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Abstract: We introduce a machine learning-based analysis to predict the immunohistochemical
(IHC) labeling index for the cell proliferation marker Ki67/MIB1 on cancer tissues based on
morphometrical features extracted from hematoxylin and eosin (H&E)-stained formalin-fixed,
paraffin-embedded (FFPE) tumor tissue samples. We provided a proof-of-concept prediction
of the Ki67/MIB1 IHC positivity of cancer cells through the definition and quantitation of single
nuclear features. In the first instance, we set our digital framework on Ki67/MIB1-stained OSCC (oral
squamous cell carcinoma) tissue sample whole slide images, using QuPath as a working platform
and its integrated algorithms, and we built a classifier in order to distinguish tumor and stroma
classes and, within them, Ki67-positive and Ki67-negative cells; then, we sorted the morphometric
features of tumor cells related to their Ki67 IHC status. Among the evaluated features, nuclear
hematoxylin mean optical density (NHMOD) presented as the best one to distinguish Ki67/MIB1
positive from negative cells. We confirmed our findings in a single-cell level analysis of H&E staining
on Ki67-immunostained/H&E-decolored tissue samples. Finally, we tested our digital framework on
a case series of oral squamous cell carcinomas (OSCC), arranged in tissue microarrays; we selected
two consecutive sections of each OSCC FFPE TMA (tissue microarray) block, respectively stained
with H&E and immuno-stained for Ki67/MIB1. We automatically detected tumor cells in H&E slides
and generated a “false color map” (FCM) based on NHMOD through the QuPath measurements map
tool. FCM nearly coincided with the actual immunohistochemical result, allowing the prediction of
Ki67/MIB1 positive cells in a direct visual fashion. Our proposed approach provides the pathologist
with a fast method of identifying the proliferating compartment of the tumor through a quantitative
assessment of the nuclear features on H&E slides, readily appreciable by visual inspection. Although
this technique needs to be fine-tuned and tested on larger series of tumors, the digital analysis
approach appears to be a promising tool to quickly forecast the tumor’s proliferation fraction directly
on routinely H&E-stained digital sections.
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1. Introduction

The assessment of the replicative activity of the cells and their ability to proliferate, or specifically
the frequency they enter into the mitotic phase of the cell cycle, are major determinants of the
biologic behavior of several human tumors. To this aim, one of the most used tools in surgical
pathology is the IHC (immunohistochemical) labeling index (LI) of the Ki67 nuclear protein, assessed
by immunostaining with the MIB1 monoclonal antibody on FFPE (formalin-fixed, paraffin-embedded)
tissue sections [1,2]. Ki67 antigen was initially identified in the early 1980s by Scholzer and Gerdes
and encodes for two isoforms of 345kDa and 395kDa [3]. Ki67 protein expression depends on the
proliferative activity of cells, is expressed in all the cell cycle phases but G0, and can be used as an
aggressiveness biomarker of malignant tumors [4,5]; therefore, pathologists routinely employ the Ki-67
labeling index as a proliferation marker [6].

The protein Ki67 has been suggested as a diagnostic biomarker in several tumors,
being overexpressed in malignant tumor tissues compared to normal ones [7,8], and it correlates to
tissue differentiation in an inversely proportional fashion; many studies have shown a correlation
between the Ki67/MIB-1 labeling index and human cancer grading [4,9–14]. Moreover, it correlates with
the clinical tumors’ stage and occult metastasis [15–18], and Ki67 expression evaluation, in combination
with other histopathological characteristics, may also represent an indicator of the risk of tumor
recurrence [19].

The prognostic value of Ki67 IHC labeling has been demonstrated in several human solid tumors
such as breast, soft tissue, lung, prostate, cervix, and central nervous system [20–24].

Different approaches have been proposed so far to optimize the Ki67 LI evaluation through digital
image analysis of Ki67 IHC-stained glass slides, but none of them are about the Ki67 IHC positivity
prediction from an H&E (hematoxylin and eosin)-stained glass slide [25,26].

Nowadays, most of the routine practice in pathology facilities typically relies on the assessment
of small biopsies. In this framework, the reduction in biospecimen consumption for each analysis is
mandatory to save material for special staining or molecular biology examination.

