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A B S T R A C T   

Pathology is currently the gold standard for grading prostate cancer (PCa). However, pathology takes consid-
erable time to provide a final result and is significantly dependent on subjective judgment. In this study, wavelet 
transform-based photoacoustic power spectrum analysis (WT-PASA) was used for grading PCa with different 
Gleason scores (GSs). The tumor region was accurately identified via wavelet transform time-frequency analysis. 
Then, a linear fitting was conducted on the photoacoustic power spectrum curve of the tumor region to obtain the 
quantified spectral parameter slope. The results showed that high GSs have small glandular cavity structures and 
higher heterogeneity, and consequently, the slopes at both 1210 nm and 1310 nm were high (p < 0.01). The 
classification accuracy of the PA time frequency spectrum (PA-TFS) of tumor region using ResNet-18 was 89% at 
1210 nm and 92.7% at 1310 nm. Further, the testing time was less than 7 mins. The results demonstrated that 
identification of PCa can be rapidly and objectively realized using WT-PASA.   

1. Introduction 

Recently, prostate cancer (PCa) has become the most commonly 
diagnosed cancer in men, accounting for 10% of all new male cancers 
worldwide [1,2]. For an American man, the lifetime risk of developing 
PCa is approximately 42% [3]. In particular, PCa has a high incidence 
but variable aggressiveness. PCa is curable and grows slowly in its early 
stage; however, when it becomes more aggressive, it is impossible to 
treat it, and the fatality rate is extremely high [4]. Therefore, grading 
PCa is crucial for reducing fatality rates. Currently, magnetic resonance 
(MRI) / ultrasound (US) guided biopsy puncture pathology is regarded 
as the “gold standard” that confirm the diagnosis of cancer as well as to 
classify tumor aggressiveness [5,6]. During the procedure, 16- or 
18-gauge biopsy needles are used to extract 15 mm biopsy needle strips 
from the prostate tissue [7]. Each biopsied tissue can be graded ac-
cording to the glandular cavity architecture and assigned a Gleason 
score (GS) [8,9]. Clinical studies have shown that in order to achieve 
better sensitivity to aggressive PCa, transperineal saturated biopsies 

sometimes will be conducted on more than 50 sites in one sample [10, 
11]; however, they cause great physical and mental pain to patients. 
Moreover, the pathology depends on the subjective judgment of the 
pathologist. Thus, the initial biopsy can only produce 80% accuracy 
diagnoses [10,11]. In addition, pathology is very time-consuming; it 
normally takes three–four days to obtain the results. US and MRI 
methods have shown great potential in PCa detection [12–14]; however, 
they focus on tissue whole morphology regardless of the distribution of 
the information of the glandular cavity structure [12–15], which is not 
consistent with the evaluation characteristics of the Gleason system. 
Therefore, a new method that can assess the aggressiveness of PCa more 
quickly, objectively and accurately is urgently required. 

Photoacoustic (PA) detection is an emerging technology with the 
dual advantages of high sensitivity and high resolution. Its most 
important advantage lies in its ability to simultaneously evaluate the 
chemical and physical properties of tissues [16–18]. Photoacoustic 
power spectrum analysis (PASA), which analyzes the PA signal in the 
frequency domain, has demonstrated the capability of assessing the 
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size/microstructure of different chemical components in biological tis-
sues [19–24], which is consistent with the evaluation characteristics of 
the Gleason system. According to the characteristics of different dis-
eases, different spectral parameters are extracted to quantify changes in 
the chemical components of the lesion. Previous studies used different 
PA spectral parameters to study vascular diseases [25] and bone health 
[26–28] as well as to identify cancer [22,23,29–31]. In our previous 
study, we conducted PASA on the entire effective signal; this is because 
the PA spectral parameter slope indicates the proportion of the high- and 
low-frequency components of the entire effective signal generated by 
whole biological tissue [23,24,29–31]. However, the prostate biopsy 
core is different from other samples and has a 15 mm biopsy needle strip; 
in general, only 20–30% (approximately 4 mm) is tumor region, and the 
rest is normal prostate tissue [6–9]. In such a situation, the slope reflects 
the average structure size of the tissue, including the normal region; 
thus, causing inaccurate results [23,24,29–31]. To remove the influence 
of the normal region on the slope parameter, the tumor region must be 
selected first before PASA. 

