and the 
kinectin 1 gene (KTN1), which encodes a receptor crucial for regulating 
neuronal cell shape and volume.38-41 Notably, all known significant vari-
ants linked to putamen GMV, such as rs945270 (P = 1.1 × 10−33)38 and 
rs8017172 (P = 6.7 × 10−34 in both discovery and replication samples),42 
are situated within the regulatory region flanking the 3’ end of KTN1.

Beyond schizophrenia, KTN1 variants have been implicated in vari-
ous neuropsychiatric disorders, including atten​tion-​defic​it/hy​perac​
tivit​y disorder (9 single-nucleotide polymorphisms (SNPs) in the 
5’ flanking region and 18 SNPs in the 3’ flanking region, including 
rs945270),43-47 Parkinson’s disease (8 SNPs in 3’, including rs8017172 
and rs945270),48-51 heroin dependence (rs945270 in 3’),52 marijuana 
dependence (3 SNPs in 3’),53 alcohol and drug co-dependence (14 
SNPs in the 5’ flanking region and 13 SNPs in the 3’ flanking region, 
including rs945270 and rs8017172),54 and cognitive dysfunction in 
the elderly (rs12895072 in 3’).55 Remarkably, all identified risk variants 
reside within the regulatory regions flanking either the 5’ end (33%) 
or the 3’ end (67%) of KTN1, with none located within the open read-
ing frame (ORF).

While associations between KTN1 variants and schizophrenia were 
previously unexplored until our recent investigation,56 where we 
assessed SNPs across the entire 120 kb-wide regulatory region flank-
ing the 5’ end, the entire ORF, and an 8 kb-wide portion of the regula-
tory region proximal to the 3’ end of KTN1. In our study, we identified 4, 
20, and 2 risk SNPs for schizophrenia, respectively (see Supplementary 
Figure 1).56 However, none of these risk alleles was linked to increased 
GMVs of the basal ganglia. This spurred our current study, aiming to 
explore the entire 4.3 Mbp-wide regulatory region flanking the 3’ end 
of KTN1, spanning from its proximal to distal ends (see Figure S1), to 
uncover novel and robust risk variants for schizophrenia, particularly 
those contributing to basal ganglia enlargement. Additionally, we 
investigated the associations of these risk variants with the expres-
sion of KTN1 mRNA, GMVs of other subcortical nuclei, cortical surface 
areas, and cortical thicknesses across various brain areas.

Material and Methods

Subjects
We examined 4 independent samples for the SNP-schizophrenia 
association analysis, comprising 3 European cohorts and 1 African-
American cohort. Sample #1 included 1351 European-American 

schizophrenia cases and 1378 healthy subjects sourced from the 
“GAIN: Genome-Wide Association Study of Schizophrenia” data-
set (dbGaP#: phs000021), genotyped using the AFFY_6.0 platform, 
with data provided by Dr. Gejman from Northwestern University. 
Sample #2 consisted of 1437 European-American patients and 1347 
healthy controls from the “MGS-nonGAIN: Molecular Genetics of 
Schizophrenia - nonGAIN Sample” (phs000167; AFFY_6.0 platform; 
and by Dr. Gejman). Sample #3 comprised 1826 European par-
ent–offspring trio subjects, including 621 offspring diagnosed with 
schizophrenia, sourced from the “New_CMB-trios: Bulgarian Trio 
Sequencing Study to Identify de Novo Mutations in Schizophrenia” 
dataset (phs000687; SeqCap EZ Human Exome Library v2.0; by Dr. 
Owen from Cardiff University). Sample #4 included 1195 African-
American patients and 954 healthy subjects from the “GAIN” dataset 
(phs000021).