For this reason, we explored the possibility of predicting Ki67 labeling using hematoxylin and
eosin (H&E)-stained digitalized histological sections, by uncovering morphological and densitometric
features that could distinguish between proliferative and quiescent neoplastic cells, such as nucleus
area and perimeter, that reflect the increase in dimension of the nuclei, and hematoxylin optical density,
that reflects chromatin condensation. We then developed a new algorithm that may be applied to
different tumors to evaluate the proliferative tumor cells fraction, using QuPath [27], an open-source
software. In the first instance, we analyzed a case series of OSCC (oral squamous cell carcinoma)
H&E-stained digital slides using a digital pathology approach. We used QuPath to manually annotate
different tumoral and stromal area on TMA (tissue microarrays) to segment nuclei, in order to create our
dataset and generate different classifiers using the QuPath “Object Classification” function. In this pilot
study, we explored how machine-learning on H&E-based morphometric features could distinguish
the proliferation-committed fraction of neoplastic cells (which immunohistochemistry detects by
Ki67-positive nuclear stain) in OSCC, to allow pathologists to evaluate this fundamental feature
(information) directly on H&E-stained FFPE tumor slides (Figure S1).

As far as we know, this is the first time QuPath has been used to predict the H&E equivalent
of an immunohistochemical positivity and the first description of the application of computational
pathology to predict OSCC biomarkers’ expression on routinely stained H&E tumor sections.
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2. Results

2.1. Ki67-Positive Cells Show a Higher Nuclear Mean Hematoxylin Optical Density

In the first instance, we intended to extract, as described in the Materials and Methods,
on immunostained whole slide images, a series of morphological and densitometric features that could
distinguish Ki67-positive cells from Ki67-negative ones.

We firstly sorted tumoral and stromal cells using a Random Trees classifier generated with QuPath
embedded tools, as described in the Materials and Methods. Table 1 summarizes the performances of
all tested classifiers.

Table 1. Performance of different tested classifiers using the same training and validation sets for
each classifier.

Classifier Accuracy 95% CI:

Random Trees 98.19% 97.27 to 98.86%
SVM 98.02% 97.07 to 98.73%

K-Nearest 73.04% 69.77 to 74.88%
Normal Bayes Classifier 69.25% 66.57 to 71.84%

Employing the chosen classifier, we automatically identified stromal and tumoral cells classes.
Within the latter, we identified Ki67-positive and Ki67-negative cells based on the estimated staining
vector set in the preprocessing phase and included in the trained classifier, using QuPath “intensity
feature” tool.

Following the cell detection phase among all the QuPath computed features, we extracted the
ones which referred to nuclear characteristics and evaluated the ability of each to classify Ki67-positive
and negative cells. The ROC (Receiver Operating Characteristic) curve analysis revealed that nuclear
hematoxylin mean optical density (NHMOD) was the nuclear feature with the best performance
(Figure 1).
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Figure 1. Plot of all nuclear feature ROC curves. NHMOD is the best feature to tell positive from
negative cells.

2.2. Validation on H&E-Decolored/Ki67 Immuno-Stained Slides

We validated NHMOD’s ability to distinguish Ki67-positive tumor cells on OSCC H&E-stained
slides that, following digitalization, were decolored and subsequently IHC-stained with an
anti-Ki67 antibody.
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We manually annotated Ki67-positive and negative tumor cells on H&E slides using the
corresponding Ki67 IHC-stained one as ground truth, aligning the H&E field of view with the
corresponding IHC one (Figure 2). For our analysis, we tested our algorithm on H&E-stained slides
generated by different laboratories to ensure the reproducibility of the data. This approach allowed us
to analyze the efficiency of the morphometric-based prediction of Ki67 positivity at a single-cell level
on the same tissue section stained with different H&E (Figures 3 and 4).
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Figure 2. An overlapping field with SCC (squamous cell carcinoma) obtained from the Ki67
immunostained H&E decolored sample. (A) H&E (hematoxylin and eosin) (squares indicate some
of the selected cells for feature analysis); (B) Ki67/MIB1 IHC (immunohistochemical). Red and green
squares, respectively, represent positive and negatively annotated cells.
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Figure 4. Representative image showing the graphical report of Ki67 status prediction. The
overlapped squares color shows the real Ki67 status as observed in the corresponding field of
Ki67 immunostained section.

We compared all the nuclear features, extracted from the H&E stain, of the Ki67-positive and
Ki67-negative tumor cells, and we confirmed a statistically significant difference only for nuclear
hematoxylin mean optical density. We confirmed, on a single-cell level analysis, that NHMOD is the
morphometric feature that better distinguishes the Ki67-positive cell population from the Ki67-negative
one (AUC = 0.688, 95% C.I: 0.639–0.740, F1-Score = 0.638).

The statistic values of our test are summarized in Tables 2 and 3.

