
ORIGINAL RESEARCH
published: 05 August 2020

doi: 10.3389/fneur.2020.00815

Frontiers in Neurology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 815

Edited by:

K. Ray Chaudhuri,

King’s College London,

United Kingdom

Reviewed by:

Jong-Min Kim,

Seoul National University Bundang

Hospital, South Korea

Patrick Santens,

Ghent University, Belgium

*Correspondence:

Timothy M. Ellmore

tellmore@ccny.cuny.edu

Specialty section:

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

Received: 24 October 2019

Accepted: 29 June 2020

Published: 05 August 2020

Citation:

Ellmore TM, Suescun J, Castriotta RJ

and Schiess MC (2020) A Study of the

Relationship Between Uric Acid and

Substantia Nigra Brain Connectivity in

Patients With REM Sleep Behavior

Disorder and Parkinson’s Disease.

Front. Neurol. 11:815.

doi: 10.3389/fneur.2020.00815

A Study of the Relationship Between
Uric Acid and Substantia Nigra Brain
Connectivity in Patients With REM
Sleep Behavior Disorder and
Parkinson’s Disease
Timothy M. Ellmore 1*, Jessika Suescun 2, Richard J. Castriotta 3 and Mya C. Schiess 2

1Department of Psychology, The City College of New York, New York, NY, United States, 2Department of Neurology, The

University of Texas McGovern Medical School at Houston, Houston, TX, United States, 3Department of Clinical Medicine,

Keck School of Medicine of University of Southern California, Los Angeles, CA, United States

Low levels of the natural antioxidant uric acid (UA) and the presence of REM sleep

behavior disorder (RBD) are both associated with an increased likelihood of developing

Parkinson’s disease (PD). RBD and PD are also accompanied by basal ganglia

dysfunction including decreased nigrostriatal and nigrocortical resting state functional

connectivity. Despite these independent findings, the relationship between UA and

substantia nigra (SN) functional connectivity remains unknown. In the present study,

voxelwise analysis of covariance was used in a cross-sectional design to explore the

relationship between UA and whole-brain SN functional connectivity using the eyes-open

resting state fMRI method in controls without RBD, patients with idiopathic RBD,

and PD patients with and without RBD. The results showed that controls exhibited

a positive relationship between UA and SN functional connectivity with left lingual

gyrus. The positive relationship was reduced in patients with RBD and PD with RBD,

and the relationship was found to be negative in PD patients. These results are

the first to show differential relationships between UA and SN functional connectivity

among controls, prodromal, and diagnosed PD patients in a ventral occipital region

previously documented to be metabolically and structurally altered in RBD and PD. More

investigation, including replication in longitudinal designs with larger samples, is needed

to understand the pathophysiological significance of these changes.

Keywords: uric acid, REM sleep behavior disorder, parkinson’s disease, resting state, functional connectivity

INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive neurologic disease characterized bymotor deficits
that include tremor at rest, rigidity, slowing of movement, and postural instability. PD pathology
includes extensive loss of brain dopaminergic neurons, which occurs before the emergence of gross
neurologic deficits, as well as the presence of Lewy body eosinophilic inclusion within neurons.
Etiologic factors include a role for aging (1), a role for environmental factors (2, 3) including
herbicide/pesticide exposure, and specific disease-causing genetic mutations, most notably in the
α-synuclein (4), and the parkin (5) genes. Pathogenic mechanisms proposed to underlie the
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neuronal degeneration in PD include free radicals, deficits in
energy metabolism, specifically abnormalities of iron metabolism
and mitochondrial complex I, programmed cell death, and
protein aggregation. The free radical-mediated injury theory,
which is also referred to as the oxidant stress hypothesis, is
arguably the leading explanation for pathogenesis due most
notably to the fact that the major degradative pathway for
dopamine is its oxidative deamination by monoamine oxidase
A and B resulting in highly reactive hydroxyl radicals (6).
While the oxidant stress hypothesis receives indirect support
from numerous lines of evidence which have been extensively
reviewed (7, 8), it remains only a hypothesis with shortcomings
that include that aspects of the hypothesis that are dependent
on catecholamine metabolism are not relevant to degeneration
of structures like the nucleus basalis, which is cholinergic, and
which also degenerate in PD. Nevertheless, since oxidative stress
appears to play a role in the pathogenesis of Parkinson’s disease
(PD) (9, 10), questions remain about the role of antioxidants in
PD and especially during the prodromal stage.

Uric acid (UA) is the end product of purine metabolism, and
it accounts for most of the antioxidant capacity in human blood
(11). Higher serum UA levels are associated with lower risk of
developing PD in the general population (12, 13) and slower
disease progression in the PD population (14). The presumptive
neuroprotective action of UA includes suppression of oxygen
radical accumulation, stabilization of calcium homeostasis,
preservation of mitochondrial function, chelation of iron and
blocking of iron dependent oxidation reactions, and the slowing
of the dopamine auto-oxidation rate in the caudate and SN of PD
patients (15–19).

A notable characteristic of UA’s influence in PD is sex
differences (20). In men only, UA was the first biomarker shown
to be consistently associated with lowering risk of developing PD
(12, 21–23) by 33% (24) as well as changing disease prognosis
in males with PD (25–29). A link between UA and the risk
of development or progression of PD in women is weaker
possibly due to biological differences in interactions between sex-
specific hormones and UA. This occurs independently of factors
including age, smoking, obesity, hypertension, thiazide use, and
caffeine consumption, all of which have been associated with PD
and uricemia (30, 31).