Participants were all aged 18 years or older and met schizophrenia 
diagnosis (Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition).57 Exclusions were made for individuals with men-
tal retardation, substance use disorders, or neurological diseases. 
Controls were devoid of depression, bipolar disorder, schizoaf-
fective disorder, schizophrenia, and psychotic symptoms. Written 
informed consent was obtained from all participants, and the study 
was approved by the Institutional Review Board of Yale University 
(Approval No HIC# 1007007175, Date April 29, 2004). More details of 
demographics were previously published.58-62

Single-Nucleotide Polymorphism-Disease Association Analysis
We analyzed a total of 1136 imputed SNPs covering the entire 
3’ regulatory region (4,337,443bp) from the transcription end 
site (Chr14:55,684,585) of KTN1 to the transcription start site 
(Chr14:56,118,328) of the next protein-coding gene (PELI2). 
Genotyping, imputation, and data cleaning details were outlined 
previously.56,63 Allele frequencies of SNPs were compared between 
untransmitted and transmitted alleles using the “--dfam” option or 
between schizophrenia patients and controls using the Fisher exact 
test in PLINK.64 Replicable associations had a P-value < .05 across 
≥ 2 cohorts with consistent association direction. These associa-
tions were verified using 3 large independent Psychiatric Genomics 
Consortium (PGC) datasets (107 240 cases vs. 210 203 controls).65-67 
Multiple comparisons were corrected using false discovery rate (FDR) 
adjustment, with q-values < 0.05 indicating statistical significance.

cis-acting Expression Quantitative Trait Locus Analysis
We investigated the regulatory effects of schiz​ophre​nia-a​ssoci​ated 
variants on KTN1 mRNA expression using cis-eQTL analysis in 16 brain 
areas from 2 cohorts: a UK cohort with 138 subjects sourced from 
the BRAINEAC dataset,68 and a European-American cohort (n = 210) 
obtained from the GTEx dataset.69 Normalized mRNA expression lev-
els were compared between different alleles of each variant using 
t-tests.

Regulatory Effect of Risk Variants on the Gray Matter Volumes of 
Subcortical Nuclei
Gray matter volumess of basal ganglia and limbic system structures 
were measured in 38 258 European subjects from 14 CHARGE, 35 
ENIGMA2 cohorts, and the UK Biobank,38,42 using structural mag-
netic resonance imaging (MRI) with standardized protocols. Genetic 
homogeneity among subjects was analyzed by multi-dimensional 
scaling (MDS). Multiple linear regression analysis was conducted 

MAIN POINTS
•	 Recent genome-wide association studies have suggested that 

variants in the 3’ regulatory region flanking kinectin 1 gene (KTN1) 
most significantly regulate the gray matter volume (GMV) of the 
putamen.

•	 In total, 1136 single-nucleotide polymorphisms covering the entire 
3’ regulatory region of KTN1 were analyzed in 111 844 patients 
with schizophrenia vs. 215 087 healthy subjects in this study.

•	 The major alleles of 25 KTN1 variants increased the risk of schizo-
phrenia and the GMVs of basal ganglia, including the putamen.

•	 KTN1 variants might play crucial roles in the pathogenesis of 
schizophrenia.



Guo et al. KTN1 and Schizophrenia� Alpha Psychiatry 2024;25(3):413-420

415

to examine the regulatory effects of schiz​ophre​nia-a​ssoci​ated vari-
ants on GMVs, controlling for relevant covariates including age, sex, 
4 MDS components, total intracranial volume, and diagnosis (when 
applicable, as most participants did not have neurodegenerative or 
neuropsychiatric disorders).

Regulatory Effect of Risk Variants on the Surface Area and 
Average Thickness of Cortices
A total of 36 936 subjects underwent analysis, comprising 33 992 indi-
viduals of European descent from the UKBB and 49 ENIGMA cohorts, 
along with 8 non-European cohorts with 2944 participants.70 Cortical 
surface area (SA) and thickness (TH) measurements were obtained 
from in vivo whole brain T1-weighted MRI scans using FreeSurfer.71 
Surface area and TH were quantified for each subject across the 
entire cortex and within 34 distinct gyral-defined regions in each 
hemisphere, based on the Desikan–Killiany atlas.72 Surface area and 
TH were measured.

