
Systems biology

caspo: a toolbox for automated reasoning

on the response of logical signaling

networks families

Santiago Videla1, Julio Saez-Rodriguez2,3, Carito Guziolowski4 and

Anne Siegel5,6,*

1LBSI, Fundaci�on Instituto Leloir (IIBBA-CONICET), Buenos Aires, C1405BWE, Argentina, 2RWTH Aachen

University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen D-52074, Germany,
3European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome

Campus, Hinxton CB10 1SD, UK, 4IRCCyN UMR CNRS 6597, �Ecole Centrale de Nantes, Nantes 44321, France, 5CNRS,

UMR 6074-IRISA, 35042 Rennes, France and 6Dyliss project, INRIA, Campus de Beaulieu, Rennes 35000, France

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on August 7, 2016; revised on October 26, 2016; editorial decision on November 17, 2016; accepted on November 19, 2016

Abstract

Summary: We introduce the caspo toolbox, a python package implementing a workflow for rea-

soning on logical networks families. Our software allows researchers to (i) learn a family of logical

networks derived from a given topology and explaining the experimental response to various

perturbations; (ii) classify all logical networks in a given family by their input-output behaviors;

(iii) predict the response of the system to every possible perturbation based on the ensemble of

predictions; (iv) design new experimental perturbations to discriminate among a family of logical

networks; and (v) control a family of logical networks by finding all interventions strategies forcing

a set of targets into a desired steady state.

Availability and Implementation: caspo is open-source software distributed under the GPLv3

license. Source code is publicly hosted at http://github.com/bioasp/caspo.

Contact: anne.siegel@irisa.fr

1 Introduction

Deciphering the functioning of the so-called biological networks is

one of the central tasks in systems biology. In particular, signal

transduction networks are crucial for the understanding of the cellu-

lar response to external and internal perturbations. Further, such

networks are involved in biomedical processes and their control has

a crucial impact on drug target identification and diagnosis.

Importantly, in order to cope with the complexity of these networks,

quantitative and qualitative modeling is required. Among various

qualitative modeling approaches, logic-based models are relatively

simple yet able to capture interesting and relevant behaviors in the

cell (Abou-Jaoudé et al., 2016; Wang et al., 2012). Moreover, the

automated learning of Boolean logic models describing signaling

pathways can be achieved by training a generic prior knowledge

network (PKN), typically derived from literature, to phosphoproteo-

mics data (Saez-Rodriguez et al., 2009). Nonetheless, the fact that a

single model is most often non-identifiable remains to be a main

issue. Notably, this can happen due to several reasons such as lim-

ited observations and the uncertainty in experimental measure-

ments. Hence, biological insights and novel hypotheses resulting

from modeling and analysis are likely to be biased by methodo-

logical decisions when a single model is selected.

In this context, instead of selecting one model only, we propose to

perform automated reasoning over a family of admissible logical net-

works (Guziolowski et al., 2013). In particular, this allows us to study

the variability in a given family of logical networks from various per-

spectives looking for more robust insights. Towards that end, our soft-

ware provides a workflow which we describe in the following section.

VC The Author 2016. Published by Oxford University Press. 947

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(6), 2017, 947–950

doi: 10.1093/bioinformatics/btw738

Advance Access Publication Date: 23 November 2016

Applications Note

http://github.com/bioasp/caspo
Deleted Text: ; Abou-Jaoud&hx00E9; <italic>et<?A3B2 show $146#?>al.</italic>, 2016
http://www.oxfordjournals.org/

2 Overview

The workflow implemented by caspo is depicted in Figure 1. It starts

with a PKN describing signed and directed signaling interactions and a

dataset providing phosphorylation activities of a set of readouts with

respect to several perturbations combining stimuli and inhibitions.

Learn. Given the PKN and the phosphoproteomics dataset, we aim

at learning all logical networks compatible with the given topology

and explaining the experimental observations similarly well

(Guziolowski et al., 2013; Videla et al., 2015b). Note that the num-

ber of logical networks in the family depends on the level of toler-

ance with respect to optimal fitness and size. In fact, this allows us

to consider the uncertainty in observations and relax the parsimoni-

ous principle adopted for the learning.

