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Abstract

Annotation of organism-specific metabolic networks is one of the main challenges of systems 

biology. Importantly, due to inherent uncertainty of computational annotations, predictions of 

biochemical function need to be treated probabilistically. We present a global probabilistic 

approach to annotate genome-scale metabolic networks that integrates sequence homology and 

context-based correlations under a single principled framework. The developed method for Global 

Biochemical reconstruction Using Sampling (GLOBUS) not only provides annotation 

probabilities for each functional assignment, but also suggests likely alternative functions. 

GLOBUS is based on statistical Gibbs sampling of probable metabolic annotations and is able to 

make accurate functional assignments even in cases of remote sequence identity to known 

enzymes. We apply GLOBUS to genomes of Bacillus subtilis and Staphylococcus aureus, and 

validate the method predictions by experimentally demonstrating the 6-phosphogluconolactonase 

activity of ykgB and the role of the sps pathway for rhamnose biosynthesis in B. subtilis.

Introduction

Advances in DNA sequencing technologies and high-throughput experiments provide a 

unique opportunity to study cellular function at the systems level. The systems biology 

perspective seeks to understand how the interaction between multiple genomic components 

determines cellular physiology. Genome-scale metabolic networks serve as an important 

platform for such systems analyses and have been very successful in predicting various 

emergent properties of biological systems. They also have great potential for guiding 

metabolic engineering1 and aiding drug target discovery2. Unfortunately, accurate manual 
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annotations of organism-specific metabolic networks are laborious and can take up to a year 

for a typical microbial genome. Efforts have been made to automate the reconstruction 

process, particularly the initial steps of genome annotation and network assembly3-5.

The annotation process usually relies on sequence homology methods, in which the function 

of a metabolic gene is assigned based on sequence similarity to known enzymes6. Although 

homology methods have been successful overall, annotations established based solely on 

weak sequence identity are often unreliable due to frequent functional divergence between 

distant homologues. It was demonstrated that a sequence identity above 60% is usually 

required to accurately transfer a precise enzyme function, i.e. all four digits of an Enzyme 

Commission (EC) number7. Consequently, homology-based methods fail to assign functions 

to a substantial fraction of genes in completely sequenced genomes and have been known to 

produce multiple imprecise or incorrect annotations8,9.

The metabolic network reconstruction for a given genome is usually performed based on a 

functional annotation of all metabolic genes. Functional databases such as BRENDA10, 

GeneCards11, KEGG3, MetaCyc12 or Swiss-Prot13 are useful resources for establishing 

initial associations between metabolic genes and corresponding biochemical reactions. Draft 

metabolic models are typically reconstructed by assembling annotated biochemical reactions 

into a network. One disadvantage of this two-step approach is that genes are annotated 

individually rather than being considered together in a proper network context. Therefore, 

some successful computational approaches utilize pre-defined or manually curated 

metabolic pathways5 and subsystems14 to annotate network reactions. Naturally, the 

accuracy of such methods depends both on the quality of the initial annotation and the 

evolutionary conservation of reference pathways.

Context based methods such as phylogenetic profiles15, protein fusions16, gene co-

expression17, and chromosomal gene neighborhood18 capture conserved functional 

relationships and often provide information complementary to sequence homology19. The 

effectiveness of these methods has been shown by determining members of protein 

complexes, functional modules, and molecular pathways20,21. Multiple studies have also 

demonstrated that context associations combined with local network structure can be used to 

identify genes responsible for orphan metabolic activities and to improve existing 

annotations of metabolic genes22,23. Therefore, it is natural to combine sequence homology 

and context functional descriptors using a unified probabilistic framework.

Although powerful probabilistic approaches, such as Bayesian and Boolean networks, have 

been applied to reconstruction of regulatory and signaling networks based on high-

throughput data24, global probabilistic methods to annotate metabolic networks have not 

been developed. Here, we present such a global probabilistic approach that integrates 

sequence homology and context associations to annotate genome-scale metabolic networks. 

The method for Global Biochemical reconstruction Using Sampling (GLOBUS) not only 

provides annotation probabilities for each gene and each metabolic activity, but also 

suggests possible alternative functions. We applied GLOBUS to the genomes of Bacillus 

subtilis and Staphylococcus aureus, evaluated the accuracy of the reconstructed networks, 
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and experimentally validated three B. subtilis predictions that have important functional 

consequences.