The continuous wavelet transform (CWT) can be used to simulta-
neously provide the joint distribution information of the time and fre-
quency domains of PA signals [32]. The CWT technique has been 
applied in numerous fields, including cardiovascular health assessment 
[33–35], instrument fault detection [36,37], and geophysics [38,39]. In 
PA research, the CWT technique has been applied to assess bone health 
via evaluation of the frequency-related propagation attenuation of 
different bone samples [28,40]. Using CWT, we can acquire the distri-
bution of frequency information along the 15 mm biopsy needle strip. 
Because the difference between PCa and normal tissue lies in the 

structural size of the glandular cavity, we can remove the influence of 
normal tissues by utilizing the frequency difference between the struc-
ture of a normal tissue and PCa using CWT. 

Convolution neural networks (CNNs) are a type of deep feedforward 
neural network with convolution computation [41]. It is one of the 
representative algorithms of deep learning. Based on their rich repre-
sentation power, fast inference, and filter sharing properties, CNNs have 
significantly increased the performance of image classification [42–45] 
and super-resolution reconstruction [46–48]. The deep residual network 
(ResNet) is one of the most commonly convolution CNNs. The core of the 
ResNet model is to establish “shortcuts” (skip connections) between the 
front and back layer, which is conducive to the backpropagation of 
gradients during training, so as to train a deeper CNN network and 
achieve higher accuracy [49]. ResNets (ResNet-18, ResNet-34, 
ResNet-50, ResNet-101, and ResNet-152, whose main difference lies in 
the number of network layers) perform better in image classification 
than other CNN models in ImageNet dataset, which indicate that image 
features could be well extracted by ResNets [49]. The performance of 
ResNet-18 is similar to other ResNets, which can retain more low-scale 
features owing to the reason that it is shallow. Therefore, we want to 
use ResNet-18 for the intelligent grading PCa. 

In this study, we investigated a new method using wavelet transform- 
based photoacoustic power spectrum analysis (WT-PASA) to evaluate 
the aggressiveness of PCa via an ex vivo experiment on human prostate 
biopsy needle strip with different GSs. First, we conducted CWT time- 
frequency analysis on each sample to acquire the tumor region of the 
entire biopsy needle strip. Then, a linear fitting was conducted on the PA 
power spectrum curve of the tumor region to obtain the quantified 

Fig. 1. Newly modified Gleason grading diagram presented in the ISUP publication [50].  
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spectral parameter slope. In addition, we employed ResNet-18 on the PA 
time-frequency spectrum (PA-TFS) images of tumor region to directly 
evaluate the aggressiveness of PCa. The total testing time was less than 7 
mins (including 3 mins for PA detection, 2 mins for post-processing time, 
and 1 min for decision-making). The objective was to grade different GSs 
through the characterization of the microstructure of chemical content 
in the frequency spectrum. 

2. Materials and methods 

2.1. Human prostate biopsy needle strip 

Four types of human PCa needle strips with a total of 56 samples, 
including benign (34 samples), GS = 6 (10 samples), GS = 7 (6 samples), 
and GS = 8 (6 samples), were collected in 2019–2021. All participants 
provided their informed consent, and all procedures were approved by 
the Institutional Review Committee of Tongji Hospital. According to the 
new modified Gleason grading diagram, as shown in Fig. 1 [50], when 
GS≤6, the cells are well differentiated and the structural differences are 
similar to those in normal tissues. In addition, it is indicated that patients 
with GS≥7 are more vulnerable to extraprostatic extension and 
biochemical recurrence [8,51]. Therefore, three types of human prostate 
strips, including GS≤6, GS = 7, and GS = 8, were divided to evaluate 
the feasibility of WT-PASA for the aggressiveness of PCa. For the sta-
bility of the system, each sample was detected 10 times and all the data 
thus obtained were used for ResNet-18 classification. The specific sam-
ple sizes are listed in Table 1. Thereafter, all the samples were fixed in 
formalin and sent for pathological examination. Each sample was fixed 
on glass sides and stained with standard hematoxylin-eosin (HE), Mas-
son trichrome, and Nile red staining. 

