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Abstract: Cisplatin (cis-diamminedichloroplatinum (II), DDP) is an antineoplastic agent widely used
in the treatment of solid tumors because of its extensive cytotoxic activity. However, the main
limiting side effect of DDP use is nephrotoxicity, a rapid deterioration in kidney function due to
toxic chemicals. Several studies have shown that epigenetic processes are involved in DDP-induced
nephrotoxicity. Noncoding RNAs (ncRNAs), a class of epigenetic processes, are molecules that
regulate gene expression under physiological and pathological conditions. MicroRNAs (miRNAs) are
the most characterized class of ncRNAs and are engaged in many cellular processes. In this review,
we describe how different miRNAs regulate some pathways leading to cell death by apoptosis,
specifically the intrinsic apoptosis pathway. Accordingly, many classes of natural products have been
tested for their ability to prevent DDP-induced apoptosis. The study of epigenetic regulation for
underlying cell death is still being studied, which will allow new strategies for the diagnosis and
therapy of this unwanted disease, which is presented as a side effect of antineoplastic treatment.

Keywords: apoptosis; miRNAs; noncoding RNAs; AKI; cell death

1. Introduction

Globally, cancer is the second leading cause of death. In 2020, 19.3 million new cases of
cancer and almost 10 million people died from this disease [1,2]. In 2022, 1,918,030 new cancer
cases and 609,360 cancer deaths are projected to occur in the United States [3]. Cisplatin (cis-
diamminedichloroplatinum (II), DDP) is an antineoplastic agent widely used in the treatment
of solid tumors because of its extensive cytotoxic activity [4–10]. Despite tremendous advances
in oncology, DDP remains a much sought-after chemotherapeutic agent. However, its applica-
tion has been limited due to several side effects such as nephrotoxicity [11]. Nephrotoxicity is
defined as the rapid deterioration in kidney function due to the toxic effect of medications
and chemicals [12]. For this to occur, DDP is concentrated and reabsorbed by renal tubular
cells (five times more than in the blood), which triggers a rapid decline in renal function [13].

DDP-induced nephrotoxicity can present in a several ways, but the most common and
serious presentation is acute kidney injury (AKI), which occurs in 20–30% of patients. The
mechanism of the DDP action is not completely understood. However, it is known that
DDP interacts primarily with genomic DNA, specifically the N7 position of guanine bases
(Figure 1A), causing inter- and intrastrand DNA crosslinks (Figure 1B), which perturbs
DNA synthesis, replication, and transcription, thereby inducing replication stress and DNA
damage response. This results in defective DNA strands, which may eventually result in
cell apoptosis (Figure 1C) [14,15].
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Figure 1. Mechanism of the cisplatin (DDP) action. (A) The platinum atom of DDP binds covalently 

to the N7 position of guanine. (B) An interstrand crosslink is formed when DDP binds to two bases 

from different strands. On the other hand, an intrastrand adduct is formed when DDP binds to two 

bases of the same strand. (C) DDP perturbs genomic DNA, inducing DNA damage response, which 

may result in apoptosis, DNA repair, and/or cell cycle arrest. Created with BioRender.com. 
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atively charged mitochondria in the proximal tubular cells, which attracts positively 
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nephrotoxicity in recent years. In 2001, Wu and Morris defined the term “epigenetics” as 

the study of the changes in gene expression, which occur in organisms with differentiated 

cells, and the mitotic inheritance of given patterns of gene expression [17]. These modifi-

cations result from changes in chromatin structural/activation states without altering the 
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sion regulation.  

Figure 1. Mechanism of the cisplatin (DDP) action. (A) The platinum atom of DDP binds covalently
to the N7 position of guanine. (B) An interstrand crosslink is formed when DDP binds to two bases
from different strands. On the other hand, an intrastrand adduct is formed when DDP binds to two
bases of the same strand. (C) DDP perturbs genomic DNA, inducing DNA damage response, which
may result in apoptosis, DNA repair, and/or cell cycle arrest. Created with BioRender.com.