Results

Strategy of a global probabilistic reconstruction

The conceptual outline of GLOBUS is shown in Figure 1. First, we built a generic metabolic 

network containing all possible metabolic activities characterized in the Enzyme 

Commission (EC) system (http://www.chem.qmul.ac.uk/iubmb/enzyme/). Nodes of this EC 

network represent known enzymatic activities (Fig. 1a), and network edges are established 

by metabolites shared between the activities either as substrates or products25. The usage of 

the global EC network allowed us to consider gene function in a proper network context 

without predefining metabolic pathways. With the EC network as a scaffold, the global 

metabolic reconstruction for a given organism is equivalent to assigning metabolic genes to 

their correct network locations (Fig. 1b). In this way, organism-specific networks will 

occupy a subset of all possible locations (activities) in the global EC network.

A gene assigned to its correct network location usually has at least remote sequence identity 

to enzymes known to catalyze the corresponding activity. In addition, a correctly assigned 

gene often has good context correlations with its network neighbors. As we demonstrated 

previously, the genes with high mutual context correlations tend to be located closer in 

metabolic networks22. For example, we show that the higher a context correlation between a 

pair of S. cerevisiae genes, the more likely that the genes are direct network neighbors 

(Supplementary Results, Supplementary Figure 1).

In GLOBUS we used sequence homology and context correlations to evaluate a given global 

assignment of multiple metabolic genes into a set of network locations using a Markov-like 

fitness function. The contribution of each gene to the fitness function depends on the 

sequence identity to the assigned location and the context correlations with the genes 

assigned to neighboring network positions. The overall GLOBUS fitness function E(g1, g2, 

…., gn) (see Methods), which is calculated based on a given assignment of metabolic genes 

(g1, g2, …., gn), consists of the following terms:

(1)

where fs are various homology-based and context-based functional descriptors, and bs are 

corresponding positive coefficients representing weights of each descriptor in the fitness 

function. For homology descriptors we used two separate terms: 1.) the highest sequence 

identity to a Swiss-Prot13 protein annotated to catalyze the corresponding activity in other 

species (annotations marked as based exclusively on computational methods were 

excluded), and 2.) a binary (0 or 1) descriptor indicating if a protein ortholog in another 

species is annotated to catalyze the activity. For context-based descriptors we used three 

types of gene-gene correlations: phylogenetic profiles (which quantify the co-occurrence of 

gene orthologs across species, see Methods), chromosomal gene clustering across sequenced 

genomes, and mRNA co-expression. For each context descriptor, we considered the 

maximum correlation Z-score (see Methods) between the gene under consideration and 
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genes assigned to neighboring network locations. In addition, we also considered a context 

term describing the co-occurrence across sequenced genomes of various metabolic activities 

according to annotations available in the KEGG database.

Using the described fitness function, the global probability for a particular assignment of 

multiple genes into their network locations is given by P(g1, g2, …., gn) based on the 

relationship used in statistical physics and Markov Random Fields (MRF)26

(2)

, where E(g1, g2, …., gn) is the aforementioned fitness function, and Z is a normalizing 

partition function, which is necessary to insure that probabilities of all possible metabolic 

assignments sum to one. Using the defined probabilities we sampled from all possible 

assignments proportionally to their likelihood using Gibbs sampling27. Gibbs sampling is a 

version of Markov Chain Monte Carlo (MCMC)28 and has been successfully used in many 

computational biology applications, such as finding transcription factor binding sites in a set 

of DNA sequences29. The efficiency of the Gibbs sampling in GLOBUS is due to the fact 

that although there is a combinatorially large number of possible metabolic assignments, the 

vast majority of them have very low probabilities. The Gibbs sampling allows to efficiently 

sample the most relevant global assignments according to their probabilities.