A major pathological signature of PD is cell death in
the SN (32–37). Previous research also indicates reduced
SN functional connectivity and basal ganglia dysfunction in
rapid-eye-movement sleep behavior disorder (RBD) (38, 39).
RBD is a parasomnia that is associated with an increased
likelihood of developing either PD or another alpha-synuclein
neurodegenerative disorder (40, 41). Identifying the neural
changes accompanying RBD has become a research priority
for developing objective markers of early diagnosis (42–44).
Neuroimaging studies show that RBD is associated with
altered striatal dopaminergic innervation (45, 46), striatal
volumetric differences (47), and reduced nigrostriatal and
nigrocortical resting state functional connectivity (38).
More recent neuroimaging studies including structural
MRI, [18F]fluorodeoxyglucose PET, and fMRI resting state
connectivity implicate posterior cortical regions, including

lingual gyrus, in PD and RBD (37, 48–50). A large proportion of
patients develop Parkinson’s disease years after the diagnosis of
their RBD (51, 52). The presence of polysomnography-proven
RBD is a prodromal marker, with a positive likelihood ratio
(LR+) of 130 and a negative likelihood ratio (LR–) of 0.65.
Meanwhile, low plasma urate levels are a risk marker, with an
LR+ of 1.8 (in men) and an LR– of 0.88 (in men) (53).

To our knowledge, no previous study has investigated the
relationship between SN functional connectivity and levels of
UA in RBD or PD patients. UA levels are directly reduced
within the SN of Parkinson’s patients (15), which adds to the
rationale for investigating how connectivity of this structure
covaries with UA levels. Studies using the horseradish peroxidase
retrograde transport technique motivate investigation of SN
connectivity with cortex because they show SN cells give rise
to highly collateralized axons and innervate different regions of
cortex, including cingulate cortices, prefrontal and suprarhinal
cortex, and entorhinal cortex, as well as subcortical sites (54).
To date, only one cross-sectional study has been reported
investigating the role of UA in RBD (55), but no studies have
investigated the relationship between levels of UA and SN
functional connectivity in either RBD or PD. One hypothesis
is that SN connectivity decreases in the prodromal phase of
idiopathic RBD and further decreases by the time the early
diagnosis of Parkinson’s disease is made. Understanding how
the relationship between UA and SN functional connectivity
differs during the prodromal and clinically-defined stages of
PD may inform the ongoing debate about how UA levels are
associated with changes in neural connectivity. Therefore, the
objective of the present study is to explore the relationship
between UA levels and SN functional connectivity in males using
the eyes-open resting state fMRI method. Resting state fMRI
allows for measurement of intrinsic neuronal fluctuations to
identify markers of prodromal neurodegeneration (42). We used
whole-brain voxelwise ANCOVA and a cross-sectional design
to test the prediction that SN functional connectivity exhibits a
positive relationship with UA in controls, and that this positive
relationship decreases in RBD patients and decreases further in
PD patients.

MATERIALS AND METHODS

Experimental Design
A total of 66 participants were recruited from the sleep clinic
or movement disorders clinic or referred to our study from its
entry at www.clinicaltrials.gov (NCT00817726). All participants
provided written informed consent under a study protocol (HSC-
MS-08-0147) that was approved by the UTHealth Institutional
Review Board. The study was conducted in accordance to
the International Conference on Harmonization Good Clinical
Practice Guideline and the principles of the Declaration of
Helsinki. Inclusion criteria were men aged 35–75 years old who
did not have an unstable medical condition, and met criteria
for one of the study groups including an early-to-moderate PD
group, an idiopathic RBD group, and a control group. For all
participants in the study, we asked about first- and second-
degree family members with PD or any other neurodegenerative
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TABLE 1 | Participant demographics and clinical measures.

Control RBD PD

Number of subjects 11 32 23

Age (yrs.), mean (SD) 54.82 (12.77) 57.47 (8.20) 61.17 (10.91)

DoD, mean (SD) NA 3.13 (2.23) 5.89 (5.48)

RBD by

polysomnography (n), %

0 (0.0) 32 (100) 16 (69.56)

Handedness 9 R, 2 L 28 R, 3 L, 1 LR 21 R, 2 L

UA (mg/dl), mean (SD) 5.60 (1.02) 5.19 (1.24) 4.81 (0.92)

MOCA, mean (SD) 28.36 (2.01) 27.44 (4.35) 27.23 (2.89)

UPSIT, mean (SD) 34.36 (6.04) 29.31 (7.55) 19.48 (6.77)

UPDRS-M, mean (SD) 0.64 (1.21) 2.16 (4.04) 25.22 (14.96)

H&Y, mean (SD) 0.00 (0.00) 0.00 (0.00) 1.91 (0.95)

Tremor-dominant/

akinetic-rigid*

NA NA 10 TD, 9 AR, 4 Mixed

Laterality of disease

involvement

NA NA PD (RBD+): 7 R, 9 L

PD (RBD-): 5 R, 2 L

Total: 12 R, 11 L

Interfering medications None 2, Thiazide 1, Thiazide

DoD, duration of disease; MOCA, Montreal Cognitive Assessment; UPSIT, University of

Pennsylvania Smell Identification Test; UPDRS, Unified Parkinson’s Disease Rating Scale;

H&Y, Hoehn and Yahr Staging. *Sub-type was determined using Schiess et al. criteria.

NA,Not Applicable.

disorder, but this information was not used as an exclusion
criterion for RBD or PD. Each was assigned to one of these three
groups according to the inclusion criteria detailed in the next
paragraphs and listed in Table 1. Included are 11 control subjects
(CON), 32 patients with REM Sleep Behavior Disorder (RBD),
and 23 patients with Parkinson’s disease (PD). A total of 16 of the
PD patients were confirmed to have RBD, denoted in this paper
as PD (RBD+) and seven of the PD patients were confirmed not
to have RBD, denoted as PD (RBD–).