We investigated the associations of schiz​ophre​nia-a​ssoci​ated vari-
ants with a total of 70 traits, encompassing SA and TH of 34 cortical 
areas, average TH, and total SA. They were evaluated through mul-
tiple linear regression analyses, controlling for various factors such 

as diagnosis, ancestry proportions, age, gender, average TH, and 
total SA.

Results

Replicable Associations Between Risk Variants and Schizophrenia
A total of 25 risk SNPs spanning the entire 3’ regulatory region flank-
ing KTN1 demonstrated association with schizophrenia across ≥2 
analyzed cohorts (Tables 1-3). Within these SNPs, 24 distal variants 
from KTN1 were situated within the same variant block (r2 = 1), while 
1 proximal variant (rs10137995) remained independent of this block 
(r2 = 0.002) (Supplementary Figure 1).

The major alleles (with a frequency, f > 0.5) of all 24 variants within 
the block exhibited a nominal increase in schizophrenia risk across 
5 independent samples of European or mixed European and East 
Asian origin (8.4 × 10−4 ≤ P ≤ .049; Table 1). Additionally, the major 
allele A of rs10137995 significantly increased schizophrenia risk in 1 
European sample (P = 8.0 × 10−3; q = 0.002) and nominally in 1 African-
American sample (P = .012; Table 3). Interestingly, none of these iden-
tified variants significantly regulated the expression of KTN1 mRNA 
in the brain.

Table 1.  Associations of KTN1 Single-Nucleotide Polymorphisms Within a Block with Schizophrenia in 5 Samples

P-Values for “SNP–Schizophrenia” Associations P (β) for “SNP–GMV” Associations
dbGaP Data PGC Data ENIGMA2 Data 

Sample 1 Sample 2 I II III
“phg000013” “nonGAIN” “daner” “rall” “scz.swe” “ENIGMA2”

Europeans Europeans Europeans + Asians Europeans Europeans Europeans
Genomic Risk Cases = 1351 1437 56418 36989 13833 Effective Pallidum

SNP position allele Controls = 1378 1347 78818 113075 18310 allele n = 13688
rs34036456 55515657 A 1.8 × 10−3 0.016 1.7 × 10−3 2.9 × 10−3 0.040 A 0.049 (6.148)
rs1542577 55516009 A 3.0 × 10−3 0.046 1.7 × 10−3 3.0 × 10−3 0.040 A 0.047 (6.210)
rs34467825 55521079 G 0.011 0.019 1.7 × 10−3 3.6 × 10−3 0.034 G 0.038 (6.499)
rs35257549 55523610 G 1.9 × 10−3 0.021 1.1 × 10−3 1.8 × 10−3 0.018 G 0.016 (7.709)
rs35408298 55523626 T 1.9 × 10−3 0.021 9.5 × 10−4 1.6 × 10−3 0.018 T 0.017 (7.632)
rs34334073 55523811 C 1.9 × 10−3 0.017 1.1 × 10−3 1.8 × 10−3 0.018 C 0.015 (7.738)
rs35829669 55523849 G 1.9 × 10−3 0.019 1.1 × 10−3 1.8 × 10−3 0.018 – –
rs12880666 55524342 G 2.8 × 10−3 0.015 1.3 × 10−3 2.9 × 10−3 0.019 G 0.015 (7.734)
rs12880724 55524549 C 2.6 × 10−3 0.019 1.1 × 10−3 1.8 × 10−3 0.018 – –
rs12883824 55530038 C 3.0 × 10−3 0.027 3.5 × 10−3 5.4 × 10−3 0.028 – –
rs12884345 55530432 A 3.0 × 10−3 0.027 4.0 × 10−3 8.4 × 10−3 0.028 A 0.012 (8.627)
rs12880629 55532790 G 2.6 × 10−3 0.027 0.701 – – – –
rs12886405 55533851 G 3.0 × 10−3 0.030 1.0 × 10−3 1.8 × 10−3 0.018 G 0.015 (7.786)
rs12887940 55534128 T 3.0 × 10−3 0.030 9.9 × 10−4 1.8 × 10−3 0.018 T 0.015 (7.786)
rs12887272 55534572 A 3.9 × 10−3 0.019 9.6 × 10−4 1.8 × 10−3 0.019 A 0.015 (7.786)
rs12892142 55534928 C 3.1 × 10−3 0.030 0.727 – – – –
rs12883777 55537300 C 8.5 × 10−3 0.025 8.5 × 10−4 1.8 × 10−3 0.021 C 0.015 (7.807)
rs12889395 55538139 C 5.7 × 10−3 0.016 8.5×10−4 1.8 × 10−3 0.022 C 0.014 (7.866)
rs12889609 55538299 C 6.6 × 10−3 0.026 9.2 × 10−4 1.7 × 10−3 0.021 C 0.014 (7.873)
rs12890551 55538620 G 5.7 × 10−3 0.023 8.4 × 10−4 1.8 × 10−3 0.022 G 0.014 (7.821)
rs12896789 55541352 C 4.4 × 10−3 0.016 1.4 × 10−3 4.0 × 10−3 0.040 C 0.018 (7.578)
rs2086424 55542460 C 4.3 × 10−3 0.022 2.9 × 10−3 8.4 × 10−3 0.078 C 0.014 (7.914)
rs2101072 55542648 C 9.0 × 10−3 0.022 2.9 × 10−3 8.5 × 10−3 0.079 – –
rs12893970 55544255 G 8.0 × 10−3 0.014 3.2 × 10−3 7.9 × 10−3 0.074 G .015 (7.873)