A step in a Gibbs chain was simulated by: 1.) selecting a random gene assigned to a 

particular network location, 2.) determining the probabilities for all possible locations of the 

selected gene, including the present location, and 3.) re-assigning the gene to a location 

according to the calculated probabilities (Fig. 1c,d). In the sampling we only considered the 

locations with at least remote sequence identity to the corresponding gene. In addition to 

possible locations in the network, a special out-of-the-network node was created, and in all 

Gibbs steps the move to the out-of-the-network node was also considered. The energy 

contribution to the fitness function for all genes located in the out-of-the-network node was 

the same. The energy in the out-of-the-network node is a parameter of the simulation (see 

below), it ensures that genes with little sequence identity or context correlation to any 

network location have a low probability of being assigned to an EC number. Importantly, we 

empirically established the absence of ergodicity problems in Gibbs sampling of microbial 

genomes. In other words, the annotation probabilities converged to essentially the same 

values for chains started from different random assignments; after about 20000 iterations the 

maximum probability difference across all genes was < 1%. Based on the convergent Gibbs 

chains we obtained the marginal probabilities for each metabolic assignment, consistent with 

the global fitness function.

Optimization of the fitness function parameters

The GLOBUS fitness function contains several important adjustable parameters bs, that 

represent relative weights of several sequence and context correlations. The values of these 

parameters directly affect the sampling and the resulting gene annotation probabilities. To 

learn the parameters we applied a maximal likelihood approach using a well-annotated 

metabolic model of S. cerevisiae (iLL67230). Specifically, following the approach 
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commonly used in MRF26, we optimized the fitness function parameters to maximally 

increase the product of the probabilities for correct gene assignments in the yeast network. 

Multiple simulated annealing31 runs were used to the search the parameter space for 

maximal likelihood values. Importantly, in searching for the parameters over-fitting was not 

an issue as many hundreds of known metabolic annotations (485 yeast genes with EC 

numbers in the iLL672 model) dominate the number of optimized parameters (7 parameters 

in total). As a result of the maximum likelihood optimization, the yeast genes in their correct 

network locations had a geometric mean probability of 0.617, and an overall prediction 

accuracy of 80.5%, i.e. the overlap with the iLL672 model when genes were assigned to 

their most probable locations. Using more recent metabolic models of S. cerevisiae 

(iMM90432) or B. subtilis (iBsu110333) for optimization resulted in similar parameter values 

and similar GLOBUS probabilities (Supplementary Fig. 2). Thus, we used the parameters 

optimized with the iLL672 model for GLOBUS metabolic annotations in other species.

GLOBUS precision-recall performance

To understand the utility of GLOBUS for metabolic network annotations we applied it to the 

genomes of a gram-positive model bacterium, B. subtilis, and a medically important 

bacterium, S. aureus. The genomes of these bacteria contain 1244 (B. subtilis) and 854 (S. 

aureus) genes with at least remote sequence identity to known enzymes in other species. 

Several curated metabolic models are also available for these species: iYO84434 and 

iBsu110333 for B. subtilis and iSB61935 for S. aureus. The parameters optimized using the 

yeast model (see above) were used in Gibbs sampling of all possible metabolic assignments 

in the two bacteria. The GLOBUS annotation probabilities were generated and precision-

recall curves calculated (Fig. 2a) based on comparison with the corresponding curated 

models. For comparison we also show in the figure the precision-recall curves calculated 

based only on sequence identity to enzymes in other species; similar results were obtained 

using either BLAST or PSI-BLAST36 (Supplementary Fig. 3). The precision-recall 

calculations demonstrate that GLOBUS substantially outperforms homology in the areas of 

high recall and high precision.

Further analysis (Fig. 2b,c) demonstrates that the main source of the superior GLOBUS 

performance lies in more accurate annotations of genes with low sequence identity to known 

enzymes. In Figure 2b we show the recall (at 70% precision) for gene annotations in B. 

subtilis and S. aureus as a function of sequence identity to known enzymes. GLOBUS 

recovers significantly more correct assignments compared to homology (10%, P < 4 × 10−4 

for B. subtlis, and 14%, P < 5 × 10−5 for S. aureus, χ2 test), especially for cases with less 

than 40% sequence identity. In Figure 2c we show that at the same level of recall (90%) 

GLOBUS achieves significantly higher precision (9% and 11% more, P < 8 × 10−5 and P < 

5 × 10−3). The difference in precision is again highest for genes with low sequence identity 

to known enzymes, which constitutes a substantial fraction of all potential metabolic genes 

(Supplementary Fig. 4).

To investigate the contribution of individual context correlations to the GLOBUS 

performance, we optimized the coefficients of the fitness function without each context 

descriptor. We then compared the precision and recall values for predictions using all 
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context correlations and predictions obtained without individual correlations (see 

Supplementary Fig. 5). This analysis showed that all correlations contribute to the method’s 

accuracy and that – similar to the complete fitness function - the effects of the individual 

context correlations are most apparent for cases with lower sequence identity.

