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Abstract

and hip osteoarthritis.

Background: Osteoarthritis is a chronic musculoskeletal disease characterized by age-related gradual thinning and
a high risk in females. Recent studies have shown that DNA methylation plays important roles in osteoarthritis.
However, the genome-wide pattern of methylation in enhancers in osteoarthritis remains unclear.

Methods: To explore the function of enhancers in osteoarthritis, we quantified CpG methylation in human enhancers
based on a public dataset that included methylation profiles of 470,870 CpG probes in 108 samples from patients with
hip and knee osteoarthritis and hip tissues from healthy individuals. Combining various bioinformatics analysis tools,

we systematically analyzed aberrant DNA methylation of the enhancers throughout the genome in knee osteoarthritis

Results: We identified 16,816 differentially methylated CpGs, and nearly half (8111) of them were from enhancers,
suggesting major DNA methylation changes in both types of osteoarthritis in the enhancer regions. A detailed analysis
of hip osteoarthritis identified 2426 differentially methylated CpGs in enhancers between male and female patients,
and 84.5% of them were hypomethylated in female patients and enriched in phenotypes related to hip osteoarthritis
in females. Next, we explored the enhancer methylation dynamics among patients with knee osteoarthritis and
identified 280 differentially methylated enhancer CpGs that were enriched in the human phenotypes and disease
ontologies related to osteoarthritis. Finally, a comparison of enhancer methylation between knee osteoarthritis and hip
osteoarthritis revealed organ source-dependent differences in enhancer methylation.

Conclusion: Our findings indicate that aberrant methylation of enhancers is related to osteoarthritis phenotypes, and a
comprehensive atlas of enhancer methylation is useful for further analysis of the epigenetic regulation of osteoarthritis
and the development of clinical drugs for treatment of osteoarthritis.

Background

Osteoarthritis (OA) is a chronic musculoskeletal disease that
affects 250 million people worldwide [1]. OA is characterized
by age-related gradual thinning. In addition to age, several
other factors, including obesity, behavioral influences, and
both nuclear and mitochondrial genetics, are related to this
disease. This disease also shows sex differences in the preva-
lence, incidence, and severity, with females generally at a
higher risk than males, which has been known for many
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years [2, 3]. Nevertheless, the molecular mechanism under-
lying the sex difference is still unknown. Molecular analysis
revealed that the development of OA is related to gene mu-
tations. For example, genome-wide association studies and
analysis of quantitative trait loci have identified many candi-
date genes at loci associated with a risk of hip and knee OA
[4, 5]. However, there are some clinical cases with no OA-
related mutations suggesting the potential roles of epigenetic
factors in OA development [6].

Epigenetics refers to stable heritable traits that cannot
be explained by changes in DNA sequence. While the
genetic code is the same for somatic cells, epigenetic
changes have been found across individuals, tissues, and
even cells from the same tissue. Epigenetic mechanisms
include DNA methylation and many kinds of histone

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-019-0646-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lily-happy-ok@163.com
mailto:lemon619@gmail.com

Lin et al. BMC Medical Genomics (2020) 13:1

modifications. Among these mechanisms, DNA methyla-
tion is the best characterized epigenetic modification
and involves the addition of methyl groups to cytosines,
predominantly at the dinucleotide CpG. It has been re-
ported that CpG methylation undergoes dynamic
changes in development and throughout the lifespan of
an individual and is also altered by environmental fac-
tors. DNA methylation has important roles in gene regu-
lation, and its aberration has been observed in many
kinds of human diseases, including cancers, since the
1990s [7].

Enhancers have important roles in gene regulation. The
enhancer-promoter interaction can enhance the expres-
sion of downstream genes [8]. Most recent studies have
revealed methylation dynamics in enhancer regions and
their roles in regulating tissue-specific gene expression
[9-11]. Liu et al. identified cell type-specific hypomethyla-
tion marks that were associated with cell type-specific
superenhancers that drive the expression of genes associ-
ated with cell identify [11]. Abnormal methylation pat-
terns in enhancers contribute to abnormal gene
expression in multiple diseases, including many kinds of
cancers [12].