Table 2. Statistics of NHMOD (nuclear hematoxylin mean optical density) as a key feature in
distinguishing Ki67-positive from Ki67-negative cells.

Statistic Value CI 95%

Specificity 69.05% 62.32 to 75.23%
Sensitivity 62.83% 55.55 to 69.69%

Negative Predictive Value 67.13% 62.45 to 71.49%
Positive Predictive Value 64.86% 59.47 to 69.90%

Accuracy 66.08% 61.22 to 70.71%

Table 3. Confusion Matrix of Ki67-predicted positive or negative from Ki67-annotated ground truth.

Prediction
Total

Positive Negative

Ground Truth
Positive 120 71 210
Negative 65 145 191

Total 216 185 401

2.3. Morphometry-Based False Color Map Matches with Ki67 IHC Expression Pattern

Following the selection of the best sorting feature, we applied the same algorithm on tissue
microarray (TMA) H&E slides to generate false color maps (FCMs), with a color scale ranging from
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blue to yellow, where blue corresponds to the lowest value of the observed feature and yellow is the
highest one. The nuclear hematoxylin mean optical density (NHMOD)-based map nearly coincided
with the actual immunohistochemical slide results (Figure 5), allowing the pathologist to visually and
very easily envisage the Ki67 positivity state. We considered a core positive to Ki-67 if more than 10% of
cells were red or more (according to color-ramp in Figure 4). The estimated sensitivity of the proposed
visual prediction is 100%, the estimated specificity being about 55% compared to actual Ki67 positivity.
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Figure 5. (A) Immunostaining and the corresponding NHMOD false color map (B) Colourmap from
the lowest (top) to the highest (bottom) probability of positivity.

The proposed visual approach may give the pathologist a fast and straightforward method to
identify the proliferating compartment of the tumor, testing only positive-resulted cases to confirm
the result.

3. Discussion

Ki67 is a reliable marker of tumor proliferation and correlates with prognosis, progression, and
metastatic risk in different human tumors [28,29]. Despite its well-known role in several neoplasias,
there is still a lack of confirmation for a possible diagnostic, prognostic, or predictive role in some
others, like in oral squamous carcinoma (OSCC).

Head and neck cancer (HNC) is the eighth most common malignancy in the world, with squamous
cell carcinoma (SCC) accounting for more than 90% and being the most frequent form of OSCC [30].
Head and Neck Squamous Cell Carcinomas (HNSCCs) are characterized by a high rate of morbidity
and mortality. Furthermore, in most countries, the five year survival rate is less than 50% [31], and,
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in the United States, more than 20,000 new cases are estimated to occur in 2019, with more than 10,000
deaths [30].

Results on the correlation between Ki-67 expression and individual oral cancer patient prognosis
are highly controversial and the prognostic role of Ki67 is still a matter of debate among the scientific
community [32]. Ki67 labeling index has shown no reproducible prognostic value in OSCC. In particular,
its contribution in determining tumor fate usually emerged when the immunohistochemical evaluation
also involved other cell cycle proteins [33]. This finding, concerning the well-defined role of the Ki67
labeling index in the primary diagnosis and risk stratification of most human solid malignant tumors,
is contradictory [34], and further investigation is necessary.

To date, the vast majority of routine practice in surgical pathology relies on histopathological
examination of small biopsies. The pressure for earlier diagnosis and the necessity to reduce the
invasiveness of diagnostic histopathology sampling procedures result in the samples being analyzed
becoming smaller and smaller, and very often biospecimen consumption is reduced to save them for
eventual special staining, or molecular biology examination is mandatory. Our study demonstrates the
feasibility of predicting Ki67 status in oral squamous carcinoma using hematoxylin and eosin-stained
histopathology glass slides and QuPath, an open-source histopathology image analysis software,
allowing the collection of information about proliferation status on routine basic staining.

Our machine-learning based algorithm focused on selected nuclear features able to distinguish between
Ki67-positive and Ki67-negative immunostained tumor cells. Our interest in nuclear morphometric features
was initially oriented by experience, since nuclear morphology is a leading morphological focus point in
the routine histopathological diagnosis of human solid tumors; moreover, since we were looking at the
proliferating fraction of the studied tumor samples, nuclear shape and morphometrical determination
of chromatin compaction were the features we looked at in the first instance. We were not surprised to
find out that nuclear hematoxylin optical density turned out to be significantly associated with Ki67 IHC
positivity, since it may reflect the attitude of the nuclear chromatin to predispose itself for DNA replication.