Classify and predict. Once a family of logical networks is available,

we are interested in classifying them with respect to their input–out-

put predictions. Concretely, we look for sub-families of networks

which cannot be distinguished based on the available experimental

setup, i.e. the set of stimuli, inhibitions, and readouts. Note that lo-

gical networks within the same sub-family generate exactly the same

output (readout) response for every possible input (stimuli and in-

hibitions), i.e., they are equivalent in terms of input-output. Thus,

we refer to such sub-families of logical networks as logical input-

output behaviors. Interestingly, the number of logical input-output

behaviors is often significantly less than the number of logical net-

works (Guziolowski et al., 2013) and this facilitates further ana-

lyses. For example, based on the input-output classification, we can

compute the response of the system for every possible perturbation

by combining the ensemble of predictions from all input-output be-

haviors. More precisely, for each possible input, the prediction for

any output node will be the weighted average over the predictions

from all input-output behaviors and where each weight corresponds

to the number of networks exhibiting the corresponding behavior.

Next, we can study the variability of each readout by means of the

mean variance across all perturbations.

Design. As already noted, logical networks having the same input–

output behavior cannot be discriminated based on the available ex-

perimental setup. However, alternative input-output behaviors

could be distinguished by conducting further experiments. Thus,

given a set of input-output behaviors, we are interested in designing

new experimental perturbations which would allow for an optimal

discrimination of rival models at hand (Videla et al., 2015a). Once

the experiments are carried out in the wet lab, the new experimental

observations would be combined with the previously available data-

set and the workflow could start over.

Control. To conclude, given a family of logical networks we are

interested in identifying key-players that would allow to control the

response in every network. More precisely, we aim at finding min-

imal intervention sets that would force a set of targets into a desired

steady state under various environmental conditions or constraints

(Kaminski et al., 2013). For example, this could allow to find new

therapeutic targets relevant for drug development or diagnosis.

Consider two cell types, e.g. normal cells and cancer cells, and a

family of logical networks describing the response in normal cells.

Notably, such a family of networks will not reproduce the response

of cancer cells to certain environmental condition. However, one

could look for interventions that would force logical networks to

reach the observed response in cancer cells. Then, such interventions

could be interpreted as the mutations leading to cell dysfunction.

Each of the steps described above represents a challenging com-

binatorial optimization problem. In particular, our software

strongly relies on answer set programming (ASP), a declarative mod-

eling paradigm for which highly efficient solvers are available.

3 Implementation

Our software provides a command line interface (CLI) as well as an

application programming interface (API) in order to facilitate the inte-

gration with other software packages and tools. Next, we provide a

brief description of the CLI and refer the reader to the online docu-

mentation for an in-depth description of installation and usage (http://

caspo.readthedocs.io). The CLI consists of various subcommands, viz.,

learn, classify, design, predict, control, visualize and test. Each sub-

command provides its own help message describing required inputs

and available options. Subcommands learn, classify, design, predict

and control implement all the steps in the workflow described before

and depicted in Figure 1. Each subcommand will output one or more

files and some default visualizations. In general, the output of one sub-

command corresponds to the input of another subcommand. This en-

ables a straightforward application of the workflow for users without

programming expertise. Finally, the subcommand test runs the com-

plete workflow using various examples distributed with caspo.

Assumptions. We assume any signed and directed graph as a valid

PKN typically describing signaling or regulatory events in the cell.

However, while caspo accepts PKNs with loops, logical networks

learned by caspo will not have loops since we focus on the response

of the system at a single time-point reflecting a pseudo-steady state.

It is worth noting that, an ASP-based method for learning logical

networks with feedback-loops has been recently published

(Ostrowski et al., in press) but is in general more limited in terms of

the scale of systems it could possibly address. In this context, the

classification of networks into input-output behaviors, the design of

experiments in order to discriminate such behaviors, and the predic-

tions made from such behaviors also assume logical networks with-

out loops. In contrast, the control of logical networks is more

general as it accepts any logical network (with or without loops). In

caspo learn, classify, design and predict we assume an experimental

setup fixed, i.e. a fixed set of possible stimuli, inhibitors and read-

outs. Further, in caspo learn we assume a dataset describing the re-

sponse of the system to multiple experimental perturbations

Fig. 1. The caspo’s workflow. The workflow consists of a loop made of three

main modeling steps: (i) learn a family of logical networks from a prior know-

ledge network and a phosphoproteomics dataset; (ii) classify networks wrt to

their I/O behaviors; and (iii) design new experiments to discriminate all I/O be-