The nephrotoxic effect produced by DDP is due to it accumulation in the kidney,
mainly in the S3 segment of the proximal tubules, determined by the high density of
negatively charged mitochondria in the proximal tubular cells, which attracts positively
charged DDP hydrolyzed complexes [16] and contributes critically to sublethal and lethal
injury of kidney tubules and the consequent loss of renal function.

Several studies have shown that epigenetic processes are involved in DDP-induced
nephrotoxicity in recent years. In 2001, Wu and Morris defined the term “epigenetics” as the
study of the changes in gene expression, which occur in organisms with differentiated cells,
and the mitotic inheritance of given patterns of gene expression [17]. These modifications
result from changes in chromatin structural/activation states without altering the DNA pri-
mary nucleotide sequence, triggering the activation of transcription or gene silencing [18].
Noncoding RNAs (ncRNAs), a class of epigenetic processes, are molecules that regulate
gene expression under physiological and pathological conditions [19]. MicroRNAs (miR-
NAs) are small ncRNAs, with an average of 22 bp in length, which have been extensively
studied. The latest release of the miRbase database (v22) contains 2654 human mature
miRNAs sequences [20], which confirms their importance in gene expression regulation.

Therefore, understanding the importance of miRNAs during the action of DDP, specif-
ically upon the induction of apoptosis during nephrotoxicity, is of great scientific interest.

2. Materials and Methods
2.1. Search Strategy

A comprehensive search in Google Scholar, Scopus, Pubmed, and Web of Knowledge
databases was carried out, to identify studies published from 1st January 1966 until May
2022, concerning the contribution of microRNAs in DDP-induced apoptosis related to
nephrotoxicity. Keyword combinations were used using the following words: cisplatin,
AKI, nephrotoxicity, renal cells, microRNA, miR, apoptosis, cell death, and natural products.

2.2. Inclusion and Exclusion Criteria

Original articles fulfilling the following search criteria were selected: (1) related to
apoptosis, (2) using DDP as the nephrotoxic agent, (3) written in English, (4) fully accessible
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for the authors (through journal subscriptions, request to authors, open access, among
others), and (5) in peer-reviewed journals. Review articles and studies where the primary
outcome was DDP resistance or sensitization in cancer were excluded. In addition, all those
papers that did not meet the five inclusion criteria previously described were excluded
from this study.

3. Intrinsic Apoptotic Pathway during DDP-Induced Nephrotoxicity

Cisplatin-induced nephrotoxicity is an adverse side effect of this antineoplastic drug
therapy and involves several types of cellular death, such as the necrosis (also called un-
controlled cell death) [21–23], apoptosis (programmed cell death) [24–29], and necroptosis
(regulated inflammatory cell death) [30,31] of renal cells. Concerning programmed apopto-
sis cell death, the three pathways that have been described are called intrinsic, extrinsic,
and endoplasmic reticulum stress (Figure 2). In this review, we focus specifically on the
mitochondrial apoptosis pathway.
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Figure 2. Activation of apoptotic pathways during cisplatin-induced nephrotoxicity. Cisplatin (blue cir-
cle) can activate both mitochondrial (purple) and death receptor (blue) pathways of apoptosis. Likewise,
endoplasmic reticulum (ER) stress may also be induced (green). Created with BioRender.com.

The intrinsic pathway refers to a primarily mitochondrial-mediated apoptotic pathway
that results in cell damage. The intrinsic mitochondrial pathway is the main apoptotic path-
way prompted during DDP-induced nephrotoxicity. In this pathway, cellular stress leads
to the activation of the proapoptotic B-cell lymphoma 2 (Bcl-2) proteins, Bcl-2-associated
X protein (Bax), and Bcl-2 homologous antagonist/killer (Bak) [32], and the reduction of
antiapoptotic proteins such as Bcl-2, Bcl-extra-large (Bcl-XL), and myeloid cell leukemia 1
(Mcl-1) [33,34]. This triggers mitochondrial outer-membrane permeabilization (MOMP),
releasing apoptotic factors, such as apoptosis-inducing factor (AIF) [35], cytochrome c [36],
endonuclease G [37], HtrA2/Omi [38], Smac/DIABLO [39], and others. Chipuk et al. also
showed that p53 directly activated Bax and triggered apoptosis [40].