We investigated the potential utility of GLOBUS for refining existing metabolic models by 

comparing two curated models of B. subtilis33,34 (older iYO844, newer iBsu1103) and two 

models of S. cerevisiae30,32 (older iLL672, newer iMM904). Specifically, we considered all 

annotations with non-zero GLOBUS probabilities that were not included in the older 

metabolic models. We then subdivided these non-zero GLOBUS annotations into those that 

were included in the newer models and those that were not included in the newer models for 

each species. This analysis showed (see Supplementary Fig. 6) that for both species, and 

across different sequence identity bins, higher GLOBUS probabilities corresponded to 

higher likelihoods of being included in the newer metabolic models.

Specific metabolic predictions and biochemical validation

GLOBUS results indicate that in many cases context correlations provide crucial functional 

evidence determining correct annotations, especially when sequence identity is small. One 

example is the B. subtilis gene hemD, known to be responsible for the uroporphyrinogen-III 

synthase activity37 (EC 4.2.1.75). The sequence identity of hemD to the closest Swiss-Prot 

sequence performing its correct function is only ~24%; however, GLOBUS assigned a high 

probability (P=0.86) to the correct EC number because of the excellent context associations 

with its neighboring enzymes at this location: the gene clustering Z-score (defined as the 

number of standard deviations from the mean based on all gene-gene context scores, see 

Methods) is 21.2, the co-expression Z-score is 5.64. Context correlations are also helpful in 

selecting between potential functions with comparable sequence identity. For instance, the 

B. subtilis 8-amino-7-oxononanoate synthase bioF38 has ~39% sequence identity to both its 

correct function (EC 2.3.1.47) and to glycine C-acetyltransferase (EC 2.3.1.29). GLOBUS 

selected the correct assignment (P=0.64 vs. 0.02) despite the equivalent sequence identity 

due to high clustering and co-expression Z-scores (16.6 and 4.3, respectively) in the correct 

location compared to the alternative location (1.1 and 2.4).

In Table 1 (B. subtilis) and Supplementary Table 1 (S. aureus) we list GLOBUS predictions 

without experimental validation that have high annotation probabilities despite low sequence 

identity to enzymes responsible for corresponding functions in other species. The 

annotations in the tables are ordered by averaging the prediction ranks sorted by decreasing 

annotation probability and the prediction ranks sorted by decreasing sequence identity 

distance to known enzymes. For each prediction in the table we also show the average Z-

score for the three context correlations in the corresponding network location.

From the predictions listed in Table 1 we selected the genes spsI, spsJ, and ykgB for 

experimental validation. The first two genes were selected because they were predicted to 

catalyze the first two steps in a rhamnose biosynthesis pathway (Supplementary Fig. 7); the 

other two genes from the pathway (spsK and spsL, in Table 1) were also predicted by 

GLOBUS. Rhamnose is a main sugar component of the B. subtilis exosporium39. The sps 

genes are transcribed from a σK-controlled promoter at late stages of B. subtilis sporulation 
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when the outer components of the spore coat are being assembled40. The gene ykgB was 

selected because GLOBUS predicted (with probability P=0.51) that this gene catalyzes the 

long elusive 6-phosphogluconolactonase activity of the B. subtilis pentose phosphate (PP) 

pathway. Despite a central role of PP pathway in the B. subtilis metabolism, this enzymatic 

activity remains without experimental validation in this important model organism.

The three proteins selected for experimental validation were over-expressed in E. coli and 

purified by His-Tag affinity and anion exchange chromatography. The correct identity of the 

purified proteins was confirmed by in-gel tryptic digestion and subsequent peptide analysis 

using mass spectrometry (Supplementary Dataset 1). In vitro enzymatic assays for SpsI and 

SpsJ were performed using a published method41. Predicted SpsI substrates (dTTP and α-D-

glucose-1-phosphate, Fig. 3a) were observed in negative ionization mode high-precision 

mass-spectra profiles at 259.022 m/z and 480.981 m/z (M-H+) respectively. Intensities of 

both dTTP and α-D-glucose-1-phosphate decreased only when SpsI was present in the 

assays, indicating that the enzyme uses these compounds as substrates (Supplementary Fig. 