Recently, some studies have revealed abnormal DNA
methylation in OA, particularly methylation dynamics in
gene promoters [13-17]. These studies provide a sys-
temic view of the DNA methylation changes in gene
promoters and their roles in OA development. For ex-
ample, Moazedi-Fuerst et al. profiled methylation in 15
female OA patients using human promoter microarrays
[13]. Ferndndez-Tajes et al. detected promoter methyla-
tion in 25 OA patients using Illumina Infinijum Human-
Methylation27 arrays in which the ~ 27,000 probes were
designed for gene promoters [14]. Aref-Eshghi et al. en-
larged the coverage of CpG sites by using an Illumina
Infinium HumanMethylation450 BeadChip array, which
includes newly added probes targeting enhancer regions
other than those in HumanMethylation27; however, the
sample size was relatively small (5 patients with hip OA,
6 patients with knee OA and 7 hip cartilage samples)
[15]. Rushton et al. profiled DNA methylation in a large
cohort (23 patients with hip OA, 73 patients with knee
OA, and 21 control patients with healthy hips) by the
HumanMethylation450 array and revealed genome-wide
methylation changes in the OA patients [16]. Neverthe-
less, none of these studies focused on enhancer regions,
and the genome-wide enhancer methylation patterns in
OA remain unclear.

To this end, we quantified CpG methylation in human
enhancers based on a public dataset that included methy-
lation profiles of 470,870 CpG probes in 108 human sam-
ples from patients with hip and knee osteoarthritis and
controls with healthy hips. We investigated the enhancer
methylation landscape in OA patients and their roles in
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regulating OA development. Systemic analysis revealed
the methylation dynamics in enhancers in two kinds of
osteoarthritis, knee osteoarthritis and hip osteoarthritis.
Our findings revealed major changes in DNA methylation
in enhancers and their correlation with human pheno-
types related to osteoarthritis. The comprehensive enhan-
cer methylation atlas proposed in this study is useful for
further analysis of the epigenetic regulation of
osteoarthritis.

Methods

DNA methylation data

The DNA methylation data were downloaded from the
GEO database under access ID GSE63695 [16]. In total,
97 samples of cartilage chondrocytes were obtained from
three groups of patients with primary hip OA (N =16)
and primary knee OA (N=62) and healthy controls
(NC) without any OA disease in the hips (N=19). All
DNA methylation profiles were detected by an Illumina
Infinium HumanMethylation450 BeadChip array (450
K). The annotation file of this array was downloaded
from the GEO database under access ID GPL13534.
DNA methylation values, described as “p values”, were
calculated as M/(M + U), where M represents the fluor-
escent signal of the methylation probe and U represents
the signal of the unmethylated probe. The [ values range
from 0 (no methylation) to 1 (full methylation). In total,
there are 482,421 probes with methylation levels in all
samples. To avoid the influence of X chromosome in-
activation in the female sample, we removed 11,551
probes targeting the sex chromosomes, and 470,870
probes remained for further analysis (Fig. 1).

Classification of the enhancer probes

We obtained the CpG probes localized in distal enhan-
cer regions from the supplemental file of a previously
published reference [18]. From the remaining CpG
probes, we selected 100,806 distal enhancer probes that
have methylation values in all samples (Fig. 1). Further-
more, we obtained 18,653 promoter enhancer probes
shown to be localized near gene transcript start sites
(TSSs), which were tagged TSS1500, TSS500, TSS200,
5UTR and first exon in the 450 K annotation. As re-
cently reported, the enhancers in the gene body also play
important roles in gene regulation [19]; thus, we selected
20,090 enhancer probes that overlapped with gene body
regions. Detailed information on these enhancers can be
found in Additional file 3: Table S1.