2.2. Ex vivo PA experiments on human prostate biopsy needle strip 

The schematic of the ex vivo PA experimental setup is shown in Fig. 2 
(a). A tunable optical parametric oscillator (OPO) laser (Phocus Mobile, 
OPOTEK, Carlsbad, CA) generates the optical illumination with a 10 Hz 
repetition rate and a 2–5 ns pulse width at a wavelength of 1210 nm 
(mainly absorbed by lipid molecular) [21,53,54] and 1310 nm (mainly 
absorbed by collagen molecular) [53,54]. The light was focused using 
the convex lens and coupled to a fiber diffuser that was developed earlier 
[24,55], as shown in Fig. 2(a). The signal acquisition system, as shown in 
Fig. 2(b), includes a needle hydrophone that bandwidth is 1–20 MHz 
(HNC-1500, ONDA Corp., Sunnyvale, CA) and a fiber optics diffuser. 
5 mJ optical energy at 1210 nm and 1310 nm were focused at the 
coupling end of the fiber optics. The optical fiber diffuser (radius: 300 
μm, length: 2 cm) coupling was approximately 70%. Considering the 
optical output area of the fiber diffuser was approximately 0.377 cm2, 
we can determine the optical energy density at the fiber optics diffuser 
surface was 13.26 mJ/cm2. The energy was satisfied within the ANSI 
limit. As shown in Fig. 2(b), the sample was put on the phantom, 
avoiding the strong scattering of sound signal caused by any hard 
boundary. Moreover, tweezers were used to make the sample stick close 
to the optical fiber diffuser, so that it stays straight. In this study, the gel 
volume was used for coupling the PA signal from the sample. The hy-
drophone was received in the direction of the extension line of each 
sample. The PA signals acquired by the hydrophone were received a 
35 dB gain by a low-noise amplifier (5072PR, Olympus Corp., Tokyo, 
Japan). The PA signals received by the hydrophone were recorded by a 
digital oscilloscope (HDO6000, oscilloscope, Teledyne Lecroy, USA) at a 
sampling rate of 2500 MHz. A personal computer with LabView was 
used to control the synchronized laser firing. The typical PA 
time-domain signal of human prostate biopsy needle strip at both 
wavelengths are as shown in Fig. 2(c)-(d). The SNR is around 19 dB and 
22 dB at 1210 nm and 1310 nm respectively. 

2.3. PA signal processing 

All PA signal processing was performed using the MATLAB software 
(Matlab R2018a). In Fig. 3(a), the PA signals generated by each sample 
was selected with an effective PA signal of approximately 10 µs, 

Table 1 
Sample size.  

Method Normal GS= 6 GS= 7 GS= 8 

PASA (samples)  34  10  6  6 
ResNet-18 (images)  340  100  60  60  

Fig. 2. Ex vivo experimental measurement setup. (a) PA measurement setup. (b) PA signal acquisition device. (c) Typical PA time-domain signal of human prostate 
cancer biopsy needle strip at 1210 nm (Gleason score = 7). (d) Typical PA time-domain signal of human prostate cancer biopsy needle strip at 1310 nm (Gleason 
score=7). (red arrows in c and d mean the signal start point.). (For interpretation of the references to colour in this figure, the reader is referred to the web version of 
this article.) 
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corresponding to the length of 15 mm with the sound speed of 1500 m/ 
s. Then, the CWT technique was applied to the effective signals (~10 µs) 
of each prostate strip sample to obtain the PA-TFS depicting the 
frequency-spectrum distribution at different times. Then, the power- 

weight mean frequency (PWMF) along the time axis was calculated, 
which reflects the tissue structural size of the different location of the 
whole sample. The PWMF was calculated as follows, 

Fig. 3. PA signal processing. (a) Typical PA time-domain signal of human PCa biopsy needle strip. (b) PWMF curve of the effective signal. (c) Corresponding PA time- 
frequency spectrum (PA-TFS) of the tumor region. (d) The block diagram of the PA signal processing. 