Dash represents missing values. Risk alleles are major alleles (f > 0.5). The bold P-values survived false discovery rate adjustment (q < 0.05).
β, regression coefficient; GMV, gray matter volume; PGC, Psychiatric Genomics Consortium; SNP, single nucleotide polymorphism. 
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The Schiz​ophre​nia-A​ssoc​iated​ Alleles Significantly Increased the 
Gray Matter Volumes of Subcortical Nuclei
Most schiz​ophre​nia-a​ssoci​ated alleles within the 24-variant 
block demonstrated an increase in pallidum GMV (β > 0; 0.012 
≤ P ≤ .049), with 14 remaining significant after FDR adjustment 
(0.040 ≤ q ≤ 0.049; Table 1). The schiz​ophre​nia-a​ssoci​ated allele of 
rs10137995 increased GMVs of basal ganglia, including putamen 
(6.0 × 10−11 ≤ P ≤ 1.1 × 10−4; 4.2 × 10−9 ≤ q ≤ 8.0 × 10−4), caudate 
(8.7 × 10−4≤ P ≤ 9.4 × 10−3; 0.049 ≤ q ≤ 0.203), pallidum (P = 6.0 ×1 
0−4; q = 0.004), and nucleus accumbens (P = 2.7 × 10−5; q = 0.002), 
with most remaining significant after FDR correction (q < 0.05; 
Table 3). Notably, among all subcortical nuclei, putamen was most 
significantly regulated across 2 independent samples. However, 
no regulatory effects on GMVs of amygdala, hippocampus, and 
thalamus were observed (P > .05).

The Schiz​ophre​nia-a​ssoci​ated Alleles Regulated the Cortical 
Surface Area and Thickness
Most, if not all, schiz​ophre​nia-a​ssoci​ated alleles within the block 
nominally increased (β > 0) SA of the posterior cingulate cortex (.011 
≤ P ≤ .050) and TH of the pars triangularis cortex (8.9 × 10−4 ≤ P ≤ .028) 
and medial orbitofrontal cortex (.019 ≤ P ≤ .048). However, these 
alleles also decreased (β < 0) SA of the medial orbitofrontal cortex 
(.016 ≤ P ≤ .050) and entorhinal cortex (.014 ≤ P ≤ .042) (Table 2). The 
schiz​ophre​nia-a​ssoci​ated allele of rs10137995 nominally increased (β 

> 0) SA of the insular cortex (P = .017) and TH of the parietal [superior 
(P = .049), precuneus (P = 9.4 × 10−3), and inferior (P = .015)] and trans-
verse temporal cortices (P = 5.5 × 10−3). However, it also decreased (β 
< 0) SA of whole (P = 5.2 × 10−3) and temporal [pole (P = 7.4 × 10−3), 
superior (P = .025), and middle (P = 2.2 × 10−3)] cortices, as well as TH 
of the frontal [superior (P = .016) and rostral middle (P = .023)] cortices 
(Table 3). None of these regulations survived FDR correction.