Identification of differentially methylated CpGs in
enhancers

To identify the differentially methylated CpGs (eDMCs)
in enhancers among the three main groups, including
the hip OA, knee OA and NC groups, we used the
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recently developed tool SMART (Fig. 1), which was
designed for the identification of differentially methyl-
ated sites or regions for bisulfite-based DNA methyla-
tion data [11]. The default parameters were used for
eDMC calling. Furthermore, a two-way t test was
used for pairwise comparison of methylation differ-
ences between two groups. An eDMC between two
groups was identified if the p value was less than 0.05
and the absolute methylation difference was larger
than 0.2. For the eDMCs between the two groups in
patients with knee OA, those with p values less than
10~ ' were also identified as eDMCs, even with abso-
lute methylation differences less than 0.2.

Hierarchical cluster and function enrichment

All hierarchical clusters were determined out by Cluster
3.0, and the heatmaps were visualized by TreeView 3.0
[20]. All functional enrichment of eDMCs was carried
out by GREAT, which is a tool for enrichment of anno-
tations of genomic regions [21], using the default
parameters.

Statistical analysis
Statistical analysis was performed using R. Comparison
between groups was performed using Student’s t test.

Results

The methylation patterns of enhancers in patients with
OA and healthy controls

To explore the methylation pattern in OA patients, we ob-
tained the methylation values of 470,870 CpG probes de-
tected in all samples from three groups, including patients
with hip OA, patients with knee OA and healthy controls,
by an Illumina Infinium HumanMethylation450 BeadChip

array (450K). In this array, 139,549 of these CpGs were
from human enhancer regions. According to their loca-
tions relative to genes, these enhancers were classified into
three groups: promoter enhancer around the transcript
start site (TSS), gene body enhancer and distal enhancer
distant from the gene TSS (Fig. 2a).

To analyze the enhancer methylation pattern, we used
SMART to identify the differentially methylated CpG
sites (DMCs) across three groups from all available
CpGs in the human genome. In total, 3.6% (16,816) of
the CpGs were identified as DMCs. Nearly half (8111) of
the DMCs are from enhancers, which was significantly
higher than expected (Chi-squared test p < 2.2e-16) (Fig.
2b). A high percentage of enhancer DMCs (eDMCs)
suggested that the enhancer regions undergo more
methylation than other genomic regions. To assess this
notion intuitively, we carried out two-way hierarchical
clustering to show the methylation patterns in the sam-
ples. As shown in Fig. 2c, the samples were classified
into three clusters. We found mixed clustering among
the hip OA samples and hip NC samples, which suggests
the existence of hip OA subsets. In addition, we found
two obvious subsets in the knee OA groups, although all
knee OA samples were clustered into the same cluster.
These results prompted us to explore the detailed
methylation changes in each group.

Gender-dependent methylation dynamics among the
patients with hip OA

There are sex differences in the prevalence, incidence,
and severity of OA. The molecular mechanisms under-
lying these phenomena are still not clear. To this end,
we compared the differences in enhancer methylation
between the male and female patients in the hip OA
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Fig. 2 DNA methylation patterns of differentially methylated enhancer CpGs (eDMCs) in patients with hip OA, patients with knee OA and healthy
controls. a The composition of enhancer CpGs in different genome contexts included in the 450 K BeadChip array. b Fraction of the eDMCs
identified by SMART in the three groups. ¢ Two-way hierarchical clustering and heatmap of the DNA methylation values of the eDMCs across all
samples. DNA methylation (3 value) is represented by a color from dark blue (unmethylated) to dark red (fully methylated)
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group and identified 2426 eDMCs. As a control, we
compared methylation between the male and female pa-
tients in the hip NC group and identified 21 eDMCs, in-
cluding one common eDMC (Fig. 3a). In addition, we
compared the differences in enhancer methylation be-
tween the male and female patients in the knee OA
group, and no eDMCs were identified. These results
suggested that gender-dependent differences in enhancer
methylation only occurred in patients with hip OA.
Two-way hierarchical clustering based on the methyla-
tion values of the gender-related eDMCs also showed
gender-dependent clustering of the hip OA samples,
while the hip NC samples did not cluster according to
gender (Fig. 3b). Meanwhile, the gender-related eDMCs
were classified into two clusters. Approximately 15.5% of
the gender-related eDMCs showed hypomethylation in
male patients, while 84.5% showed hypomethylation in
female patients (Fig. 3c).