The diagnosis of PD was made based on the United Kingdom
Brain Bank Diagnostic Criteria (56). Patients with parkinsonian
symptoms due to atypical parkinsonism, vascular PD, or
medicine/toxin-induced parkinsonism were excluded. No
genetic tests were administered to identify genetic forms of PD.
However, young-onset PD was excluded, which has a higher
genetic prevalence. To exclude advanced disease, we used the
Hoehn and Yahr disability scale (57) with a cutoff of ≤ 3.5 in
the off-medicine state. Twelve of the 23 PD patients had right
lateralized disease involvement, while 11 of the 23 patients had
left lateralized disease involvement. Of the 16 patients with
PD (RBD+), seven were right lateralized and nine were left
lateralized. Of the seven patients with PD (RBD–), five were right
lateralized and two were left lateralized.

The RBD group diagnostic criteria was based on the
American Academy of Sleep Medicine (AASM) (58). Nocturnal
video-polysomnography (NPSG) was performed in an AASM-
accredited sleep disorders center, with a minimum of 10% REM
sleep recorded and at least 10% of REM epochs documented to
be without atonia. The criteria for the control group included
individuals who have no personal history or primary family
history of PD or neurodegenerative disease, and no history of

dream enactment or REM sleep without atonia. All subjects met
the above inclusion criteria and were matched to members of the
PD or RBD groups in age (± 3 years). All controls underwent
a PSG to rule out the presence of RBD. The PD patients also
underwent a PSG to determine whether they were PD (RBD+)
or PD (RBD–).

All individuals underwent clinical, behavioral, and brain
imaging in the off-medicine state defined as no PD medicines for
at least 12 h before the assessment the night before. The clinical
assessment included a Montreal Cognitive Assessment Test
(MoCA), and Unified Parkinson’s Disease Rating Scale (UPDRS)
evaluation with I-IV subscales. Medications like thiazide
diuretics, loop diuretics, allopurinol, colchicine, febuxostat
among others could interfere with UA levels. None of the controls
used interfering medications, and only two patients with RBD
and one patient with PD used thiazide medication that could
impact UA levels (Table 1).

Uric Acid
Serum UA concentration was measured in an early morning
blood sample drawn from a peripheral vein by using a uricase
colorimetric method on non-fasting blood. A one-way analysis
of variance (ANOVA) with one factor, group, with four levels of
CON, RBD, PD (RBD+), and PD (RBD–) was performed on the
UA measurements using Prism 8 for macOS Version 8.3.

Magnetic Resonance Imaging
Each participant underwent magnetic resonance imaging (MRI)
using a Philips 3T scanner (Philips Medical Systems, Bothell,
WA). Since dopaminergic medications influence the functional
MRI signal of the task and rest state (59, 60), patients with PD
were scanned in the off-medication state. The structural images
acquired included a T1-weighted magnetization-prepared rapid
acquisition turbo field echo sequence (repetition time/echo time
[TR/TE] = 8.4/3.9ms; flip angle = 8 degrees; matrix size = 256
× 256; field of view= 240mm; slice thickness= 1.0mm, sagittal
acquisition. The functional images acquired included a whole-
brain echo-planar imaging (EPI) run sensitive to BOLD contrast
(TE = 30ms; flip angle = 90 degrees; 2 s TR; 150 dynamics;
2.75 × 2.75 × 3.5mm voxel resolution) which was acquired
while participants were instructed to rest while remaining still
and fixating a white cross hair displayed on a black background
during the functional acquisition.

Image Analysis
Image processing was performed with the Analysis of Functional
Neuroimages (AFNI) (61). AFNI’s python script afni_proc.py
was used to process each participant’s structural and functional
MRI using the “example 11” resting state analysis procedure
(https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_
proc.py.html). The steps included in this analysis were (1)
Despiking: the shrinking of any large spikes in the fMRI time
series, (2) time shifting: the correction of slice timing differences,
(3) Aligning: determining the alignment between the fMRI time
series and anatomical T1, (4) Spatial normalization: determining
the alignment between the anatomical T1 and a template brain,
and (5) Censoring and regression: removing timepoints due to
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excessive motion and regressing out from the censored time
series the contributions to signal from the ventricles and local
white matter. We used a relatively conservative threshold to
censor TR pairs where the Euclidean Norm of the motion
derivative exceeds 0.3. The proportion of volumes censored in
each of the four groups was computed [CON = 0.199 (±0.162),
RBD = 0.215 (±0.241), PD (RBD+) = 0.179 (±0.214), PD
(RBD–)= 0.082 (±0.108)] and did not differ significantly among
the groups [F(3, 64) = 0.7449, p = 0.5297]. For volumes that were
not censored, the computed motion regressors were regressed
out as covariates of no interest. We used the recommended
default -KILL option where the censored timepoints were
removed rather than filled with zeros or by values interpolated
from neighboring non-censored timepoint values.

Resting state functional connectivity was estimated in each
subject using an average fMRI time series accumulated in voxels
representing left and right SN. A mask representing left and
right SN was built using the multi-contrast PD25 atlas (62) using
the following steps. First, the PD25 T1 MPRAGE volume with
1mm resolution was co-registered to each subject’s native-space
skull-stripped T1 anatomical volume using a non-linear warping
algorithm in AFNI. The segmented left and right SN volumes
of the PD25 atlas were warped into the native-space of the
T1 anatomical by applying the non-linear warp transformation.
Then the transform from the native T1 anatomical space to the
TT_N27 brain template that was computed in the afni_proc.py
was applied to the segmented left and right SN volumes of
the PD25 atlas, which resulted in segmented left and right SN
masks for each subject in Talairach space. The SN masks in
Talairach space were averaged and thresholded to create a single
group mask representing the location of left and right SN. The
thresholding level ensured that voxels in this mask represented
complete overlap in the location of SN in at least 50% of
the subjects so that the SN seed vectors for each subject were
derived from the same voxel locations in standard space for the
exploratory group analyses.