Cytochrome c is a crucial mediator of the mitochondrial pathway. Once in the cytosol,
cytochrome c induces a dATP-mediate oligomerization of apoptotic protease-activating
factor-1 (Apaf-1) in a 2:1 ratio. This complex then recruits the initiator caspase of this
pathway, procaspase-9, and induces its autoactivation [41]. Finally, caspase-9, in turn,
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activates downstream caspases, such as caspase-3, and initiates the process of caspase-
dependent apoptosis [42]. In normal conditions, the second mitochondria-derived activator
of caspase (Smac), a protein located in the mitochondria, however, is released into the
cytosol when cells undergo apoptosis [43]. Some studies have shown that inhibitors
of apoptosis proteins (IAPs), such as XIAP, cIAP1, and cIAP2, are group proteins that
negatively regulate both caspases and cell death [44]. Thus, Smac is able to promote
caspase-9 activation by binding to IAPs and removing their inhibitory activity [43].

The involvement of the intrinsic pathway of apoptosis in DDP-induced nephrotox-
icity has been reported. On in vitro cultured cells, DDP treatment led to a reduction of
proapoptotic Bcl-2 protein expression, which was accompanied with an increase of anti-
apoptotic protein Bax and Bak [33,34,36,45–48], leading to apoptosis. In the same way, in
the rodent model, a reduced Bcl-2 protein expression was also observed after a single dose
of DDP [45]. After DDP treatment, the translocation of endogenous Bax from the cytosolic
to the membrane fractions was observed and, subsequently, the release of cytochrome c.
In addition, using adult Wistar rats, a single dose of DDP triggered severe kidney tissue
damage, accompanied by an increase in cytochrome c activity [49].

Endonuclease G has also been observed to be induced during DDP injury in mice [50].
Furthermore, using primary mouse proximal tubule cells, Cilenti et al. showed that the
level of Omi protein was also upregulated after DDP treatment, and this upregulation was
followed by the release of Omi from mitochondria to the cytoplasm, and the subsequent
degradation of XIAP [51]. Cisplatin also increases the expression of Apaf-1 [52] and then
activates caspase-9/-3 [53], leading to cell death.

4. Involvement of microRNAs upon Intrinsic Apoptosis Pathway during
DDP-Induced Nephrotoxicity

In 1993, two different studies, by Lee et al. [54] and Wightman et al. [55], discovered
the miRNAs, which revolutionized the field of molecular biology. MicroRNAs are a class
of ncRNAs of approximately 22 bp in length that recognize target sites, most commonly
found in the 3′-untranslated regions (3′-UTRs) of mRNAs, through imperfect base-pairing,
with one or more mismatches in sequence complementarity [56]. Briefly, the miRNAs
biogenesis is started when a pri-miRNA is transcribed from its miRNA gene and then
recognized and cleaved into pre-miRNA by RNA binding protein DiGeorge Syndrome
Critical Region 8 (DGCR8) and a ribonuclease III enzyme, Drosha [57], resulting in the
formation of a pre-miRNA, which is exported to the cytoplasm by an Exportin-5 and then
processed by the RNase III endonuclease, DICER, in collaboration with the transactivation
response RNA binding protein (TRBP) and Argonaute (Ago), which remove the terminal
loop, resulting in a mature miRNA duplex [58]. Both 5p or 3p strands originated from the
5′ or 3′ end of the pre-miRNA harping, respectively, are derived from the mature miRNA
duplex. Thus, the final result is the generation of a miRNA, which can negatively regulate
gene targets at the post-transcriptional level by perfect complementarity of their “seed”
region to the 3′-UTR of its target mRNA, inducing their degradation, or by an imperfect
complementarity, resulting in translational repression [59] (Figure 3).