Enhancers can interact with promoters in the same
topologically associating domain, which ranges in size
from thousands to millions of DNA bases and enhances
the expression of related genes [22]. Thus, the genes lo-
calized near the eDMCs can be used to speculate about
the potential functions of the gender-related eDMCs. To
this end, GREAT software [21] was used to explore the

functions enriched by the gender-related eDMCs in two
clusters. Notably, the gender-related eDMCs in cluster 2
were significantly enriched in some human phenotypes
related to joints, including osteoarthritis, while those in
cluster 1 were not (Fig. 3d and Additional file 4: Table
S2). This finding suggested that the higher OA risk in fe-
males than males was related to the methylation changes
in enhancers. The genes related to the human phenotype
of osteoarthritis include well-known genes that have
been shown to be related to osteoarthritis in previous
studies (Fig. 3e). For example, Ritvaniemi et al. found
that a mutation in COLIIA2 can result in early-onset
osteoarthritis [23]. Here, we showed new evidence of
gender-specific methylation of ten CpG sites from the
enhancer regions of COLI1A2, which may be related to
gender-specific phenotypes. To confirm the enhancer
status in these gender-specific eDMCs, we assessed the
enhancer marks around these CpG sites. As shown in
Fig. 3f, nine of these gender-specific eDMCs were
enriched by the enhancer marks H3K4mel and
H3K27ac, transcription factor binding sites. In addition,
this region shows enhancer activity in other disease cell
lines, including an immortalized myelogenous leukemia
line (K562), a liver cancer cell line (HepG2) and human
umbilical vein endothelial cells (HUVECs). Integrating
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Fig. 3 Gender-specific enhancer methylation related to osteoarthritis phenotypes in hip osteoarthritis. a The number of gender-specific eDMCs
identified in the hip OA group and hip NC group. b Two-way hierarchical clustering of methylation in the gender-specific eDMCs across hip
samples. Each row represents a gender-specific eDMC, and each column represents a sample colored by two colors: purple for females and blue
for males. DNA methylation (3 value) is represented by a color from dark blue (unmethylated) to dark red (fully methylated). ¢ The fraction of the
eDMCs in cluster 1 and cluster 2. d Human phenotypes enriched by genes near the eDMCs in cluster 2. The length of each bar represents the
significance of the phenotype enriched by eDMCs in cluster 2. Detailed information can be found in Additional file 4: Table S2. e The eDMC-gene
pair for the eDMCs enriched in the osteoarthritis phenotype. f The genome context of the eDMCs related to the gene COL11A2, which was
made by the UCSC genome browser

DNA methylation profiles in cancer cell lines obtained molecular mechanisms between male OA and fetal OA.
from the ENCODE project, we found that male OA pa- These results revealed the gender-specific enhancer
tients showed similar methylation patterns to cancer cell = methylation related to osteoarthritis phenotypes in hip
lines (Additional file 1: Figure S1), suggesting distinct osteoarthritis for the first time.
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Fig. 4 Subtypes of patients with knee OA showed differences in enhancer methylation related to osteoarthritis phenotypes. a Principal component analysis of
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the knee OA samples. b Volcano plot of the mean methylation differences between two knee groups. Red dots represent the eDMCs identified by t tests. € Two-
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represents a sample. For each sample, the age is represented by a gradual color from green (young) to red (old), the gender is indicated by purple for females
and blue for males, and the group was colored by two colors that are the same as those in Figure a. DNA methylation (3 value) is represented by a color from
dark blue (unmethylated) to dark red (fully methylated). d Human phenotypes (HP) and disease ontologies (DO) enriched by nearby genes of the eDMCs. The
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Two subtypes of patients with knee OA identified based
on enhancer methylation