8). In addition, the predicted reaction product (dTDP-glucose) accumulated at 563.068 m/z 

(M-H+) only in the presence of SpsI (Fig. 3b,c). The product of SpsJ (dTDP-4-dehydro-6-

deoxy-glucose) was observed at 545.058 m/z (M-H+) only in the presence of both SpsI and 

SpsJ (Fig. 3b,d), suggesting that SpsJ indeed converts dTDP-glucose into dTDP-4-

dehydro-6-deoxy-glucose (Fig. 3a). Product accumulation, as well as substrate consumption, 

exhibited a clear dependence on the protein concentrations within a wide range around the 

estimated in vivo concentration of glucose-1-phosphate thymidylyltransferase (~1 μM for 

RfbA in Escherichia coli42).

Similarly to SpsI/SpsJ, the YkgB activity (Fig. 4a) was followed by observing the 6-

phospho-gluconolactone degradation with online flow injection into a high-precision mass-

spectrometer operating in the negative ionization mode. The intensity at the mass of 257.007 

m/z (M-H+), corresponding to 6-phospho-gluconolactone, decreased with rates faster than 

the rate of spontaneous background hydrolysis only when YkgB was present in the assays 

(Fig. 4b). The 6-phospho-gluconolactone degradation rate also exhibited a clear dependence 

on the protein concentration (Fig. 4c) within a wide range around the estimated in vivo 6-

phosphogluconolactonase concentration (~1.5 μM for YbhE in Escherichia coli42). 

Similarly, the production rate of 6-phosphogluconic acid was consistently higher than the 

background when YkgB was present in the assays (Supplementary Fig. 9). Interestingly, 

available expression and proteomic data show that the ykgB gene is transcribed during 

several environmental conditions43,44, such as heat and phenol stress. This suggests that 

YkgB - similar to lactonases in other species45 - is likely to play a role in removing toxic 

byproducts of the PP pathway.

Discussion

Due to inherent uncertainty of computational annotations, predictions of biochemical 

function need to be treated probabilistically. Currently, most publicly available biochemical 

databases do not provide quantitative probabilities or confidence measures for existing 

annotations. This makes it hard for the users of these valuable resources to distinguish 

between confident assignments and mere guesses. As the application and impact of genome-
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scale metabolic networks rapidly expands1, a probabilistic treatment of annotations is 

essential. The GLOBUS approach, which is based on statistical sampling of possible 

biochemical assignments, provides a principled framework for such global probabilistic 

annotations. The method assigns annotation probabilities to each gene, as well as suggests 

likely alternative functions.

We demonstrate that context correlations can significantly improve the accuracy of 

biochemical predictions, especially when annotations are based on distant sequence identity. 

Over half of potential metabolic genes, even in such well-studied model organisms as S. 

cerevisiae and B. subtilis, have remote sequence identity (<40%) to known enzymes 

(Supplementary Fig. 4). Application of GLOBUS to less-studied organisms should be 

straightforward, as context-based correlations, excluding gene co-expression, are calculated 

directly from genome sequences; the reduction in the overall accuracy due to the co-

expression term is relatively small (<1%). The precision of other context correlations should 

only improve with the rapid growth of fully sequenced genomes.

Probabilistic predictions generated by GLOBUS can be directly used to annotate sequences 

and genomes. GLOBUS annotations can be also used by various gap identification and gap 

filling approaches22,23,46,47 to produce simulation-ready flux balanced networks. In 

addition, recent advances in metabolomics, proteomics, and fluxomics offer complementary 

opportunities to expand and refine biochemical annotations and network reconstructions 48. 

The flexibility of the GLOBUS framework makes it easy to integrate metabolomics and 

proteomics data. For example, as genes are moved through the network to sample possible 

assignments, available data for corresponding proteins and metabolites can be included in 

the global fitness function. Additional functional descriptors, for example based on protein 

structure and information about protein localization, can be also considered in the 

framework. Such probabilistic integration of diverse biochemical data will be crucial for 

exploiting the ongoing avalanche of genomic sequencing.

Methods

Construction of the generic EC network

In the construction of the EC (Enzyme Commission) network we considered 3284 EC 

numbers (http://www.chem.qmul.ac.uk/iubmb/enzyme/) responsible for biochemical 

activities involving small compounds as substrates and products; activities such as “RNA 

polymerase” or “protein kinase” were excluded. In the global EC network, nodes represent 

EC numbers connected by edges representing metabolites shared between reactions. 