In the following, recent progress of miRNA-targeted therapeutics is described, and po-
tential applications in the treatment of DDP-induced nephrotoxicity are discussed. Related
to the intrinsic pathway, several miRNAs have been described to regulate apoptosis-related
signaling molecules, which are summarized in Table 1.
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Using a gene microarray analysis, Zhu et al. [60] demonstrated that renal tissues from
the acute kidney injury (AKI) rats caused an upregulation in 36 miRNAs and downregu-
lation in 8 miRNAs. They selected miR-146b for its pronounced changes and verified the
increase of miR-146b in the kidneys of AKI rats and in NRK-52E cells treated with DDP.
Moreover, transfection with the miR-146b inhibitor reduced the apoptotic rate of NRK-52E
cells by directly targeting ErbB4. In DDP-induced apoptosis, restoring the in vitro inhibition
of miR-377 expression in tubular epithelial cells after DDP-induced kidney injury in mice
was restored by using mesenchymal stem cells (MSCs), since they promoted an increase
in the expression of cytoprotective genes, such as Bcl-2 [48]. Mesenchymal stem cells are
stromal cells that can self-renew and that also exhibit a multilineage differentiation [61];
they have been verified to be a safe and effective delivery vehicle for therapeutic miRNA
treatment [62]. Another bioinformatic research study also demonstrated that miR-1184
was downregulated in AKI. To obtain this, exosomal-miR-1184-derived MSCs alleviated
DDP-induced HK-2 cell injury, observed by the downregulation of the expression levels of
Bax and cleaved caspase-3 and the upregulation of the protein expression level of Bcl-2 [63].
In the same way, bone marrow MSCs also downregulated miR-107 expression induced after
the DDP stimulus, which increased the level of RPS19, and finally inhibited DDP-induced
apoptosis by reducing Bcl-2 protein expression [64]. Another study demonstrated that the
treatment with urinary exosomes from premature infants alleviated DDP-induced AKI
in mice and inhibited the apoptosis of HK-2 cells by reducing the expression of Bax and
increasing the expression of Bcl-2 via miR-30a-5p and targeting MAPK8 [45].
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Table 1. MicroRNAs (miRNAs) involved in cisplatin (DDP)-induced apoptosis-related signaling molecules.

ID Regulation in DDP-Induced Apoptosis Main Findings on Apoptosis-Related Signaling Molecules Reference

miR-9-3p Up
After a microarray assay, a network analysis showed that

miR-9-3p and miR-371b-5p were the most critical miRNAs
during DDP-induced cytotoxicity.

[65]

miR-30a-5p Down

Urinary exosomes derived from premature infants alleviated
DDP-induced apoptosis of HK-2 by augmenting Bcl-2
expression and reducing caspase-3 activity due to an
upregulation of miR-30a-5p, which led to the reduced

MAPK8 protein expression.

[45]

miR-31 Up
Puerarin alleviated DDP-induced AKI by suppressing miR-31
expression, enhancing Numb activation, and inhibiting the

Notch signaling pathway.
[66]

miR-34a Up

miR-34a was elevated in the kidney after DDP treatment. The
increase in miR-34a activated FOXO3 by suppressing SIRT1,

favoring a shift in tubular cell viability toward cell cycle
arrest or apoptosis.

[67]

miR-107 Up
Mesenchymal stromal cells downregulated miR-107
expression induced after DDP stimulus, inhibiting

DDP-induced apoptosis by reducing Bcl-2 protein expression.
[64]

miR-122 Down
miR-122 was decreased in the kidney after DDP treatment.

The reduction in miR-122 activated FOXO3, favoring a shift
in tubular cell viability toward cell cycle arrest or apoptosis.

[67]

miR-125b Up Inhibiting miR-125b expression exerted mitochondrial and
renal protection in DDP-damaged HK-2 cells. [68]

miR-132-3p Up Inhibition of miR-132-3p protected against DDP-induced AKI
via the SIRT1/NF-κB pathway. [69]

miR-144 Down

Remote ischemic preconditioning alleviated the renal
functional and histopathological damage of DDP-induced

AKI in mice and in NRK-52 cells by the upregulation of
miR-144 and the downregulation of its target PTEN.

[70]

miR-144-5p Up
Overexpression of miR-144-5p increased expression of

caspase-3/-9, and Bax, and also decreased levels of Bcl-2 in
DDP-stimulated HK-2 cells.