Statistical Analysis
Group resting state analysis was conducted in AFNI. First, the
3dSetupGroupInCorr command was used to build files of whole-
brain masked residual error time series (niml ∗.ertts) for the
CON, RBD, PD (RBD+), and PD (RBD–) groups. Next, the
3dGroupInCorr command was used to compute a standardized
Z-score difference map of the slope of the inverse hyperbolic
tangent of the correlation (i.e., Fisher transformation) of a
seed vector with every voxel time series in the brain. The
seed vector was made by averaging the time series of non-
zero seed voxels in the bilateral SN mask. The output of the
3dGroupInCorr command resulted in a standardized correlation
coefficient (zcorr) volume for each subject in each of the four
groups CON, RBD, PD (RBD+), and PD (RBD–). These volumes
were next input to AFNI’s 3dMVM command (63), a group-
analysis program that performs traditional analysis of covariance
(ANCOVA). A between-subject factor group included four levels,
CON, RBD, PD (RBD+), and PD (RBD–), and a quantitative
covariate variable uric acid was included to produce F statistical
maps representing the main effect of group, the main effect

of uric acid, and the interaction between group and uric acid.
An additional post-hoc analysis was performed using the same
ANCOVA model but with the images for the 11 patients with
left disease onset [2 PD (RBD–) and 9 PD (RBD+)] flipped
about the x-axis using AFNI’s 3dLRflip command. The rationale
for this analysis was that it would align for these 11 patients
their diseased and non-diseased hemispheres with the 12 other
patients [5 PD (RBD–) and 7 PD (RBD+)] with right disease
onset whose images were not flipped.

Given the exploratory nature of these analyses, statistical
tests with a height threshold of p < 0.05 and a cluster extent
threshold (k) of 50 or greater were evaluated. A cluster-wise
multiple comparison correction was computed using 3dClustSim
to estimate the probability of false positive (noise-only) clusters.
3dClustSim is based on simulating the noise field that interferes
with detection of the “true” signal in the dataset. To do this,
3dClustSim needs statistics about the spatial smoothness of the
noise. These estimates were computed for each subject using
3dFWHMx with the -acf option, which computes the spatial
autocorrelation of the data as a function of radius, then fits
that to a model of the form ACF(r) = a∗exp(–r∗r/(2∗b∗b))+(1-
a)∗exp(–r/c). 3dFWHMx output the 3 model parameters (a,b,c).
An average of these parameters across all subjects were input
to 3dClustSim (ACF 0.65, 3.70, 9.77) resulting in a FWHM of
9.51mm with 3D grid dimensions of 64 × 76 × 60 (2.5 × 2.5
× 2.5 mm3) and 91,631 voxels in the brain mask (31.40% of
total voxels). 3dClustSim determined given an uncorrected height
threshold (pthr) of 0.05 that a cluster of size 358 voxels or greater
would occur <5% by chance assuming first-nearest neighbor
clustering (above threshold voxels cluster together if faces touch).
In 3dClustSim smoothing simulated data over a finite volume is
known to introduce edge artifacts. To minimize this, extra-large
padded simulated volumes weremade before blurring (64× 76×
60 pads to 96× 120× 96), which were trimmed back down to the
desired size before continuing with the thresholding and cluster-
counting steps. Clusters of a size that survived the multiple
comparisons correction are denoted in results tables. Given the
exploratory nature of these analyses, clusters with a size that did
not reach statistical significance after the multiple comparisons
correction are also included in results tables as it has been pointed
out that reporting of statistical results using arbitrary cluster-
forming height thresholds and arbitrary minimum cluster size
is not in itself problematic (64). These tables can be used to
confirm replication of results in other exploratory analyses (65)
and facilitate meta-analyses (66).

RESULTS

Analysis of Uric Acid Levels
The lab reference range for UA levels at Houston’s Memorial
Hermann Hospital is 3.80 to 8.00 mg/dl. All CON subjects had
UA levels (mean = 5.62, SD = 1.15, min = 4.10, max = 7.50,
range = 3.40) within the lab reference range. A total of 29 of 32
RBD subjects had UA levels (mean = 5.19, SD = 1.24, min =

3.10, max = 8.00, range = 4.90) within the lab reference range,
with three having UA levels below the reference minimum of
3.80 mg/dl. A total of 6 of 7 PD (RBD–) subjects had UA levels
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(mean= 5.16, SD = 1.22, min = 3.5, max = 7.20, range = 3.70)
within the lab reference range with one having a UA level below
the reference minimum of 3.80 mg/dl. A total of 13 of 16 PD
(RBD+) subjects had UA levels (mean = 4.66, SD = 0.81, min
= 2.80, max= 5.90, range= 3.10) within the lab reference range
with three having UA levels below the reference minimum of
3.80 mg/dl.

An ANOVA showed no main effect of group on UA levels
[F(3, 64) = 1.789, p = 0.158, R2 = 0.077]. The distribution of UA
in each of the four groups is shown in Figure 1. Post-hoc analyses
using Tukey’s multiple comparisons test indicated no significant

FIGURE 1 | Distribution of uric acid levels in each group. Measured UA levels

in the CON, RBD, PD (RBD+), and PD (RBD–) groups are shown using violin

plots where the width of the distribution of points is proportionate to the

number of points at a given Y value.

pairwise differences between the groups (Table 2). The largest
difference was between CON and PD (RBD+), 5.623 vs. 4.662
mg/dl, but the mean difference of 0.961 was not significantly
different (adjusted p= 0.110).

Analysis of Substantia Nigra Functional
Connectivity
Voxelwise ANCOVA identified eight brain clusters showing a
main effect of group on SN functional connectivity (Figure 2).
These clusters encompassed right nucleus accumbens, left
superior temporal gyrus, right parahippocampal gyrus, left
caudate, left cingulate gyrus, left superior frontal gyrus, right
brainstem, and right cerebellum (Table 3a).