haviors. Once a family of logical networks and their I/O behaviors have been

identified, several applications can be addressed by caspo

948 S.Videla et al.

Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
http://caspo.readthedocs.io
http://caspo.readthedocs.io
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,

combining stimuli and inhibitors. Such a system response must be

provided in terms of measurements over the set of readouts at a sin-

gle time-point and normalized in the range [0,1]. Although the meth-

ods implemented in caspo were initially developed for signaling

networks and phosphoproteomics datasets, any PKN and dataset

satisfying these assumptions could also work.

Case studies. We consider three real-world and recently published

case studies modeling signaling pathways of primary human hepato-

cytes in liver cells. In Table 1 we describe the main characteristics

for each PKN and dataset. Apart from number of nodes and edges

for each PKN, we also show the number of possible hyperedges h

derived from the PKN. Such a number is particularly relevant for

learning logical networks since the number of possible networks to

explore is given by 2h (Saez-Rodriguez et al., 2009). The small-scale

case study (S) consists of a PKN and a dataset from the DREAM4

challenge (Prill et al., 2011). The medium-scale case study (M) con-

sists of a PKN and a dataset introduced in Saez-Rodriguez et al.

(2009). Finally, the large-scale case study (L) consists of a PKN and

a dataset published by Melas et al. (2012). Further, in this case we

consider either to limit the number of sources per hyperedge to 2

(up to 2 inputs per AND gate) or not (XL). Notably, this has a direct

impact in the search space of logical networks to explore during

learning.

Performance. We illustrate the performance of caspo over each case

study for learn, classify, and design. For control, we refer the reader

to Kaminski et al. (2013). Benchmarks shown in Table 1 were run

using a dedicated server with 16 cores and 60G of RAM. Notably,

running caspo using 16 threads allows us to explore the search space

using 16 different search heuristics in parallel. The learning of lo-

gical networks for the small and medium-scale case studies is rela-

tively easy for caspo while the large and extra large-scale case

studies increase computation time in three and four orders of magni-

tude, respectively. For the large and extra large-scale case studies

(with and without limiting the number of inputs per AND gate),

caspo finds the same family of 384 optimal logical networks. Thus,

for the following analyses in the workflow (classify and design) L

and XL are reported as one case study. As shown in Table 1 several

hundred of networks can be classified by caspo into the correspond-

ing input-output behaviors in a few seconds. However, classification

of a logical networks family into input-output behaviors is highly

dependent in the number of networks in such a family. For example,

if we increase the tolerance over optimum MSE for the medium-

scale case study to 8%, caspo finds 3524 logical networks in

8 seconds. In that case, such a family of networks is classified into

66 input-output behaviors in �10 min. Similarly, finding all optimal

experimental designs in order to discriminate among a few input–

output behaviors can be very fast as shown in Table 1. Nonetheless,

as the number of input–output behaviors increases, the computation

time required to find all optimal experimental designs could also in-

crease significantly. For example, for the family of 66 input-output

behaviors, caspo finds 6 optimal experimental designs made of 7

perturbations each in �3 h.

4 Conclusion

The caspo toolbox provides a logic-based implementation of the

hypotesis-driven research loop in systems biology. Combining vari-

ous steps, viz., learn, classify, design, predict and control, it enables

a complete study of the variability of logical networks families from

various perspectives.

Our software could be extended in several ways. In particular,

the learning of logical networks could allow users to specify a set

of fixed logic rules and learn the rest. Also, feasible interactions

are likely to be missing from any given PKN. Thus, the ability to

infer new links that would improve the fitness to a given dataset

could be very useful. Moreover, links in the PKN could be as-

signed to different levels of confidence depending on the methods

used to build such a PKN and weighted accordingly in the object-

ive function (Eduati et al., 2012). Regarding performance, while

caspo is able to cope with real-world case studies very efficiently,

various factors should be taken into account, especially for learn-

ing logical networks. Of course, the size of the PKN is determin-

ant but also the amount and type (single versus combinatorial)

of experimental perturbations is critical in order to constrain

the search space. Further, tolerances with respect to optimum

MSE and size could lead to an intractable number of logical net-

works if they are not chosen carefully and rather conservatively.