Following a common procedure 25, linkages through the top 40 most highly connected 

metabolites and cofactors were not considered (Supplementary Table 2).

Identification of potential metabolic genes and their functions

The program BLAST36 (with E-value cutoff of 5*10−2) was used for homology searches 

against enzymes in Swiss-Prot13, excluding sequences that were: 1) from genomes of 

closely related species (species in the same taxonomic genus) or 2) likely annotated based 

exclusively on computational methods, i.e., annotations containing words probable, by 
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similarity, hypothetical, like, or putative. Although many remaining annotations in Swiss-

Prot are also derived using computational methods, they are usually curated, ensuring that 

the misannotation rate in this database is relatively low 8,9.

To account for multi-functional enzymes, when non-overlapping regions of a query gene 

could be mapped to different enzymatic functions - indicating domains responsible for 

distinct metabolic activities - the mapped regions of the query gene were allowed to be 

assigned independently to different network locations.

The functional descriptors in the GLOBUS fitness function

Detailed description of the energy function and related calculations are given in 

Supplementary Methods. Denoting by n the total number of considered metabolic genes, the 

components of the fitness function used in GLOBUS are as follows:

Sequence homology. fhomology—As the sequence identity descriptor we used the 

logarithm of the conditional probability that the gene performs the assigned metabolic 

function, given the highest sequence identity to a Swiss-Prot 13 protein annotated to catalyze 

the corresponding activity:

(3)

Orthology. f orthology—An additional binary descriptor related to sequence homology was 

the likely gene orthology to a gene from another species annotated with the target activity. 

For each gene, the orthology term was either 1, if at least one possible ortholog was 

annotated in Swiss-Prot to perform the target activity, or 0, if no orthologs with the target 

activity could be identified.

Gene-gene context correlations. f context—In GLOBUS we used the context 

correlations (phylogenetic profiles, chromosomal clustering, mRNA co-expression) by: 1.) 

transforming them into Z-scores49 (number of standard deviations from the mean) using the 

distribution of correlations for all pairs of metabolic genes, and 2.) estimating the 

conditional probability that two genes are direct network neighbors, given their context 

association Z-score. The corresponding conditional probabilities were derived using the 

iLL672 yeast metabolic model (Supplementary Fig. 1a-c). In the GLOBUS fitness function, 

for each assigned gene we considered the maximum log probability among all network 

neighbors of the gene:

EC co-occurrences. fECco-ocurrence—This descriptor measures the correlation between 

the occurrences of different metabolic activities (EC numbers) across sequenced species 

without considering specific genes assigned to the activities. In the GLOBUS fitness 
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function for each assigned gene we considered the EC co-occurrence descriptor equal to the 

average correlation between the EC activity of the assigned gene and the EC activities for all 

its network neighbors. The EC co-occurrence term provides information additional to that 

available from direct sequence homology. The most relevant information about homology 

usually comes from annotated enzymes with the highest sequence identity to a protein under 

consideration. On the other hand, the EC co-occurrence reflects common presence and 

absence of metabolic activities across multiple KEGG genomes. Thus, this term quantifies 

tendencies of closely related activities to be filled together.

Experimental validation of biochemical predictions

Different amounts of purified SpsI or SpsJ were incubated at 37 °C in 1 mL of 10 mM 

potassium phosphate buffer pH 7.4, 2.5 mM MgCl2, 1 mM glucose-1-phosphate (Sigma-

Aldrich, >= 97% purity), 1 mM dTTP (Sigma-Aldrich, >= 96% purity) and 1 U 

pyrophosphatase41. The enzyme reaction samples were assayed after 4 hours by flow-

injection into a time of flight mass spectrometer (6520 Series QTOF, Agilent Technologies) 

operated in the negative ionization mode. High-precision mass spectra were recorded from 

50-1000 m/z and analyzed as described previously50. Acquired masses were deviating less 

than 0.001 atomic mass units (amu) from the reference masses 259.022, 480.982, 545.058, 

and 563.068 for α-D-glucose-1-phosphate, dTTP, dTDP-glucose, and dTDP-4-dehydro-6-

deoxy-glucose, respectively.