Voxelwise ANCOVA identified 15 clusters showing a main
effect of UA on SN functional connectivity (Figure 3). These
clusters included left lingual gyrus, right angular gyrus, right
postcentral gyrus, left inferior frontal gyrus, left caudate, left
insula, right hippocampus, right inferior gyrus, right cerebellum
and right putamen (complete list inTable 3b). The largest cluster,
encompassing 459 voxels [peak F(1, 58) = 14.13, p = 0.0004],
survived the multiple comparison correction and was centered
at MNI x =−17, y=−86, z =−9 in left lingual gyrus (BA 18).

Voxelwise ANCOVA also identified 15 clusters exhibiting
an interaction between group and UA on SN functional
connectivity. These clusters encompassed left lingual gyrus, right
middle frontal gyrus, right precentral gyrus, left cerebellum,
left middle occipital gyrus, left thalamus, right lingual gyrus,
left calcarine gyrus, right brainstem, and right Heschl’s gyrus
(Table 3c). The left lingual gyrus cluster of size 250 [peak F(3,58)
= 8.33, p = 0.0001] was centered at MNI x = −23, y=−90,
z = −20 and encompassed a subset of the 459 voxel left
lingual gyrus cluster identified in the main effect of UA F-map
(cluster 1, Table 3b), which survived the multiple comparison
correction. For the post-hoc ANCOVA in which the 11 patients
with left disease onset were flipped, the previous largest cluster
encompassing lingual gyrus (cluster 1, Table 3c) reflecting a
Group-by-UA interaction increased in extent from 250 voxels to
416 voxels (cluster 1, Supplemental Table 1). A smaller cluster
in the other hemisphere encompassing lingual gyrus (cluster 7,
Table 3c) increased in extent from 79 voxels to 108 voxels (cluster
5, Supplemental Table 1).

TABLE 2 | Pairwise group comparisons of uric acid levels.

Pairwise Comparison

(Group 1 vs. Group 2)

Group 1UA (mg/dl) Group 2UA (mg/dl) Mean diff SE of diff 95% C.I. of diff Adjusted p

CON vs. RBD 5.62 5.19 0.44 0.37 −0.54 to 1.41 0.64

CON vs. PD (RBD+) 5.62 4.66 0.96 0.42 −0.14 to 2.07 0.11

CON vs. PD (RBD–) 5.62 5.16 0.47 0.53 −0.92 to 1.85 0.81

RBD vs. PD (RBD+) 5.19 4.66 0.53 0.34 −0.38 to 1.43 0.43

RBD vs. PD (RBD–) 5.19 5.16 0.03 0.47 −1.20 to 1.27 >0.99

PD (RBD+) vs. PD (RBD–) 4.66 5.16 –0.49 0.51 −1.84 to 0.85 0.76

UA levels among the groups were compared using a 1-way ANOVA with group as factor and four levels of CON, RBD, PD (RBD+), and PD (RBD−). The main effect of group was

not significant [F(3, 64) = 1.79, p = 0.15]. Each pairwise comparison is shown with mean UA for each group, the group difference, the standard error of the group difference, the 95%

confidence interval (C.I.) for the difference, and the adjusted p-value resulting from the Tukey’s multiple comparisons test. The largest mean difference was between CON vs. PD (RBD+)

with 0.96 higher UA for CON, but this difference did not reach significance (p = 0.11).
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FIGURE 2 | The main effect of uric acid on SN functional connectivity. The main effect of UA F-map is displayed on dorsal (A), anterior (B), and posterior (C) views of

the pial surface with corresponding inflated representations (D–F). Inflated views of the ventral (H), right hemisphere (I), and left hemisphere (J) cortex are displayed

next to their pial representations (K–M). Sagittal slices through left (N) and right (O) hemisphere and an axial slice (P) show main effects in left caudate (cluster 5,

Table 3b) and right putamen (cluster 10, Table 3b).

Of the 15 clusters identified in the ANCOVA interaction
F-map, six clusters (Figures 4A–F) exhibited a relationship in
which CON individuals had the highest positive slope, with RBD
patients showing a less positive slope, and the PD (RBD+) and
PD (RBD–) patients having slopes lower than the RBD subjects.
This graded decrease in slopes across the groups was evident in
the left lingual gyrus cluster 1 (Figure 4A) in which the CON
slope was 0.04803 [F(1, 9) = 6.438, p = 0.0318], the RBD slope
was a less positive 0.01859 [F(1, 30) = 7.705, p = 0.0094], the PD
(RBD+) slope was near flat at 0.003069 [F(1, 14) = 0.04061, p
= 0.8432] and the PD (RBD–) slope was negative at −0.06649
[F(1, 5) = 9.517, p= 0.0273]. For the post-hoc ANCOVA in which
the 11 patients with left disease onset were flipped and for which
the cluster encompassing lingual gyrus increased in extent, the

slopes exhibited a similar pattern with CON = 0.03763 [F(1, 9)
= 6.442, p = 0.0318], RBD = 0.01592 [F(1, 30) = 7.856, p =

0.0088], PD (RBD+) = 0.00797 [F(1, 14) = 0.5477, p = 0.4715],
but with the biggest difference being a more significantly negative
slope for PD (RBD–) = −0.0688 [F(1, 5) = 16.10, p = 0.0102]
(Supplemental Figure 1).

Of the 15 clusters identified in the ANCOVA interaction F-
map, four clusters exhibited a relationship in which RBD patients
had a positive slope while the CON individuals had negative
or flat slopes. This relationship was evident in the right middle
frontal gyrus cluster two (Supplemental Figure 2). In this right
middle frontal gyrus cluster RBD subjects had a positive slope
of 0.03231 [F(1, 30) = 13.05, p = 0.0011], CON subjects had
negative slope of −0.07525 [F(1, 9) = 10.60, p = 0.0099], PD
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TABLE 3 | Brain regions identified by ANCOVA.