We obtained a significant result by decoloring H&E-stained tumor sections and then
immunostaining them with an anti-Ki67/MIB1 antibody. Only by this approach could we obtain a
single-cell level analysis to confirm our findings. Nevertheless, we are aware that IHC staining on
decolored sections could underestimate the real Ki67 positivity in the tumor, for mere technical reasons,
and we are confident of reducing the number of false-negative results of our test by further improving
the IHC protocol following decoloration.

In our single-cell analysis, we choose the cells to analyze by sorting them from invasive tumor
nests or the invasive tumor’s front, i.e., the tumor’s regions expected to proliferate the most, since we
know that this is the most critical to evaluate concerning the proliferative potential. In the most
differentiated and less mitotically active region of the tumor, the performance of our test proved to be
even better.

We envisage, in the near future, a prognostic role of morphometric features; we believe in the
possibility to stratify the risk of poor outcome of OSCC based only on the estimation of morphometric
features via AI-based algorithm.

We propose a visual inspection system based on a false colored map of histopathology samples,
generated following NHMOD quantitation, and converting NHMOD values to an easy to interpret
color scale.

This approach may help pathologists in their diagnostic procedure, forecasting the evaluation
of the proliferative fraction of solid tumors, based on a Ki67/MIB1 IHC positivity prediction on
H&E-stained glass slides. The application of this algorithm to the routine diagnostic could provide
the pathologist the chance to limit the request of a KI67/MIB1 immunohistochemical stain, restricting
its use to when case results predict as positive alone, in order to reduce costs and turn-around time.
This algorithm may also be useful in telepathology, providing emerging countries or smaller centers
the possibility to have more information about the proliferative status of a lesion without the necessity
of an immunohistochemical stain. In order to translate our proof of concept into a useful tool for
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computer-aided diagnostics, we believe in the full integration of AI-based image analysis algorithms
in anatomic pathology units’ management software.

Furthermore, to our knowledge, there are few works using machine learning or deep learning
to predict immunohistochemical expression [35,36] or mutational status [37], but this is the first that
provides information about Ki67 levels on hematoxylin/eosin stains using an open-source software
with a user-friendly interface. This aspect is particularly important, because it is possible to process
whole slide images even with modest hardware; all the image analyses were performed with an Acer
Aspire E15 with 16GB RAM, 128GB SSD, and an NVIDIA GeForce 940MX (NVIDIA, Santa Clara, CA,
USA), which are easily affordable.

Although a promising result, our study still presents some limitations. We tested our algorithm
on TMAs, so it will be necessary to verify its performance on whole slide images that may differ
from TMAs.

Future steps in the development of this algorithm will be on slides from even more laboratories
and different types of lesions. Then, a more accurate analysis of larger datasets is necessary to increase
the sensibility and sensitivity of this technique, to develop a color normalization tool and to define a
standard threshold to define Ki67-positivity.

4. Materials and Methods

4.1. Dataset Acquisition

We retrieved the FFPE case study population from the Pathology Unit’s archive of the University
of Naples “Federico II.” OSCC FFPE tumor samples, from surgical resections, were used to build
tissue microarrays (TMAs). Three TMAs were built containing 111 tumor samples, selecting the most
representative areas from each selected paraffin block, at least in duplicate. Then, 3 mm tissue cores
were punched from morphologically representative tissue areas of each donor block and placed into
one recipient paraffin block (3 × 2.5 cm) using a semi-automated tissue arrayer (Galileo TMA, Milan,
Italy). One section of each TMA (4 µm) was stained with hematoxylin and eosin (H&E) to check the
adequacy of cores.

H&E-stained and IHC-stained glass slides were digitalized at 40× using the Leica Aperio AT2
slide scanner (Leica Biosystems, Vista, CA, USA).

The study was performed according to the guidelines of the institutional ethics committee,
which, in agreement with Italian law, concerning the topics of the current research, and according to
Declaration of Helsinki, requires, for studies based only on retrospective analyses on routine archival
FFPE-tissue, a written informed consent from the living patients, following the indication of Italian
DLgs No. 196/03 (Codex on Privacy), as modified by the UE 2016/679 law of the European Parliament
and Commission at the time of surgery.

4.2. Destaining

For this study, we selected paraffin-embedded tissue blocks of OSCC, retrieved from the archives
of the Pathology Section of the Department of Advanced Biomedical Sciences, ‘Federico II’ University
of Naples. Ordinary 4-µm tissue sections were cut from the paraffin blocks on charged slides to avoid
detaching tissue sections from the slides. The slides were stained routinely with hematoxylin and eosin
and digitized using an Aperio AT2 scanning system using 20× objective with a 2×multiplier inserted,
obtaining 40×WSI.