Discussion

Across the entire 3’ regulatory region flanking KTN1, we identi-
fied 25 risk variants for schizophrenia. The major alleles of 24 vari-
ants, clustered in a distal block, along with 1 independent variant 
(rs10137995) proximal to KTN1, consistently increased schizophrenia 
risk in European, Asian, and/or African populations across 5 and 2 
independent cohorts, respectively; the latter survived FDR correc-
tion. These schiz​ophre​nia-a​ssoci​ated alleles significantly augmented 
the GMVs of basal ganglia, particularly the putamen, and nominally 
influenced the TH and SA of the frontal, parietal, temporal, insular, 
and posterior cingulate cortices. These findings underscore the func-
tional significance of KTN1 variants in schizophrenia pathogenesis.

Interestingly, the schiz​ophre​nia-a​ssoci​ated alleles identified in the 
present study, referred to as “Block #2,” exhibited distinct functional 
features compared to those in another KTN1 variant block (“Block #1”) 
reported in a previous study by Mao et al (summarized in Table 4), 

Table 2.  Associations of KTN1 Single-Nucleotide Polymorphisms Within a Block with Cortical Surface Area and Thickness in ENIGMA3 Cohorts

SNP

P-values (β) for “SNP–SA” Associations  P-values (β) for “SNP–TH” Associations 
Europeans Mixed Europeans Europeans UK Europeans
n = 33 992 36 936 33 992 23 909 10 083