Fig. 4. (a) The residual block (b) The fully connected layers. (c) ResNet-18 architecture.  
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PWMF =

∫ f2
f1

f ∙P(f )df
∫ f2

f1
P(f )df

(1)  

where P(f) represents the spectrum density at frequency f , while f1 and 
f2 are the upper and lower limit of integration. The curve of the PWMF 
over time is shown in Fig. 3(b). The time axis represents different lo-
cations of the whole sample. The PWMF value at each location reflects 
the average tissue structural size. In general, the poorer the differenti-
ation, the higher Gleason score and the smaller size of glandular cavity 
structure appears, leading to a higher PWMF value. Because only 
20–30% of the whole human prostate biopsy needle strip was tumor 
region [6–9], we choose the highest value of the PWMF curve as the 
center, and total 4 µs PA signal length was selected as the tumor region, 
as shown in the Fig. 3(b). Then we performed PASA only on the tumor 
region to assess its heterogeneity, excluding the effect of the normal 
region. A linear fitting of the power spectrum curve was performed to 
obtain the quantified parameter slope to evaluate the heterogeneity of 
the tumor region. Finally, we further utilized ResNet 18 for intelligent 
classification of the PA-TFS images of the tumor region, which is shown 
in Fig. 3(c). The frequency range of 1.5 – 10 MHz was chosen for the PA 
analysis, considering the feature size of glandular cavity is over 150 µm 
(<10 MHz) and excluding the low frequency system noise. 

Fig. 3(d) is a block diagram of the PA signal processing. In step 1, the 
PA measurements at each wavelength for each sample was collected. In 
step 2, CWT technique was applied to the effective signals. In step 3, the 
PWMF value at each position was calculated, to select the tumor region. 
In step 4, a linear fitting of the power spectrum curve was performed to 
obtain the quantified parameter slope to evaluate the heterogeneity of 

the tumor region. In step 5, we further utilized Resnet 18 for intelligent 
classification of the PA-TFS images of the tumor region. The input data 
format was “.jpg,” and the input image size was “3× 224× 244”, where 
3 is for 3 RGB channels. The color in PA-TFS images represents the in-
tensity information, so RGB data was used as input data, and “224×

224” was used for the pixel matrix.” 

2.4. ResNet-18 architecture 

We employed ResNet-18 to classify the PA-TFS images of the tumor 
region directly to obtain more information and grade, and its architec-
ture is shown in Fig. 4. The source code was downloaded from Github 
with the parameters of was modified to achieve the goal of prostate 
cancer grading. We modified the parameters of epoch, batchsize, 
learning rate and the channel number of output and input to achieve the 
highest accuracy of the four categories at both two wavelengths. The 
residual block in ResNet18 [56–60] is defined as follows: 

y = F(x, {Wi} )+ x (2)  

where x is the input of the layers and y is the output. F(x, {Wi} ) repre-
sents the residual mapping to be learned. There are two weight layers in 
the residual block [56]; W1 for the first layer and W2 for the second 
layer, as shown in the Fig. 4(a). The residual block can retain the in-
formation from the previous layers and resolve the degradation owing to 
the increase in the number of layers in ResNet. ResNet-18 can retain 
more of the low-scale features because it is shallow. In this study, as 
shown in Fig. 4, the ResNet-18 contains 16 convolution layers, 2 
downsampling layers, and one fully connected layer (FC). The FC means 
one fully connected layer. In mathematics, it can be understood as an 

Fig. 5. Representative pathology of (a)-(c) HE staining for different GSs. (d)-(f) Masson staining for different GSs. (g)-(i) Nile red staining for different GSs.  
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expanded polynomial, as shown in the Fig. 4(b). The size of the 
convolution kernel in the first convolution layer is 7 × 7, and the rest of 
the layers are 3 × 3. After average pooling the feature map of the last 
convolution layer, an eigenvector is obtained by FC, and the classifica-
tion probability is obtained by normalization with Softmax. Softmax is 
the node activation function, and it can be defined as: 

Softmax(zi) =
ezi

∑C
c=1ezc

(2)  

where zi is the output value of the ith node, and C is the number of output 
nodes. As shown in Fig. 4(c), a residual block is formed by two convo-
lution layers of the same color. In this work, we applied the ResNet-18 
model directly on the PA-TFS images of the tumor region to obtain 
more information, and then eventually grade the GS. A total of 560 
images were used for training ResNet-18. Among these images, 448 
(80%), 56 (10%), and 56 (10%) were used for network training, vali-
dation, and testing, respectively. [We implement our experiments on 
PyTorch, using an Intel Xeon Gold 6130 CPU and a Nvidia Quadro 
P4000 GPU. The training is run with Adam for 100 epochs, with a 
learning rate of 0.001 and batch size of 16.]. 