Cluster Cluster Size X Y Z Brain Region Peak (F, p)

a) Main effect: group

1 200 6 1 −12 R. Nucleus Accumbens 6.30,0.0009

2 73 −42 −42 11 L. Superior Temporal Gyrus 6.15, 0.001

3 72 25 8 −23 R. Parahippocampal Gyrus 7.72, 0.0002

4 68 −10 17 −5 L. Caudate 7.19, 0.0003

5 61 −17 24 29 L. Cingulate Gyrus 5.11, 0.003

6 60 −10 26 56 L. Superior Frontal Gyrus (BA 6) 7.55, 0.002

7 55 4 −30 −35 R. Brainstem 5.77, 0.001

8 52 28 −65 −35 R. Cerebellum (Crus 1) 6.32, 0.0009

Cluster Cluster Size X Y Z Brain Region Peak F(F, p)

b) Main effect: UA

1 459† −17 −86 −9 L. Lingual Gyrus (BA 18) 14.13, 0.0004

2 209 52 −73 34 R. Angular Gyrus 12.80, 0.0007

3 171 62 −12 20 R. Postcentral Gyrus 14.39, 0.0003

4 118 −53 19 16 L. Inferior Frontal Gyrus (BA 45) 20.24, 3.33e-05

5 118 −17 4 19 L. Caudate 10.74, 0.002

6 90 −44 −10 3 L. Insula 13.70, 0.0005

7 88 22 −15 −16 R. Hippocampus 10.34, 0.002

8 86 38 −58 −2 R. Inferior Temporal Gyrus 12.71, 0.0007

9 86 12 −60 −11 R. Cerebellum (Culmen) 12.03, 0.001

10 74 33 2 −6 R. Putamen 11.91, 0.001

11 66 22 42 37 R. Superior Frontal Gyrus (BA 8) 11.72, 0.001

12 65 −49 −26 −4 L. Superior Temporal Gyrus 15.39, 0.0002

13 64 49 −1 2 R. Insula 15.45, 0.0002

14 57 43 28 12 R. Inferior Frontal Gyrus (BA 45) 12.91, 0.0007

15 54 17 −91 −3 R. Lingual Gyrus 12.33, 0.0009

16 51 −26 −33 4 L. Thalamus 15.07, 0.0003

Cluster Cluster Size X Y Z Brain Region Peak F

c) Interaction: group-by-UA

1 250‡ −23 −90 −20 L. Lingual Gyrus (BA 18) 8.33, 0.0001

2 215 28 35 34 R. Middle Frontal Gyrus (BA 8) 7.66, 0.0002

3 134 31 −19 50 R. Precentral Gyrus 7.19, 0.0003

4 89 −23 −28 −35 L. Cerebellum (IV-V) 9.70, 2.78e-05

5 85 −36 −88 14 L. Middle Occipital Gyrus (BA 19) 4.99, 0.004

6 80 −17 −9 14 L. Thalamus 10.01, 2.06e-05

7 79 15 −63 −10 R. Lingual Gyrus 6.89, 0.0005

8 74 −6 −69 13 L. Calcarine Gyrus 5.17, 0.003

9 72 1 −23 −38 R. Brainstem 10.56, 1.22e05

10 72 36 −32 16 R. Heschl’s Gyrus 7.14, 0.0004

11 60 22 52 −9 R. Superior Frontal Gyrus (BA 10) 6.23, 0.001

12 59 −36 −31 8 L. Heschl’s Gyrus 7.27, 0.003

13 56 17 58 10 R. Superior Frontal Gyrus (BA 10) 5.58, 0.002

14 56 −6 55 24 L. Superior Frontal Gyrus (BA 9) 7.24, 0.0003

15 50 31 −26 −4 R. Lentiform Nucleus 6.99, 0.0004

The voxelwise ANCOVA analysis produced clusters for the main effect of group (a), the main effect of uric acid (b), and the group-by-uric acid interaction (c). For each of the three F

maps, clusters exceeding a joint threshold (cluster height p < 0.05 & cluster size k ≥ 50 voxels) are listed in descending order by k along with the corresponding Montreal Neurological

Institute x,y,z coordinate, labeled brain region with Brodmann Area (BA) where applicable, peak F value of the cluster and associated probability value.
†
Cluster exceeds threshold

corrected for multiple comparisons.
‡
Cluster is a subset of cluster

†
in b.
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FIGURE 3 | The group-by-uric acid interaction effect on SN functional connectivity. The group-by-UA interaction F-map is displayed on dorsal (A), anterior (B), and

posterior (C) views of the pial surface with corresponding inflated representations (D–F). Inflated views of the ventral (H), right hemisphere (I), and left hemisphere (J)

cortex are displayed next to their pial representations (K–M). A sagittal slice through left hemisphere (N) and coronal (O) and axial (P) slices show the interaction

between group and UA on SN functional connectivity with the left thalamus (cluster 6, Table 3c).

(RBD–) patients had a negative slope of−0.0446 [F(1, 5) = 12.86,
p = 0.0158], and PD (RBD+) patients had a nearly flat slope of
−0.0215 [F(1, 14) = 1.565, p= 0.2315].

Of the 15 clusters identified in the ANCOVA interaction F-
map, four clusters exhibited a relationship in which the PD
(RBD+) patients had a positive slope, while the CON subjects
had a negative slope. This relationship was evident in the
right precentral gyrus cluster 3 (Supplemental Figure 3). In
this right precentral gyrus cluster PD (RBD+) patients had a
positive slope of 0.09794 [F(1, 14) = 14.53, p = 0.0019], CON
subjects had a negative slope of −0.08411 [F(1, 9) = 9.915,
p = 0.0118], the PD (RBD–) subjects had a less negative

slope of −0.03183 [F(1, 5) = 3.603, p = 0.1161], and the RBD
subjects had a flat slope of −3.496e-005 [F(1, 30) = 6.411e006,
p= 0.9980].