Effective 
Allele

Posterior 
Cingulate

Effective 
Allele

Medial 
Orbitofrontal Entorhinal

Effective 
Allele Pars Triangularis

Medial 
Orbitofrontal

rs34036456 A 0.025 (2.680) G 0.016 (3.961) 0.041 (1.563) A 9.9 × 10−4 (0.004) 0.053 (0.005)
rs1542577 A 0.025 (2.708) G 0.018 (3.915) 0.042 (1.557) A 9.7 × 10−4 (0.004) 0.053 (0.005)
rs34467825 G 0.023 (2.858) T 0.021 (3.829) 0.027 (1.738) G 8.9 × 10−4 (0.004) 0.044 (0.005)
rs35257549 G 0.031 (2.713) A 0.037 (3.541) 0.034 (1.694) G 7.1 × 10−3 (0.004) 0.042 (0.006)
rs35408298 T 0.034 (2.833) C 0.048 (3.375) 0.033 (1.664) T 5.2 × 10−3 (0.004) 0.037 (0.006)
rs34334073 C 0.028 (2.835) A 0.041 (3.463) 0.030 (1.726) C 8.9 × 10−3 (0.003) 0.045 (0.006)
rs35829669 G 0.029 (2.777) C 0.040 (3.490) 0.030 (1.721) G 8.9 × 10−3 (0.003) 0.044 (0.006)
rs12880666 G 0.029 (2.518) A 0.064 (3.099) 0.022 (1.703) G 9.9 × 10−3 (0.003) 0.054 (0.005)
rs12880724 C 0.031 (2.714) G 0.038 (3.520) 0.030 (1.720) C 9.3 × 10−3 (0.003) 0.045 (0.005)
rs12883824 C 0.011 (3.592) G 0.073 (3.189) 0.020 (1.993) C 0.021 (0.003) 0.089 (0.005)
rs12884345 A 0.011 (3.444) C 0.103 (2.859) 0.014 (2.019) A 0.028 (0.003) 0.098 (0.005)
rs12880629 G 0.030 (2.809) A 0.047 (3.365) 0.030 (1.715) G 9.5 × 10−3 (0.003) 0.047 (0.005)
rs12886405 G 0.030 (2.709) A 0.043 (3.439) 0.031 (1.710) G 0.011 (0.003) 0.047 (0.005)
rs12887940 T 0.030 (2.697) C 0.042 (3.449) 0.031 (1.694) T 0.011 (0.003) 0.048 (0.005)
rs12887272 A 0.030 (2.708) G 0.043 (3.432) 0.032 (1.699) A 0.011 (0.003) 0.048 (0.005)
rs12892142 C 0.030 (2.727) A 0.042 (3.450) 0.031 (1.687) C 0.011 (0.003) 0.047 (0.005)
rs12883777 C 0.030 (2.720) T 0.043 (3.425) 0.033 (1.663) C 0.011 (0.003) 0.048 (0.005)
rs12889395 C 0.030 (2.650) T 0.050 (3.312) 0.038 (1.583) C 8.9 × 10−3 (0.003) 0.044 (0.006)
rs12889609 C 0.029 (2.885) T 0.054 (3.273) 0.042 (1.543) C 7.4 × 10−3 (0.004) 0.036 (0.006)
rs12890551 G 0.029 (2.661) A 0.056 (3.232) 0.039 (1.568) G 8.3 × 10−3 (0.004) 0.037 (0.006)
rs12896789 C 0.050 (2.197) T 0.053 (3.266) 0.039 (1.498) C 5.9 × 10−3 (0.004) 0.029 (0.006)
rs2086424 C 0.042 (2.295) A 0.081 (2.962) 0.037 (1.557) C 5.8 × 10−3 (0.004) 0.019 (0.006)
rs2101072 C 0.042 (2.306) G 0.083 (2.943) 0.038 (1.554) C 5.9 × 10−3 (0.004) 0.019 (0.006)
rs12893970 G 0.043 (2.292) A 0.085 (2.928) 0.042 (1.507) G 5.8 × 10−3 (0.004) 0.019 (0.006)

 β, regression coefficient; SA, surface areas; SNP, single nucleotide polymorphism; TH, thickness.
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suggesting that they might play differential biological roles even 
in the same brain region. Block #1 encompasses the ORF, whereas 
block #2 spans the 3’ flanking region. Notably, these 2 blocks exerted 
opposite effects across various brain areas. Block #2 was associated 
with basal ganglia volume enlargement, reduced SA of the whole 
and middle temporal cortices, reduced TH of the superior frontal and 
rostral middle frontal cortices, elevated SA of the insula, and elevated 
TH of the transverse temporal and precuneus cortices; while block #1 
showed contrasting effects (see Table 4), which could be well inter-
preted by the hypothesis that these 2 variant blocks play dominant 
roles in different areas.

Basal ganglia, crucial for emotion and cognition, was significantly and 
reliably regulated by the schiz​ophre​nia-a​ssoci​ated variants. Alleles 
within block #2 may upregulate kinectin expression in neurons, lead-
ing to cell size expansion,38-41 thereby contributing to basal ganglia 
volume enlargement, in line with most previous findings of enlarged 
BG GMVs in schizophrenia patients. Among the basal ganglia nuclei, 
the putamen was most prominently affected, aligning with prior 
reports identifying KTN1 as a key regulator of putamen GMV.38 These 
findings support the notion that basal ganglia volumes, particularly 
the putamen, could serve as predictors of schizophrenia risk.31

Basal ganglia is integral to the cognitive/associative “cortico-basal 
gangl​ia-th​alamo​-cort​ical”​ loop. Enlargement of the basal ganglia 
may enhance neurotransmission within this loop. As a compensatory 
response to this enhancement, the volumes of certain cortices such 
as the whole, temporal (pole, superior, middle and entorhinal), and 
frontal (superior and rostral middle) cortices might diminish, thereby 
reducing the excitatory glutamatergic output from cortices to the 
basal ganglia, in order to restore neural transmission within this loop. 
This interpretation well explains the associations observed between 
block #2 alleles and cortical volume reduction in various areas, and 
is consistent with previous findings that most cortical volumes were 
reduced in schizophrenia patients. Volume reduction in these regions 
may relate to schizophrenia symptoms, such as auditory hallucina-
tions (superior and middle temporal cortices),73,74 self-awareness 
(superior frontal cortex),75 and executive function (emotion regula-
tion and working memory) (rostral middle frontal cortex).76