Fig. 6. Results of ex vivo PASA of different GS tissues at two wavelength of 1210 nm and 1310 nm. (a) Typical photoacoustic power spectrum analysis (PASA) of 
different GS (GS≤6, =7, and =8) at the wavelength of 1210 nm. (b) Statistic result of quantified PASA parameters slope in different GS at 1210 nm. (c) Representative 
PASA parameters slope of different GS (GS≤6, =7, and =8) at the wavelength of 1310 nm. (d) Statistic result of quantified PASA parameters slope in different GS at 
1210 nm, n represent the sample size. (**** p < 0.0001, ** p < 0.01, * p < 0.1, ns: not statistically significant.). 

Table 2 
The number of images in dataset.   

Normal GS = 6 GS = 7 GS = 8 
Label 0 1 2 3 

Traning setValidation setTest 
setTotal images  

2723434340  801010100  486660  486660  

Fig. 7. ResNet-18 network classification results of different GSs at 1210 nm and 1310 nm. (a) Confusion matrix of normal and different GSs (GS = 6, 7 and 8) tissues 
at 1210 nm (total accuracy of 89.3%). (b) Confusion matrix of normal and different GSs (GS = 6, 7 and 8) tissues at 1310 nm (total accuracy of 92.7%). 
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3. Results 

3.1. Pathological results 

Normally, collagens are the structural network supporting prostate 
tissues [61,62], while lipids are exist in exosomes of the extracellular 
environment [63]. They are mainly distributed around the glandular 
cavity. However, when prostate tissues are cancerous, the environment 
changes and metabolism is abnormal [64], which leads to the change of 
structure. Therefore, lipids and collagens are especially evident owing to 
the microstructural changes of these two biological macromolecules 
during the development of prostate cancer. In this study, we observed 
the correlation of photoacoustic spectrum and prostate cancer at 
1210 nm and 1310 nm. The pathological results of standard HE staining, 
Masson staining, and Nile red staining are shown in Fig. 5. HE staining in 
Fig. 5(a)-(c) shows that the degree of tissue differentiation decreases 
with the increase in GS. GS≤6 has the highest differentiation and a 
relatively complete glandular cavity structure. With the increase in GS, 
the tissue gradually changed from highly differentiated to poorly 
differentiated, as shown in Fig. 5(b), with the appearance of smaller 
glandular cavity structures. For GS = 8 with the lowest differentiation, 
there was no complete glandular cavity structure, and the cell was 
diffused in the tissue. In general, the poorer the differentiation, the 
smaller size of glandular cavity structure appear. We also conducted 
Masson staining and Nile red staining to further discuss the changes in 
the structure of lipid and collagen molecules with increased GS. As 
shown in Fig. 5(d)-(f), we can observe that the collagen molecules are 
distributed around the glandular cavity, showing that the structural 
changes of collagen molecules are similar to the changes in glandular 
cavity structures. The same conclusion can be obtained for lipid mole-
cules from Fig. 5(g)-(i). Resolvable microscopic features (>150 µm) 
were formed by the glandular cavity (surrounded by lipid and collagen 
molecules). 

3.2. Quantified PASA parameters slope of different GS tissues 

Four types of human PCa needle strips, including benign (34 sam-
ples), GS = 6 (10 samples), GS = 7 (6 samples), and GS = 8 (6 samples), 
were collected for this study. The PASA slope indicates the relative 
proportion between the high- and low-frequency components in the 
tumor region. As shown in Fig. 6(a), with a higher GS, a higher fre-
quency appears, leading to a higher slope. Thus, the higher the slope, the 
smaller the size of the glandular cavity and the higher the heterogeneity. 
As shown in Fig. 6(c), there is a lower slope for the lower GS. To make the 
result more intuitive, the statistical result of the slope at 1210 nm and 
1310 nm were calculated. As shown in Fig. 6(b), the slope increased 
significantly when GS = 8 as compared to when GS≤6 (p < 0.0001) and 
GS= 7 (p < 0.0001). At the collagen absorption wavelength of 1310 nm, 
the slopes were higher when GS = 8 as compared to when GS = 7 and 
GS = 6, as shown in Fig. 6(d). Owing to the limited sample size, only 
statistical analysis could be conducted to obtain qualitative results. The 
aforementioned results were consistent with the three pathological 
staining results presented in Fig. 5(d)-(i). 