Purified YkgB was assayed in 1 mL 5 mM potassium phosphate buffer pH 7, 2.5 mM 

MgCl2, and freshly prepared 6-phospho-gluconolactone. The lactone was prepared freshly 

from 6-phospho-gluconic acid (Sigma-Aldrich, >= 90% purity) by lyophilization, and its 

degradation due to the YkgB activity was followed by direct online flow-injection into a 

time of flight mass spectrometer as described above. Acquired masses were deviating less 

than 0.001 atomic mass units (amu) from the reference masses 257.007 and 275.017 for 6-

phospho-gluconolactone and 6-phosphogluconic acid, respectively.

A detailed description of the cloning, purification and protein identification procedure is 

given in the Supplementary Methods.

Computational requirements and statistical analysis

The calculations were performed using the 3GHz Intel Xeon quad core processor with 

256MB of RAM memory. GLOBUS run times depend both on the number of iterations and 

the number of genes considered for a given species. For the S. cerevisiae, S. aureus, and B. 

subtilis genomes, 10,000 iterations over all genes took about 10 minutes. The run time 

increased linearly with the number of iterations and number of genes. 20,000-50,000 

iterations (20-50 minutes) were required to achieve 1% convergence of annotation 

probabilities, i.e. so that there were no gene assignments different in their annotation 

probabilities by more than 1% between different runs. Pre-computed GLOBUS predictions 

for 10 bacterial species of medical interest can be found at: http://

vitkuplab.c2b2.columbia.edu/globus/index.html
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P-values used to compare the precision-recall performances for GLOBUS and sequence 

identity were calculated using the one-tailed χ2 test, N = 332 to 717 annotations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the GLOBUS method
(a) A generic Enzyme Commission (EC) network, where nodes represent all known 

biochemical activities and edges indicate metabolites shared between activities. (b) For a 

genome of interest, the potential network locations of each gene are assigned based on 

sequence homology to known enzymes. (c) Each gene is initially assigned randomly to one 

of its possible locations. A fitness function is defined such that assignments to locations with 

high sequence identity and good context correlations with neighboring genes correspond to 

higher values of the fitness function (higher probability). (d) Gibbs sampling is used to 

sample all possible assignments of genes to their candidate network locations. At each step 

of a Gibbs chain a random gene is selected and re-assigned to one of its possible locations 

(arrows). The marginal probabilities for assigning every gene to each candidate network 

location are derived from converged Gibbs chains.
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Figure 2. GLOBUS precision-recall performance
Using available metabolic models (iBsu110333 for B. subtilis and iSB61935 for S. aureus) 

we compared predictions by GLOBUS to predictions made using sequence homology; 

predictions for B. subtilis are on the top, and predictions for S. aureus are on the bottom. (a) 
Precision–recall curves for GLOBUS (black lines) were calculated by ranking genes using 

assignment probabilities. Precision-recall curves for homology (red lines) were calculated by 

ranking genes using sequence identity. (b) Recall of known metabolic genes (at 70% 

precision) as a function of sequence identity to the closest enzymes from other species with 

the annotated functions. (c) Prediction precision (at 90% recall) for known metabolic genes 

as a function of sequence identity to the closest enzymes from other species with the 

annotated functions. In the figure error bars represent the S.E.M,
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Figure 3. In vitro biochemical assays used to characterize activities of SpsI and SpsJ using high-
precision mass spectrometry
(a) Reaction diagram. (b) Mass spectrum plot showing intensities for masses corresponding 

to the products dTDP-glucose and dTDP-4-dehydro-6-deoxy-glucose of the reactions 

catalyzed by SpsI and SpsJ (black arrows, detailed in panel c). Observed masses deviated by 

less than 0.001 atomic mass units (amu) from the corresponding reference masses. Spectra 

were recorded from two independent assays. (c, d) Bar plots show dependency of dTDP-

glucose and dTDP-4-dehydro-6-deoxy-glucose accumulation on protein concentration of 

SpsI and SpsJ, respectively. As negative control (n.c.), the protein free filtrate of 6.99 μM 

spsI or 203.01 μM SpsJ solution was used. Error bars represent standard deviations 

calculated using two independent assays.
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Figure 4. In vitro biochemical assays used to characterize the 6-phospho-gluconolactonase 
activity of YkgB
(a) Reaction diagram for 6-phospho-gluconolactonase. (b) Time courses of lactone 

degradation at different YkgB concentrations were recorded by direct flow injection 

analysis. Different symbols represent replicate assays. (c) Relative intensity increase from 

initial to final lactone intensities as a function of YkgB concentration. As negative control 