Our earlier study revealed that the schiz​ophre​nia-a​ssoci​ated alleles 
within block #1 decreased the BG GMV. As another compensatory 
response to the BG GMV expansion by block #2, the expression of 
BG volume-controlling alleles, such as those in block #1, may be 
activated to restore the BG GMV. However, in the BG, block #2 may 
exert dominance over block #1, leading to an incomplete restoration 
of BG volumes. This hypothesis provides a plausible explanation for 
the opposing effects of the 2 variant blocks on BG expansion while 
the eventual BG GMV remains expanded in schizophrenia patients, 
consistent with existing literature.

On the other hand, we observed that the schiz​ophre​nia-a​ssoci​ated 
alleles within block 2 were associated with the volume increase of 
other cortices, including the frontal (pars triangularis), parietal (supe-
rior, precuneus, and inferior), temporal (transverse), limbic system (pos-
terior cingulate), and insular cortices. It is hypothesized that in some 
of these regions, such as the insular, transverse temporal, and precu-
neus cortices, block #1 may exert dominance over block #2. As per 
our earlier report, block #1 shrinks the volumes of these cortices (see 
Table 4). Consequently, as a compensatory response to this shrinkage, Ta
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the expression of cortical volume-expanding alleles, such as those in 
block #2, may be activated to restore the cortical volumes. However, 
this activation of block #2 did not fully restore the cortical volumes 
reduced by block #1, also because block #1 may exert dominance 
over block #2 in these regions. This hypothesis elucidates how the 
“recessive” associations between “block #2 alleles and cortical volume 
increase” coexist with the “dominant” associations between “schizo-
phrenia and eventual cortical volume reduction” in these brain areas.

Notably, the schiz​ophre​nia-a​ssoci​ated alleles in block #2 were 
associated with both the SA reduction and TH expansion of the 
same medial orbitofrontal cortex. This supports the radial unit 
hypothesis, which posits that SA and TH have differential origins in 
neurodevelopment.77

In summary, we have identified significant and functionally relevant 
risk variants for schizophrenia in the 3’ regulatory region flanking 
KTN1 (referred to as “Block #2” here). This set of risk variants appears 
to be the major determinants of genetic factors dominantly regu-
lating the volume expansion of the basal ganglia, particularly the 
putamen, in individuals with schizophrenia. Meanwhile, this set of 
risk variants might play a “recessive” role in the volumes of certain 
cortices, such as the insular, transverse temporal, and precuneus 
cortices.

Limitations and future work: We investigated the potential func-
tions of the target alleles by analyzing their statistical correlations 
with schizophrenia risk, subcortical GMVs, and cortical SA and TH. 
However, it is crucial to recognize that these correlations only offer 
indirect evidence regarding the biological functions of the alleles. 
To gain a deeper understanding of their roles, direct evidence from 
gene knockout experiments is essential. For future research, direct 
knockout of blocks #1 and #2, respectively, would help elucidate 
their opposite functional roles in BG GMV. Furthermore, all the 
aforementioned correlations were studied in separate cohorts, lim-
iting our ability to thoroughly explore interactions between these 

factors and their moderating effects. For future research, it would 
be advantageous to examine these functional studies within the 
same sample.
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Replicable associations with schizophrenia 
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Supplementary Figure 1.  LD map of risk KTN1 Variants for schizophrenia [Blocks #1 and #2 were reported by Mao et al. 2023 and the present 
study, respectively; rs10137995 and rs8014482 between two blocks were reported in the present study and omitted (due to opposite effects 
across samples), respectively. Red and blue squares indicate r2 and D’ values, respectively].