After slide scanning, the coverslips were removed by soaking the slides in xylene until the
coverslips detached. The slides were rehydrated in decreasing concentrations of ethanol and then
destained using a solution of HCl 0.3% for 4 min.

After destaining, the slides were rinsed in tap water and subsequently immunostained with the
antibody anti-Ki67. Immunohistochemical staining was performed on a Ventana Benchmark Ultra
(Ventana Medical Systems Inc., Tucson, AZ, USA) using the rabbit monoclonal antibody anti-Ki67
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(clone 30-9, Ventana Medical Systems Inc.) in accordance with both manufacturers’ recommendations.
The new IHC-stained slides were then digitized.

4.3. Immunohistochemistry

For the Ki67 IHC assay, fully automated staining was performed on a Ventana Benchmark Ultra
(Ventana Medical Systems Inc.) using the primary antibody anti-Ki-67 (rabbit monoclonal, clone 30–09
Ventana Medical Systems, Inc.), according to manufacturers’ recommendations. The sections were
incubated with primary antibodies and revealed with Ultra View Universal Alkaline Phosphatase Red
Detection Kit (Ventana Medical Systems Inc.).

4.4. Annotation and Processing

After H&E and IHC staining, slides were scanned with Leica AperioAT2 at 40×. The slides
were analyzed using QuPath, an open-source software which allows us to perform WSI analysis
through tissue and nuclei segmentation and to automatically compute a series of features with various
algorithms. All the calculated features are listed in Table S1. We firstly identified stain vectors
using QuPath tools, then we dearrayed our TMAs and used the "Tissue Detection" to define the ROI
containing tissue within the core. After a step of evaluable core selection, excluding all non-assessable
cores and all cores without tumors, we used the "Cell Detection" tool to segment nuclei. A pathologist
then manually annotated different tumoral and stromal areas on the first TMA using QuPath to create
our dataset and generated different classifiers using QuPath “Object Classification”. The dataset is
composed of 6065 objects (nuclei), using a validation split of 0.2. Among the generated classifiers
(Random Trees, Normal Bayes Classifier, SVM and K-nearest, using QuPath default parameters),
we decided to apply the Random Trees classifier to identify the tumor and non-tumor cells and
calculate cell features, as it presented as the most accurate. Random tree parameters were left as default
(maximum tree depth: unlimited; minimum samples per node: 10; termination criterion-max trees: 50;
termination criterion accuracy: disabled)

We found that nuclear hematoxylin mean optical density was the most valuable feature in
distinguishing positive from negative cells, so we applied the same algorithm on H&E TMA-stained
glasses and generated a false color map.

4.5. Data Analysis and Statistics

Single-cell features were exported from QuPath and analyzed using SPSS (IBM Corp. Released
2013. IBM SPSS Statistiimcs for Windows, Version 22.0. Armonk, NY, USA).

5. Conclusions

In conclusion, although the proposed technique needs to be fine-tuned and tested on larger series
of tumors in different staining conditions, the digital analysis approach appears to be a promising tool
to quickly forecast the tumor’s proliferation fraction on simple H&E-stained digital sections.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1344/s1,
Figure S1: Flow chart of the study’s design, Table S1: List of QuPath computed nuclear features (OD:
Optical Density).

Author Contributions: Conceptualization, F.M. (Francesco Martino), F.M. (Francesco Merolla) and S.S.;
methodology, S.V. and G.I.; software, F.M. (Francesco Martino) and F.M. (Francesco Merolla); validation, M.M.,
G.D.P., F.F. and S.S.; formal analysis, F.M. (Francesco Martino) and F.M. (Francesco Merolla); investigation, D.R.;
resources, G.T., (G.O.d’A. and L.C.; data curation, D.R.; writing—original draft preparation, F.M. (Francesco
Martino), F.M. (Francesco Merolla); writing—review and editing, G.D.P., M.F., N.B., F.M. (Francesco Martino),
F.M. (Francesco Merolla) and S.S.; supervision, S.S.; all authors have read and agreed to the published version of
the manuscript.