As shown in Fig. 2c, the knee OA patients were classified
into two groups. To confirm this, we carried out principal
component analysis on the patients with knee OA based
on the methylation profiles of 8111 DMCs. We found that
the OA patients can be classified into two groups by the
first two principal components (Fig. 4a). To further
analyze the DNA methylation pattern underlying this
phenomenon, we identified the eDMCs between the two
groups. In total, 280 CpG sites were identified as eDMCs
showing methylation differences between the two groups.
As shown in Fig. 4b, nearly 97.5% of these eDMCs showed
higher methylation levels in Group 1. Two-way hierarch-
ical clustering based on the CpG methylation profiles of
280 eDMCs revealed hypermethylation in Group 1 (Fig.
4c). We found that 82.4% of the patients in Group 1 were

female, which was significantly higher than that (51.1%) in
Group 2, suggesting gender bias of methylation in the pa-
tients with knee OA. We also found three male patients in
Group 1. Further analysis of their ages revealed that these
male patients were older than those in Group 2, although
the results from the Mann-Whitney-Wilcoxon test were
not significant due to insufficient samples in Group 1
(Additional file 2: Figure S2). To confirm the potential
functions of these group eDMCs between the knee OA
subtypes, we performed functional enrichment via
GREAT. The results showed the enrichment of these
eDMCs in the human phenotypes and disease ontologies
related to osteoarthritis (Fig. 4d and Additional file 5:
Table S3). For example, an eDMC (cg02961385) was lo-
calized near a gene, COMP, which was shown to be a
novel diagnostic and prognostic biomarker for knee osteo-
arthritis [24].
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Differences in organ source-dependent enhancer methylation
between the patients with hip OA and knee OA

Next, we tried to find the different methylation patterns
between the patients with hip OA and knee OA. To this
end, we compared the methylation differences in the
CpG sites between two groups of patients and identified
681 eDMCs. None of these eDMCs showed methylation
differences between the tissues from the patients with
hip OA and healthy hip tissues (Fig. 5a). Two-way hier-
archical clustering revealed a similar methylation pattern
of these eDMCs between tissues from patients with hip
OA and healthy hip tissues (Fig. 5b). These results sug-
gested that the differences in enhancer methylation
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between the hip OA and knee OA groups was organ
source-dependent. We noted that all eDMCs were classi-
fied into two clusters. The eDMCs in cluster 1 showed
lower methylation levels in patients with knee OA, while
those in cluster 2 showed lower methylation levels in the
hip OA or CT samples. As reported previously, low
methylation of enhancers can regulate tissue-specific
expression of tissue marker genes. To determine the
functions of these eDMCs in two clusters, we carried
out functional enrichment based on GREAT software.
As shown in Fig. 5¢ and d, the eDMCs of both clusters
were significantly enriched in different human pheno-
types (Additional file 6: Table S4). The eDMCs that were
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Fig. 5 Organ source-dependent differences in enhancer methylation between patients with hip OA and knee OA. a The eDMCs between hip OA
and knee OA did not overlap with those between hip OA and hip CT. b Two-way hierarchical clustering of methylation in the eDMCs between
hip OA and knee OA. Each row represents an eDMC, and each column represents a sample. The methylation levels of these eDMCs in the hip CT
group are shown according to the row order determined by hierarchical clustering. DNA methylation (3 value) is represented by a color from
dark blue (unmethylated) to dark red (fully methylated). ¢ The top 10 human phenotypes enriched in the genes near the eDMCs in cluster 1 in
Figure b. d The top 10 human phenotypes enriched in the genes near the eDMCs in cluster 2 in Figure b

N

m Hip_NC
m Hip_OA
Knee_OA

| I .|
0.0 05 1.0




Lin et al. BMC Medical Genomics (2020) 13:1

poorly methylated in the patients with knee OA were
enriched in human phenotypes related to multiple joint
abnormalities, while those in the patients with hip OA
were enriched in human phenotypes related to muscle
hypoplasia and phocomelia. These results suggest the
potential roles of eDMCs in activating enhancers of
genes in an organ-specific manner.