Of the 15 clusters identified in the ANCOVA interaction
F-map, two exhibited a relationship in which the PD
(RBD–) patients had a positive slope while the PD (RBD+)
patients had a negative slope. This relationship was evident in
the right lingual gyrus cluster 7 (Supplemental Figure 4). In
this right lingual gyrus cluster the PD (RBD–) patients had a
positive slope of 0.1741 [F(1,5) = 23.74, p = 0.0046], the PD
(RBD+) patients had a negative slope of −0.03982 [F(1, 14) =
4.775, p = 0.0464], the RBD patients had a nearly flat slope of
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FIGURE 4 | The group-by-uric acid interaction reveals six brain regions with decreasing SN functional connectivity as a function of uric acid from controls to PD with

RBD in between. Of the 15 clusters identified in the ANCOVA interaction F-map, six exhibited a relationship in which CON subjects showed the highest positive

(Continued)
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FIGURE 4 | regional slope [slope m = 0.04803 in (A) Cluster 1, L. Lingual Gyrus BA 18], the RBD slope was lower [m = 0.01859 in (A) Cluster 1], the PDRBD slope

was lower still (m = 0.003069 in (A) Cluster 1], and the PD slope was negative [m = −0.06649 in (A) Cluster 1]. This ordered pattern of decreasing slopes across

these groups is similar in the other clusters: cluster 5 (B), cluster 6 (C), cluster 8 (D), cluster 9 (E), and cluster 11 (F). Slopes are computed using the average of

voxels in each cluster in each subject. Cluster numbers are the same as in Table 3C. The color of cluster voxels in the inflated and orthogonal views is arbitrary.

0.02382 [F(1, 30) = 1.943, p = 0.1736] and the CON individuals
also had a nearly flat slope of −0.01479 [F(1, 9) = 0.2632,
p= 0.6203].

DISCUSSION

The main novel finding of the present study is that a
positive relationship was found between UA levels and SN
resting state functional connectivity with posterior cortical
regions in controls. Increased functional connectivity with
higher UA levels in controls would appear consistent with the
oxidant stress hypothesis, with levels of the antioxidant UA
corresponding to stronger connectivity. But this relationship
appears to break down in the patients: the positive relationship
decreased in patients with RBD, and turned to a negative
relationship in patients with PD. If the hypothesis that RBD
is a prodromal state of PD, with idiopathic RBD a kind of
intermediate state between controls and PD, then the pattern
of slopes found with controls highest and positive, RBD in
between, and PD lowest and negative may be consistent with
more neurodegeneration from RBD to PD corresponding to
reduced functional connectivity. This logic assumes that stronger
functional connectivity is beneficial while reduced connectivity is
detrimental, a relationship in neurodegenerative diseases that is
supported by some data but remains a matter of debate especially
in regards to functional compared to structural connectivity (67).
Previous work has documented reduced resting state functional
connectivity between SN and other basal ganglia regions as
well as with posterior cortex with controls having highest
connectivity, RBD patients in the middle and PD patients with
lowest connectivity (38). The present study augments previous
work by showing that a UA covariate is associated with changes
in SN-posterior cortical connectivity. However, it is important to
note that based on the present results nothing can be inferred
about the neuroprotective role of UA in disease progression or
connectivity. To address those questions, longitudinal imaging
with UA levels taken at the same timepoints would need to be
done to determine whether higher UA early after the diagnosis of
RBD corresponded with a longer duration of time to convert (or
never convert) to PD.

The physiological relevance of the altered functional
connectivity between SN and lingual gyrus in RBD and PD
found in the present study requires further investigation. A
recent resting state fMRI reports reduced brain functional
connectivity with a multiple posterior cortical regions in RBD
patients in whom the connectivity changes correlated with
mental processing slowness (50). Earlier studies using metabolic
PET imaging (68) and corticometry (49) specifically implicate
the lingual gyrus as one posterior cortical area showing reduced
glucose tracer uptake and cortical thinning respectively in RBD
vs. healthy controls. The lingual gyrus is typically associated

with visual function and it has also been documented to show
reduced gray matter along with superior parietal lobule in PD
patients with visual hallucinations (69). If differences in the
relationship between UA and SN functional connectivity in
lingual gyrus can distinguish among disease states, that may be
important for identifying prodromal biomarkers. However, a
cross-sectional study like the present one is limited in this regard
and it needs to be followed by future longitudinal imaging to
track how functional connectivity changes with UA levels after
the diagnosis of RBD and PD.

It is important not to draw firm conclusions regarding
the hemispheric laterality of the present findings because
patients present with asymmetric symptoms with some more
compromised on the left and some more compromised on the
right, which implicates opposite hemispheres in the disease
pathophysiology. For our sample of PD patients with clinically
significant asymmetric movement deficits, 12 had right disease
onset and 11 had left disease onset. We attempted to address the
issue of laterality in a supplemental post-hoc analysis in which
the images of 11 patients with left disease onset as confirmed by
clinical data were flipped. The rationale for this image flipping
was that it would align their relatively more diseased and non-
diseased hemispheres with the 12 other patients with opposite
asymmetry whose images were not flipped. The prediction for
this analysis was that it would increase magnitude of effects
because without alignment of the diseased and non-diseased
hemispheres, the effects would “average out” to some extent.
The result of this subsequent post-hoc ANCOVA supported
this idea as it showed the biggest increase in spatial extent
for the largest cluster encompassing lingual gyrus in one
hemisphere, and a smaller expansion in spatial extent of the
other smaller cluster encompassing lingual gyrus in the opposite
hemisphere. Inspection of regional slopes for the largest cluster
revealed a similar pattern, but the negative slope for the PD
(RBD–) group become more negative and more significant
(Supplemental Figure 1).