Funding: Our research has been supported by a POR Campania FESR 2014-2020 grant; “Technological Platform:
eMORFORAD-Campania” grant PG/2017/0623667.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2072-6694/12/6/1344/s1


Cancers 2020, 12, 1344 10 of 11

References

1. Gerdes, J.; Schwab, U.; Lemke, H.; Stein, H. Production of a mouse monoclonal antibody reactive with a
human nuclear antigen associated with cell proliferation. Int. J. Cancer 1983, 31, 13–20. [CrossRef] [PubMed]

2. Cattoretti, G.; Becker, M.H.; Key, G.; Duchrow, M.; Schluuter, C.; Galle, J.; Gerdes, J. Monoclonal
antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells
in microwave-processed formalin-fixed paraffin sections. J. Pathol. 1992, 168, 357–363. [CrossRef] [PubMed]

3. Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell. Physiol. 2000, 182,
311–322. [CrossRef]

4. Klöppel, G.; Perren, A.; Heitz, P.U. The gastroenteropancreatic neuroendocrine cell system and its tumors:
The WHO classification. Ann. N. Y. Acad. Sci. 2004, 1014, 13–27. [CrossRef]

5. Brown, D.C.; Gatter, K.C. Ki67 protein: The immaculate deception? Histopathology 2002, 40, 2–11. [CrossRef]
[PubMed]

6. Spyratos, F.; Ferreropous, M.; Trassard, M.; Hacene, K.; Phillips, E.; Tubianahulin, M.; Doussal, V.L. Correlation
between MIB-1 and other proliferation markers: Clinical implications of the MIB-1 cutoff value. Cancer 2002,
94, 2151–2159. [CrossRef] [PubMed]

7. Claudio, P.P.; Zamparelli, A.; Garcia, F.U.; Claudio, L.; Ammirati, G.; Farina, A.; Bovicelli, A.; Russo, G.;
Giordano, G.G.; McGinnis, D.E.; et al. Expression of cell-cycle-regulated proteins pRb2/p130, p107, p27(kip1),
p53, mdm-2, and Ki-67 (MIB-1) in prostatic gland adenocarcinoma. Clin. Cancer Res. 2002, 8, 1808–1815.

8. HHu, Y.; Liu, H.; Zhang, J.W.; Hu, K.; Lin, Y. Clinical significance of Smac and Ki-67 expression in pancreatic
cancer. Hepatogastroenterology 2012, 59, 2640–2643.

9. Kim, B.H.; Bae, Y.S.; Kim, S.H.; Jeong, H.J.; Hong, S.W.; Yoon, S.O. Usefulness of Ki-67 (MIB-1) immunostaining
in the diagnosis of pulmonary sclerosing hemangiomas. Apmis 2013, 121, 105–110. [CrossRef]

10. Lind-Landström, T.; Habberstad, A.H.; Sundstrøm, S.; Torp, S.H. Prognostic value of histological features in
diffuse astrocytomas WHO grade II. Int. J. Clin. Exp. Pathol. 2012, 5, 152–158.

11. Kim, J.Y.; Hong, S.M.; Ro, J.Y. Recent updates on grading and classification of neuroendocrine tumors.
Ann. Diagn. Pathol. 2017, 29, 11–17. [CrossRef] [PubMed]

12. Klöppel, G.; la Rosa, S. Ki67 labeling index: Assessment and prognostic role in gastroenteropancreatic
neuroendocrine neoplasms. Virchows Arch. 2018, 472, 341–349. [CrossRef] [PubMed]

13. Nabi, U.; Nagi, A.H.; Sami, W. Ki-67 proliferating index and histological grade, type and stage of colorectal
carcinoma. J. Ayub Med. Coll. Abbottabad 2008, 20, 44–48. [PubMed]

14. Inwald, E.C.; Klinkhammerschalke, M.; Hofstadter, F.; Zeman, F.; Koller, M.; Gerstenhauer, M.; Ortmann, O.
Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a
cancer registry. Breast Cancer Res. Treat. 2013, 139, 539–552. [CrossRef]

15. Mccormick, D.; Chong, H.; Hobbs, C.; Datta, C.; Hall, P.A. Detection of the Ki-67 antigen in fixed and
wax-embedded sections with the monoclonal antibody MIB1. Histopathology 1993, 22, 355–360. [CrossRef]

16. Merkel, D.E.; Dressler, L.G.; McGuire, W.L. Flow cytometry, cellular DNA content, and prognosis in human
malignancy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1987, 5, 1690–1703. [CrossRef]

17. Clark, G.M.; Mathieu, M.C.; Owens, M.A.; Dressler, L.G.; Eudey, L.; Tormey, D.C.; Osborne, C.K.;
Gilchrist, K.W.; Mansour, E.G.; Abeloff, M.D. Prognostic significance of S-phase fraction in good-risk,
node-negative breast cancer patients. J. Clin. Oncol. 1992, 10, 428–432. [CrossRef]