[71]

miR-146b Up Inhibition of miR-146b expression reduced the apoptotic rate
of NRK-52E cells by directly targeting ErbB4. [60]

miR-205-5p Down Enhancing miR-205-5p expression suppressed caspase-3
activity and apoptosis rate of in vitro cultured HK-2 cells. [72]

Down
Overexpression of miR-205 in HK-2 cells demonstrated that

they were more resistant to DDP-induced apoptosis by
directly targeting CMTM4.

[73]

miR-181a Up Promoted apoptosis by decreasing Bcl-2 and enhancing Bax
expression of HK-2 cells. [34]

miR-182-5p Up

Enhanced miR-182-5p, demonstrated to reduce renal
apoptosis of HK-2 cells by reducing Bcl-2 levels and
promoting Bax and cleaved caspase-3 after in vitro

DDP insult.

[74]

miR-199a-3p Up

Inhibiting the p53 expression, by using pifithrin-α,
attenuated renal injury and cell apoptosis in mice and HK-2

cells, respectively. Blocking miR-199a-3p reduced
DDP-induced apoptosis in HK-2 cells.

[75]

miR-371b-5p Up
After a microarray assay, a network analysis showed that

miR-9-3p and miR-371b-5p were the most critical miRNAs
during DDP-induced cytotoxicity.

[65]

miR-377-3p Up

Mesenchymal stromal cells restored tissue function after
DDP-induced kidney injury in mice, by promoting the

increase in the expression of cytoprotective genes, such as
Bcl-2, due to the inhibition of miR-377 in tubular

epithelial cells.

[48]

miR-449a Up
Overexpression of miR-449a led to the increased apoptotic

rate of HRPTEpCs after DDP treatment, while
antagomiR-449a reversed this effect.

[76]

miR-449 Up
Enhanced cell apoptosis of NRK-52E cells, observed by

decreased SIRT1 and increased phosphorylated-p53 and
BAX expression.

[33]

miR-1184 Down
Enhanced miR-1184 expression by using miR-1184 agomir,

downregulated Bax, and upregulated Bcl-2 protein
expression, thus reducing DDP-induced HK-2 cell injury.

[63]
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The ability of DDP to induce cell death requires the sequential activation of the
p53/ROS/p38a MAPK cascade [77]. On this basis, a microarray analysis identified
47 differentially expressed miRNAs during DDP-cytotoxicity of HK-2 cells. Moreover,
a pathway analysis indicated that the top upregulated pathways included the MAPK and
p53 signaling pathways. A further network analysis showed that the MAPK signaling
pathway and apoptosis were identified as core pathways and miR-9-3p and miR-371b-5p
as the most critical miRNAs during DDP-induced cytotoxicity [65]. In rat renal proximal
tubular cells, DDP-induced miR-449 upregulation was able to inhibit SIRT1 expression,
which further elevated acetylated p53 and BAX levels, leading to the p53/BAX signaling
of the intrinsic apoptosis pathway. Nevertheless, inhibiting miR-449 expression in DDP-
treated cells suppressed cell apoptosis [33]. After sequencing and a subsequent qRT-PCR,
Han et al. [69] revealed that miR-132-3p was upregulated after DDP treatment in mouse
and HK-2 cells. Moreover, they also found that apoptosis was suppressed by inhibiting the
miR-132-3p expression in DDP-stimulated HK-2 cells, and this suppression was blocked
by miR-132-3p mimics and exacerbated DDP-induced AKI by negatively regulating SIRT1
and activating the NF-κB signaling pathway. Yang et al. [75] also demonstrated that p53
was upregulated in DDP-induced AKI mice. They also observed that pifithrin-α inhibited
the p53 expression and attenuated renal injury in vivo and cell apoptosis in vitro in mice
and HK-2 cells, respectively. In addition, they identified that p53 regulated miR-199a-3p
expression and blocking miR-199a-3p reduced DDP-induced apoptosis in HK-2 cells. In
addition, the treatment of NRK-52E cells with this antineoplastic demonstrated that DDP
facilitated the association of FOXO3 and p53 and was parallel with the accumulation of Bax.
Furthermore, the overexpression of miR-122 diminished p53 and Bax levels in NRK-52E
cells treated with DDP, while the overexpression of miR-34a promoted both the basal and
the inducible expression of p53 and Bax [67].