Discussion

DNA methylation has important roles in gene regulation
in development and human diseases [25]. In particular,
abnormal methylation in gene promoter regions induced
abnormal expression of disease-related genes [26].
Recent studies have also reported the abnormal methyla-
tion of some gene promoters in osteoarthritis. However,
the methylation dynamics in enhancers is still unclear.
To this end, we systematically analyzed the methylation
dynamics in enhancers in two kinds of osteoarthritis,
knee osteoarthritis and hip osteoarthritis.

Our analysis of methylation differences between the
osteoarthritis and control groups revealed that en-
hancers undergo substantial DNA methylation changes
in both kinds of osteoarthritis. Nearly half (8111) of the
differentially methylated CpGs were localized in enhan-
cer regions. This finding highlighted the important roles
of enhancers in the development of osteoarthritis for the
first time. This comprehensive enhancer methylation
atlas is useful for further analysis of the epigenetic regu-
lation of osteoarthritis and the development of clinical
drugs for osteoarthritis therapy.

As reported in previous studies, DNA methylation can
be used as a stable marker for specific tissues or diseases.
Our analysis revealed the major DNA methylation
changes related to osteoarthritis in enhancer regions,
with a specific focus on the subtyping of osteoarthritis
and the influence on human phenotypes. Consistent
with these findings, our study identified new subtypes of
osteoarthritis based on enhancer methylation profiles,
both in knee osteoarthritis and hip osteoarthritis, and re-
vealed that enhancer methylation can be used as a bio-
marker of osteoarthritis subtypes. For hip osteoarthritis
patients, two subtypes were identified, and the main in-
fluencing factor was gender. Our study showed that hip
osteoarthritis displayed a gender-specific methylation
pattern in 2426 differentially methylated CpGs from
enhancers, whose nearby genes play important roles in
human phenotypes related to osteoarthritis and ab-
normalities of the hip bone. According to clinical sta-
tistics, the osteoarthritis rate in women is much
higher than in men, especially after age 55 [3, 27]. To
understand the mechanisms underlying this difference,
scientists have identified multiple risk factors, includ-
ing biological factors, genetic predisposition, hor-
mones, and obesity [28]. Our study identified an
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effect of gender at the molecular level. Enhancers can
enhance the expression of target genes by recruiting
active chromatin factors in a tissue type-specific man-
ner [9]. Low methylation is needed for the formation
of an open chromatin structure in enhancer regions
[29]. Thus, the low methylation in females may be
the cause of the abnormal activation of enhancers
found in osteoarthritis phenotypes. Further analysis of
the reasons for gender-specific methylation in hip
osteoarthritis would be helpful for further elucidation
of the high risk of osteoarthritis in females.

Enhancer methylation dynamics contribute to osteo-
arthritis plasticity. Thus, targeting DNA methylation
may be an alternative therapy for osteoarthritis, similar
to targeting DNA methylation for cancer therapy [30].
Currently, the symptoms of osteoarthritis can usually be
effectively managed with lifestyle changes, physical
therapies, medications, and surgery. However, the
process underlying osteoarthritis cannot be reversed.
Drugs targeting methylation can change the methylation
status in patients with osteoarthritis, which may help
reverse osteoarthritis. In particular, editing technology
targeting methylation enables modification of the DNA
methylation status but has only been studied in infec-
tion, which provides a rationale for targeting therapy for
osteoarthritis.

Conclusions

Our analyses indicate that aberrant DNA methylation of
enhancers is related to osteoarthritis phenotypes, and
our comprehensive enhancer methylation atlas is useful
for further analysis of the epigenetic regulation of osteo-
arthritis and the development of clinical drugs for osteo-
arthritis therapy.
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