While previous nigrocortical and cortico-cortical connectivity
studies using resting state fMRI have reported left lateralized
connectivity changes (38, 50, 70) consistent with left hemispheric
predominance of nigrostriatal dysfunction (71), the laterality
of connectivity results in the present study require further
investigation. Laterality of disease onset is determined by
neurologic exam and it is only possible to make these clinical
determinations for the PD patients who showmotor impairment.
Controls and RBD subjects show no lateralized movement
impairments, and in the absence of measurements from a
gold-standard imaging technique like DaTscan (72) to quantify
hemispheric differences in dopamine transporter levels, any
lateralized functional connectivity differences in the present
study should be interpreted with caution or not be interpreted
at all without additional imaging evidence.
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It has recently been reported using resting state fMRI
that male de novo PD patients with higher UA levels had
higher cortical functional connectivity in resting state networks
including the dorsal attention network, executive control
network, and default mode network, while female patients
had lower functional connectivity regardless of UA level (73).
These findings suggest that resting state networks might be
closely and gender-specifically associated with the status of
serum UA in de novo PD patients. Another study reports
increased resting state connectivity between midbrain and
cortex in PD (74). The organizational pattern of substantia
connections with seven resting state functional networks has
also been investigated to show that the medial portion of the
SN compacta (mSNc) dominantly connects to limbic and visual
cortex, while ventral SN (vSN) mainly connects with fronto-
parietal and default mode networks (75). Widespread patterns of
SN functional connectivity modulated by UA levels may also have
a structural basis as diffusion tensor imaging reveals widespread
structural connectivity of SN including primary motor cortex,
somatosensory cortex, prefrontal cortex, caudate and putamen,
globus pallidus, nucleus accumbens, temporal lobe, amygdala,
pontine basis, occipital lobe, anterior and posterior cerebellum,
corpus callosum, and external capsule (76).

Our main finding is that SN-posterior cortical resting state
connectivity is positively associated with serum UA in male
controls, and this relationship decreases in RBD and turns
negative in PD. However, we also found a trend toward increased
SN functional connectivity as a function of UA in frontal cortex
and cerebellum in RBD patients (Supplemental Figure 2) and in
cortex and lentiform nucleus in PD patients with and without
RBD (Supplemental Figures 3, 4), but these results did not
survive multiple comparisons correction. A limitation of the
present study is relatively small sample sizes in the control and
PD (RBD–) groups, which limits statistical power. Future studies
utilizing larger sample sizes and more powerful longitudinal
designs are needed investigate how different patterns of
connectivity distinguish among controls, prodromal individuals,
and diagnosed PD patients.

CONCLUSION

We conclude that UA and SN functional connectivity among
controls, a prodromal idiopathic RBD group, and PD patients
with and without RBD is altered differentially in a ventral
occipital region previously documented to be metabolically and
structurally altered in RBD and PD. Replication in longitudinal
designs with larger samples supplemented by dopaminergic
imaging is needed to clarify the relevance of these patterns as
biomarkers in prodromal Parkinson’s disease.
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Supplemental Figure 1 | The group-by-uric acid interaction reveals positive SN

functional connectivity as a function of uric acid in RBD in four brain regions. Of

the 15 clusters identified in the ANCOVA interaction F-map, four exhibited a

relationship in which RBD subjects had a positive regional slope (slope m =

0.03231 in panel a Cluster 2, R. Middle Frontal Gyrus BA 8), while CON subjects

had negative or flat slope (m = −0.07525 in panel a Cluster 2). Slopes are

computed using the average of voxels in each cluster in each subject. Cluster

numbers are the same as in Table 3c. The color of cluster voxels in the inflated

and orthogonal slice views in this figure is arbitrary.

Supplemental Figure 2 | The group-by-uric acid interaction reveals positive SN

functional connectivity as a function of uric acid in PD (RBD+) in four brain

regions. Of the 15 clusters identified in the ANCOVA interaction F-map, four

exhibited a relationship in which PD (RBD+) patients had a positive regional slope

(slope m = 0.09794 in panel a Cluster 3, R. Precentral Gyrus), while the slope for

CON subjects was negative (m = −0.08411 in panel a Cluster 3). Slopes are

computed using the average of voxels in each cluster in each subject. Cluster

numbers are the same as in Table 3c. The color of cluster voxels in the inflated

and orthogonal views is arbitrary.

Supplemental Figure 3 | The group-by-uric acid interaction reveals opposite

relationships between SN functional connectivity as a function of uric acid in PD

(RBD+) and PD (RBD–) in two brain regions. Of the 15 clusters identified in the

ANCOVA interaction F-map, two exhibited a relationship in which the PD (RBD+)

patients had a negative regional slope (slope m = −0.03982 in panel a Cluster 7,

R. Lingual Gyrus), while the slope for PD patients without RBD were positive

(m = 0.1741 in panel a Cluster 7). Slopes are computed using the average of

voxels in each cluster in each subject. Cluster numbers are the same as in

Table 3c. The color of cluster voxels in the inflated and orthogonal views

is arbitrary.
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Supplemental Figure 4 | Group-by-uric acid regional interaction for the largest

cluster encompassing lingual gyrus in the post-hoc left disease onset image flip

analysis. In the post-hoc ANCOVA with image flipping for left disease onset

patients, the largest cluster encompassing lingual gyrus from the original analysis

(cluster 1, Figure 4) exhibited a similar pattern of slopes with the biggest

difference being a more negative and significant slope for the PD (RBD–) group.

Slopes are computed using the average of voxels in each cluster in

each subject.

Supplemental Table 1 | Brain regions with a group-by-uric acid interaction in the

post-hoc analysis with image flipping for the left disease onset patients. Regions

exceeding a joint threshold (cluster height p < 0.05 & cluster size k≥50 voxels) are

listed in descending order by k along with the corresponding Montreal

Neurological Institute x,y,z coordinate, labeled brain region with Brodmann Area

(BA) where applicable, peak F value of the cluster and associated probability

value. †Cluster exceeds threshold corrected for multiple comparisons. ‡Cluster is

a subset of cluster † in Table 3b.
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