p53 mediates cisplatin-induced apoptosis in renal proximal tubular cells, and p53 can
activate caspase-3 [78]. Related to this, Li et al. [76] described that HRPTEp cells treated
with DDP for 48 h showed that DDP led to significantly upregulated miR-449a. In the
same way, the overexpression of miR-449a led to an increased apoptotic rate of HRPTEpCs
after DDP insult, while antagomir-449a reversed it. Another study demonstrated that
HK-2 cells stimulated with DDP showed that the downregulation of miR-205-5p promoted
cell apoptosis, observed by an enhanced caspase-3 activity and apoptosis rate of in vitro
cultured cells. However, enhancing miR-205-5p expression suppressed apoptotic rate [72].
The levels of miR-144-5p were also downregulated in DDP-stimulated HK-2 cells, and
the expression levels of apoptosis-related proteins showed that enhancing miR-144-5p
expression was able to increase the expression levels of caspase-3/-9, and Bax, and to
decrease the expression levels of Bcl-2, by regulating PKM2 expression [71]. Opposite
results were observed by Zhang et al. [70], since they demonstrated that remote ischemic
preconditioning, a strategy to induce resistance in a target organ, exerted a protective
effect on DDP-induced AKI in mice by reversing the downregulation of miR-144 and the
dysregulation of caspase-3, Bax, and Bcl-2 expression in renal tissues of DDP-induced
AKI in mice and NRK-52 cells. A similar study also showed that an enhanced miR-182-
5p expression could reduce renal epithelial Bcl-2 levels and promote Bax and cleaved
caspase-3 after in vitro DDP insult, and inhibiting its expression attenuated the damage
of DDP in HK-2 cells [74]. Zhu et al. [34] found that miR-181a expression downregulated
after DDP-induced apoptosis. They also found that Bcl-2 was upregulated and Bax was
downregulated after the transient transfection of the miR-181a inhibitor in HK-2 cells,
suggesting that miR-181a was directly involved in the apoptotic process. Using qRT-PCR
analysis, Zhang et al. [73] observed a downregulation of miR-205 in HK-2 cells treated with
DDP. The transient overexpression of miR-205 using mimics demonstrated that HK-2 cells
were more resistant to DDP-induced apoptosis, by modulating CMTM4 protein expression.
In another study, qPCR was performed to evaluate the miR-125b expression in in vitro
and in vivo DDP-induced damage, and the results showed the upregulation of miR-125b
after DDP injection and in cultured tubular epithelial cells treated with DDP. Moreover,
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DDP-induced apoptosis was decreased by using a miR-125b inhibitor, as shown by the
TUNEL assay and the reduced Bax expression [68]. Another study demonstrated that DDP
notably increased miR-31 expression and apoptosis-associated proteins (caspase-3 and Bax),
while decreasing the antiapoptotic factor, Bcl-2, in kidney samples [66].

Thus, it is evident that many miRNAs exert a fundamental role in activating or
inhibiting critical molecules in the progression of the mitochondrial pathway of apoptosis.

5. Potential Utility of Natural Products in DDP-Induced Apoptosis

Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are
limited by its nephrotoxicity, which affects mainly the renal tubular cells. It accumulates
in proximal and distal epithelial tubule cells and causes cell death. Consequently, various
classes of natural products have been tested for their capacity to prevent DDP-induced
nephrotoxicity. Furthermore, natural products also overcome resistance, sensitizing cancer
cells to DDP [79].

Currently, there is no effective drug to avoid or treat DDP-induced nephrotoxicity.
As a result, multiple drugs from natural products have been developed to protect against
DDP-induced side effects. All the following natural products we describe have been
shown to reduce, alleviate, or mitigate DDP-induced nephrotoxicity by regulating DDP-
induced mouse tubular epithelial cells apoptosis by inhibiting the expression of p53, Bax,
and cleaved caspase-3/-9 and activating the expression of Bcl-2 both in in vitro cultured
HEK-293, HK-2 and/or LLC-PK1 cells and in in vivo DDP-induced AKI mice and/or rats.