Altogether, the caspo toolbox is a powerful software that we ex-

pect to keep improving as more researchers start using it for their

investigations.

Funding

Biotempo ANR-10-BLANC-0218 and TGFSysBio (ITMO Cancer, Plan

Cancer 2014–2018).

Conflict of Interest: none declared.

Table 1. Description of three case studies, i.e. PKN and dataset

Case studies Learn Classify Design

Scale Nodes Edges Hyperedges Perturbations Readouts MSE Size Networks topt tenum I/O tio Designs

Perturbations/

design topt tenum

S 17 32 77 25 175 0.0395 15 178 0.06 0.28 5 3.10 1 3 0.01 0.02

M 31 53 130 64 960 0.0499 28 144 0.24 0.57 4 7.85 2 2 0.01 0.02

L 45 110 265 120 1920 0.1317 52 384 516.73 174.11
4 10.59 9 3 0.02 0.04XL 45 110 489 120 1920 0.1317 52 384 1501.81 3367.42

Both, L and XL correspond to the same PKN and dataset but L is limited to hyperedges with up to 2 source nodes (which yields logical networks having AND

gates with up to 2 inputs) while XL considers any possible hyperedge. In learn we show optimum mean squared error (MSE) and size, number of networks within

certain MSE and size tolerance (10% and 2 for S, 2% and 0 for M, and no tolerance for L and XL), computation time for finding the optimum (topt) and for enu-

meration of all optimal networks (tenum). In classify we show the number of input-output behaviors and the computation time (tio). Finally, in design we show the

number of optimal experimental designs, the number of experimental perturbations per design, and computation time for finding the optimum (topt) and for enu-

meration of all optimal designs (tenum). All computation times shown are reported in seconds.

A toolbox for automated reasoning on the response of logical signaling networks 949

Deleted Text: <IMG_FOUND/>
Deleted Text: While
Deleted Text: 3
Deleted Text: 4
Deleted Text: approximately
Deleted Text: utes
Deleted Text: -
Deleted Text: -
Deleted Text: approximately
Deleted Text: ours
Deleted Text: ,

References

Abou-Jaoudé,W. et al. (2016) Logical modeling and dynamical analysis of cel-

lular networks. Front. Genet., 7, 94.

Eduati,F. et al. (2012) Integrating literature-constrained and data-driven infer-

ence of signalling networks. Bioinformatics, 28, 2311–2317.

Guziolowski,C. et al. (2013) Exhaustively characterizing feasible logic models

of a signaling network using answer set programming. Bioinformatics, 29,

2320–2326.

Kaminski,R. et al. (2013) Minimal intervention strategies in logical signaling

networks with ASP. Theory Pract. Logic Program., 13, 675–690.

Melas,I.N. et al. (2012) Construction of large signaling pathways using an

adaptive perturbation approach with phosphoproteomic data. Mol.

BioSyst., 8, 1571–1584.

Ostrowski,M. et al. Boolean network identification from perturbation time

series data combining dynamics abstraction and logic programming.

Biosystems, (in press).

Prill,R.J. et al. (2011) Crowdsourcing network inference: The dream predict-

ive signaling network challenge. Sci. Signal., 4, mr7.

Saez-Rodriguez,J. et al. (2009) Discrete logic modelling as a means to link pro-

tein signalling networks with functional analysis of mammalian signal trans-

duction. Mol. Syst. Biol., 5, 331.

Videla,S. et al. (2015a) Designing experiments to discriminate families of logic

models. Front. Bioeng. Biotechnol., 3, 131.

Videla,S. et al. (2015b) Learning boolean logic models of signaling networks

with ASP. Theor. Comput. Sci., 599, 79–101.

Wang,R.S.R. et al. (2012) Boolean modeling in systems biology: an overview

of methodology and applications. Phys. Biol., 9, 055001n model.

950 S.Videla et al.

	btw738-TF1