(n.c.), the protein-free filtrate of 223.2 μM YkgB solution was used. Error bars represent 

standard deviations calculated using two independent assays.
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Table 1
Prediction of gene function in B. subtilis

In the table we show predictions without experimental validation that have GLOBUS-assigned probabilities 

above 0.5 and protein sequence identity to known enzymes below 50%. The first three activities in the table 

were experimentally validated in this study. The remaining annotations in the table are ordered by averaging 

the prediction ranks sorted by decreasing annotation probability and the prediction ranks sorted by decreasing 

sequence identity distance to known enzymes. The last column shows the average Z-score of phylogenetic 

correlations, gene clustering and gene co-expression when all sequences are assigned to their most probable 

locations. The Z-score for each type of data was calculated using the maximum context correlation between a 

gene and its immediate network neighbors (see Methods).

Gene
EC
number Enzyme name Probability

Identity
(%)

Average
Context
Z-score

spsI 2.7.7.24 glucose-1-phosphate thymidylyltransferase 0.93 44.4 11.6

spsJ 4.2.1.46 dTDP-glucose-4,6-dehydratase 0.97 48 12.0

ykgB 3.1.1.31 6-phosphogluconolactonase 0.51 30.4 2.6

murF 6.3.2.10
UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine
ligase 0.98 32.8 9.0

spsL 5.1.3.13 dTDP-4-dehydrorhamnose-3,5-epimerase 0.95 33.1 8.4

ycgM 1.5.99.8 proline dehydrogenase 0.76 25.6 3.6

yfnG 4.2.1.45 CDP-glucose-4,6-dehydratase 0.76 27.5 11.0

birA 6.3.4.15 biotin-[acetyl-CoA-carboxylase] ligase 0.77 31.7 2.3

gcvPB 1.4.4.2 glycine dehydrogenase (decarboxylating) 0.97 41.5 12.3

yloI 4.1.1.36 phosphopantothenoylcysteine decarboxylase 0.99 44.5 2.6

fruK 2.7.1.56 1-phosphofructokinase 0.88 40.4 10.9

spsK 1.1.1.133 dTDP-4-dehydrorhamnose reductase 0.87 39.6 8.4

murB 1.1.1.158 UDP-N-acetylmuramate dehydrogenase 0.97 43 5.2

folK 2.7.6.3
2-amino-4-hydroxy-6-hydroxymethyldihydropteridine
diphosphokinase 0.99 45.3 8.0

sul 2.5.1.15 dihydropteroate synthase 0.99 47 8.2

yitJ 2.1.1.13 methionine synthase 0.54 30.6 2.1

ybbF 2.7.1.69 protein-Npi-phosphohistidine-sugar phosphotransferase 0.85 40.5 11.3

yloI 6.3.2.5 phosphopantothenate-cysteine ligase 0.97 44.5 2.9

pheA 4.2.1.51 prephenate dehydratase 0.69 36.1 6.7

purK 4.1.1.21 phosphoribosylaminoimidazole carboxylase 0.89 43.5 13.3

ysnA 3.6.1.15 nucleoside-triphosphatase 0.56 33.3 7.7

ywbC 4.4.1.5 lactoylglutathione lyase 0.6 35.2 3.6

pucE 1.2.3.14 abscisic-aldehyde oxidase 0.62 35.8 1.0

ydhR 2.7.1.4 fructokinase 0.77 41.5 5.3

yfnH 2.7.7.33 glucose-1-phosphate cytidylyltransferase 0.88 43.2 11.0

ybbD 3.2.1.52 beta-N-acetylhexosaminidase 0.52 33.1 3.1

yngE 6.4.1.4 methylcrotonoyl-CoA carboxylase 0.64 36.2 8.6
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Gene
EC
number Enzyme name Probability

Identity
(%)

Average
Context
Z-score

kbl 2.3.1.29 glycine C-acetyltransferase 0.97 49 9.4

tenI 2.5.1.3 thiamine-phosphate diphosphorylase 0.7 40.6 6.6

pabB 4.1.3.27 anthranilate synthase 0.74 42.8 8.6
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