18. Fernandez, E.B.; Sesterhenn, I.A.; McCarthy, W.F.; Mostofi, F.K.; Moul, J.W. Proliferating cell nuclear antigen
expression to predict occult disease in clinical stage I nonseminomatous testicular germ cell tumors. J. Urol.
1994, 152, 1133–1138. [CrossRef]

19. Morimoto, R.; Satoh, F.; Murakami, O.; Suzuki, T.; Abe, T.; Tanemoto, M.; Abe, M.; Uruno, A.; Ishidoya, S.;
Arai, Y.; et al. Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas:
Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endocr. J. 2008, 55, 49–55.
[CrossRef]

20. Ishihara, M.; Mukai, H.; Nagai, S.; Onozawa, M.; Nihei, K.; Shimada, T. Retrospective analysis of risk
factors for central nervous system metastases in operable breast cancer: Effects of biologic subtype and ki67
overexpression on survival. Oncology 2013, 84, 135–140. [CrossRef]

http://dx.doi.org/10.1002/ijc.2910310104
http://www.ncbi.nlm.nih.gov/pubmed/6339421
http://dx.doi.org/10.1002/path.1711680404
http://www.ncbi.nlm.nih.gov/pubmed/1484317
http://dx.doi.org/10.1002/(SICI)1097-4652(200003)182:3&lt;311::AID-JCP1&gt;3.0.CO;2-9
http://dx.doi.org/10.1196/annals.1294.002
http://dx.doi.org/10.1046/j.1365-2559.2002.01343.x
http://www.ncbi.nlm.nih.gov/pubmed/11903593
http://dx.doi.org/10.1002/cncr.10458
http://www.ncbi.nlm.nih.gov/pubmed/12001111
http://dx.doi.org/10.1111/j.1600-0463.2012.02945.x
http://dx.doi.org/10.1016/j.anndiagpath.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28807335
http://dx.doi.org/10.1007/s00428-017-2258-0
http://www.ncbi.nlm.nih.gov/pubmed/29134440
http://www.ncbi.nlm.nih.gov/pubmed/19999202
http://dx.doi.org/10.1007/s10549-013-2560-8
http://dx.doi.org/10.1111/j.1365-2559.1993.tb00135.x
http://dx.doi.org/10.1200/JCO.1987.5.10.1690
http://dx.doi.org/10.1200/JCO.1992.10.3.428
http://dx.doi.org/10.1016/S0022-5347(17)32522-3
http://dx.doi.org/10.1507/endocrj.K07-079
http://dx.doi.org/10.1159/000345321


Cancers 2020, 12, 1344 11 of 11

21. Sorbye, S.W.; Kilvaer, T.K.; Valkov, A.Y.; Donnem, T.; Smeland, E.; Alshibli, K.; Bremnes, R.M.; Busund, L.
Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas. BMC Clin.
Pathol. 2012, 12, 7. [CrossRef] [PubMed]

22. Sorbye, S.W.; Kilvaer, T.K.; Valkov, A.Y.; Donnem, T.; Smeland, E.; Alshibli, K.; Bremnes, R.M.; Busund, L.
Prognostic Impact of Jab1, p16, p21, p62, Ki67 and Skp2 in Soft Tissue Sarcomas. PLoS ONE 2012, 7. [CrossRef]
[PubMed]

23. Ciancio, N.; Galasso, M.G.; Campisi, R.; Bivona, L.; Migliore, M.; di Maria, G.U. Prognostic value of p53
and Ki67 expression in fiberoptic bronchial biopsies of patients with non small cell lung cancer. Multidiscip.
Respir. Med. 2012, 7, 4. [CrossRef]

24. Josefsson, A.; Wikstrom, P.; Egevad, L.; Granfors, T.; Karlberg, L.; Stattin, P.; Bergh, A. Low endoglin
vascular density and Ki67 index in Gleason score 6 tumours may identify prostate cancer patients suitable
for surveillance. Scand. J. Urol. Nephrol. 2012, 46, 247–257. [CrossRef]

25. Bengtsson, E.; Ranefall, P. Image Analysis in Digital Pathology: Combining Automated Assessment of
Ki67 Staining Quality with Calculation of Ki67 Cell Proliferation Index. Cytom. Part A 2019, 95, 714–716.
[CrossRef]