Alkaloids are a class of natural compound. Alkaloids represent a vast group of
naturally occurring compounds which contain at least one nitrogen atom (amino or amido
in some cases). Some alkaloids shown to prevent DDP-induced apoptosis include the
berberine [80,81], betaine [49,82], boldine [83], and ligustrazine [84,85].

Flavonoids are a class of polyphenolic secondary metabolites found in plants. Several
studies have shown that the use of certain flavonoids prevent DDP-induced apoptosis, most
notably the use of astilbin [86], cyanidin [87], epicatechin gallate [88], farrerol [89], galan-
gin [90,91], hespertin [92], icariin [93,94], isoliquiritin [95], isoorientin [96], isoquercitrin [97],
luteolin [98,99], morin [100], naringin [101], puerarin [66], quercetin [102,103], rutin [104],
scutellarin [105], silybin [106], silymarin [107,108], and wogonin [109,110].

Another class of natural product consists of phenolic compounds. They are secondary
metabolites produced in the shikimic acid of plants, which contain benzene rings, with
one or more hydroxyl substituents. Phenolic compounds with research related to this
side effect include curcumin [111–115], ellagic acid [116], epigallocatechin gallate [117,118],
ferulic acid [115], honokiol [119], hydroxytyrosol [120], oleuropein [121], punicalagin [122],
rosmarinic acid [123], sinapic acid [124], and zingerone [125].

Likewise, terpenoids are a large and diverse group of lipids resulting from five-carbon
isoprene units assembled in thousands of combinations and are isolated from plants and
microbial sources. The following terpenoids have shown potential in some studies: anemo-
side B4 [126], carnosic acid [127], carvacrol [128,129], dioscin [130], germacrone [131],
ginsenoside 20 (S)-RG3/Re/RG5/Rk1/Rh2 [132–136], linalool [137], Panax quinquefolius
saponins [138], Panax notoginseng saponins [139,140], platycodin D [141,142], pseudoginsen-
genin DQ [53], red ginseng [143], saikosaponin D [144], and Terminalia arjuna triterpenoid
saponins [145].

However, only a few studies have shown the use of antioxidants in epigenetic regu-
lation, specifically on miRNAs, during DDP-induced apoptosis. For example, betanin, a
natural red glycoside food dye obtained from beets, has been shown to reduce organ dam-
age induced by DDP by reducing miRNA-34a expression and enhancing the SIRT1/PGC-α
pathway [146]. Moreover, puerarin, another natural flavonoid extracted from the Chinese
medical herb Radix puerariae, alleviated DDP-induced AKI by suppressing miR-31 expres-
sion, enhancing Numb activation, thereby inhibiting the Notch signaling pathway [66].
Finally, dioscin, a steroid saponin commonly found in various herbs, protected against
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DDP-induced injury to NRK-52E and HK-2 cells by decreasing miR-34a expression, which
was accompanied by increased levels of SIRT1, and thus, cell damage [130].

Therefore, natural products could be developed as a new candidate to alleviate DDP-
induced cell injury. In addition, they could be used as an ncRNA-based therapy to counter-
act apoptosis and other pathways induced during nephrotoxicity.

6. Conclusions

Nephrotoxicity is the main side effect of DDP treatment. Therefore, understanding
the epigenetic mechanisms underlying the side effect of nephrotoxicity may contribute
to implementing therapeutic strategies to alleviate this side effect of chemotherapeutic
treatment. This review revealed the complexity of the interactions between miRNAs with
their respective targets, how this contributed to the induction of the intrinsic apoptosis
pathway, and some natural strategies for overcoming this side effect. Thus, it provided
a starting point for developing ncRNA-based therapies to accelerate the resolution of
apoptosis induced during nephrotoxicity, thus improving the quality of life of patients
treated with DPP.
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