26. Acs, B.; Pelekanou, V.; Bai, Y.; Martinezmorilla, S.; Toki, M.I.; Leung, S.C.Y.; Nielsen, T.O.; Rimm, D.L. Ki67
reproducibility using digital image analysis: An inter-platform and inter-operator study. Lab. Investig. 2019,
99, 107–117. [CrossRef]

27. Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; Mcart, D.G.; Dunne, P.D.; Mcquaid, S.;
Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image
analysis. Sci. Rep. 2017, 7, 16878. [CrossRef]

28. Yerushalmi, R.; Woods, R.; Ravdin, P.M.; Hayes, M.M.; Gelmon, K.A. Ki67 in breast cancer: Prognostic and
predictive potential. Lancet Oncol. 2010, 11, 174–183. [CrossRef]

29. Gupta, N.; Srinivasan, R.; Rajwanshi, A. Functional biomarkers in cervical precancer: An overview.
Diagn. Cytopathol. 2010, 38, 618–623. [CrossRef]

30. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019 (US statistics). CA Cancer J. Clin. 2019, 69, 7–34.
[CrossRef]

31. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 201 2. CA
Cancer J. Clin. 2015, 65, 87–108. [CrossRef] [PubMed]

32. Xie, S.; Liu, Y.; Qiao, X.; Hua, R.; Wang, K.; Shan, X.; Cai, Z. What is the Prognostic Significance of Ki-67
Positivity in Oral Squamous Cell Carcinoma? J. Cancer 2016, 7, 758–767. [CrossRef] [PubMed]

33. Gonzalez-Moles, M.A.; Ruiz-Avila, I.; Gil-Montoya, J.A.; Esteban, F.; Bravo, M. Analysis of Ki-67 expression
in oral squamous cell carcinoma: Why Ki-67 is not a prognostic indicator. Oral Oncol. 2010, 46, 525–530.
[CrossRef] [PubMed]

34. Li, L.T.; Jiang, G.; Chen, Q.; Zheng, J.N. Ki67 is a promising molecular target in the diagnosis of cancer
(Review). Mol. Med. Rep. 2015, 11, 1566–1572. [CrossRef] [PubMed]

35. Sun, M.; Zhou, W.; Qi, X.; Zhang, G.; Girnita, L.; Stålhammar, G. Prediction of BAP1 Expression in Uveal
Melanoma Using Densely-Connected Deep Classification Network. Cancers 2019, 11, 1579. [CrossRef]

36. Rawat, R.R.; Ruderman, D.; Macklin, P.; Rimm, D.L.; Agus, D.B. Correlating nuclear morphometric patterns
with estrogen receptor status in breast cancer pathologic specimens. NPJ Breast Cancer 2018, 4. [CrossRef]

37. Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyo, D.; Moreira, A.L.; Razavian, N.;
Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images
using deep learning. Nat. Med. 2018, 24, 1559–1567. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1472-6890-12-7
http://www.ncbi.nlm.nih.gov/pubmed/22554285
http://dx.doi.org/10.1371/journal.pone.0047068
http://www.ncbi.nlm.nih.gov/pubmed/23071715
http://dx.doi.org/10.4081/mrm.2012.616
http://dx.doi.org/10.3109/00365599.2012.669791
http://dx.doi.org/10.1002/cyto.a.23685
http://dx.doi.org/10.1038/s41374-018-0123-7
http://dx.doi.org/10.1038/s41598-017-17204-5
http://dx.doi.org/10.1016/S1470-2045(09)70262-1
http://dx.doi.org/10.1002/dc.21270
http://dx.doi.org/10.3322/caac.21551
http://dx.doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/25651787
http://dx.doi.org/10.7150/jca.14214
http://www.ncbi.nlm.nih.gov/pubmed/27162533
http://dx.doi.org/10.1016/j.oraloncology.2010.03.020
http://www.ncbi.nlm.nih.gov/pubmed/20400362
http://dx.doi.org/10.3892/mmr.2014.2914
http://www.ncbi.nlm.nih.gov/pubmed/25384676
http://dx.doi.org/10.3390/cancers11101579
http://dx.doi.org/10.1038/s41523-018-0084-4
http://dx.doi.org/10.1038/s41591-018-0177-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Ki67-Positive Cells Show a Higher Nuclear Mean Hematoxylin Optical Density 
	Validation on H&E-Decolored/Ki67 Immuno-Stained Slides 
	Morphometry-Based False Color Map Matches with Ki67 IHC Expression Pattern 

	Discussion 
	Materials and Methods 
	Dataset Acquisition 
	Destaining 
	Immunohistochemistry 
	Annotation and Processing 
	Data Analysis and Statistics 

	Conclusions 
	References