3.3. Classification results of using ResNet-18 network 

Further, we employed the ResNet-18 network to obtain more infor-
mation on the PA to quantify different GSs in detailed. We labeled four 
groups of normal, GS= 6, GS= 7, and GS= 8 with 0, 1, 2 and 3. A total of 
560 images were used for ResNet-18 network. We labled all the images 
according to the pathological results of Gleason score. There were 340 
images of normal tissues, 100 images of GS= 6 tissues, 60 images of 
GS= 7 tissues, and 60 images of GS= 8 tissues. In this study, the training, 
validation and test sets were divided in a ratio of 8:1:1, the number of 
images in dataset is shown in Table 2. The total accuracy was 89.3% at 
1210 nm and 92.7% at 1310 nm. As shown in Fig. 7(a), all the four 

groups achieved reasonably high precisions of 88.6%, 100%, 100%, and 
100% on normal, GS = 6, GS = 7 and GS= 8, respectively, at 1210 nm. 
As shown in Fig. 7(b), all four groups also achieved reasonably high 
precisions of 97.1%, 90%, 68%, and 100% on normal, GS = 6, GS = 7 
and GS= 8, respectively, at 1310 nm. The common misclassification of 
groups is observed between “normal” and “GS= 6” or “GS = 7’ and 
”GS = 8”, as shown in Fig. 7(b), because of the small sample size of 
GS= 7 and similar structural characteristics between adjacent GS scores. 
As shown in Fig. 7(b), it seems there was a small percentage of normal 
tissues misclassified as highest grade rather than lower ones. Because of 
the limit sizes of GS= 8 tissues, leading to the incomplete extraction of 
feature information. 

4. Discussion 

PASA is widely used in disease detection [22,23,26–30] because of 
its ability to accurately quantify molecular physicochemical information 
difference. However, because the human prostate biopsy needle strips 
are different from other disease models, the tumor region is usually less 
than half of its total length. The PA signals were generated from both 
normal tissue and tumor tissue, leading to the slope of PASA parameter 
reflecting the averaged microstructure characteristics of the whole 
sample, rather than the microstructure characteristics of tumor tissue. In 
this work, we combined CWT technique with PASA to accurately 
quantify the structural changes only in tumor region. First, CWT was 
applied to the effective signals (~10 µs) of each sample to obtain PA-TFS 
depicting the frequency-spectrum distribution at different times. Then, 
PWMF along the time axis was calculated, which reflects the tissue 
structural size of the different location of the whole human prostate 
biopsy needle strip. In general, the poorer the differentiation, the higher 
the Gleason score and the smaller size of glandular cavity structure that 
appears, leading to a higher PWMF value. Because only 20–30% of the 
whole human prostate biopsy needle strip was the tumor region [6–9], 
we chose the highest value of the PWMF curve as the center, and total 4 
µs PA time-domain signal length was selected as the tumor region. The 
PA signal acquisition device was fabricated by a home-made fiber optics 
diffuser [24,55] and a needle hydrophone and the hydrophone received 
in the direction of the extension line of each sample. We extracted the 
parameter of PWMF to distinguish tumor region from the whole human 
prostate strips. The amplitude of the frequency components in the power 
spectrum was calculated as the weighted coefficient, and we can obtain 
the main frequency of the whole human prostate strips by PWMF. We 
only conducted PASA on the tumor region and quantified the aggres-
siveness of PCa using the PA parameter of the slope. The higher the GS, 
the larger the slope. The aforementioned results were consistent with the 
three pathological staining results presented in Fig. 5(d)-(i). The results 
also indicate that PASA was able to successfully distinguish high-risk 
tumors (GS≥7) from the lower-risk ones (GS≤6). PASA is therefore a 
highly objective, quantitative, and accurate grading approach. As we 
distinguished different GS prostate tissues through the change in the 
structural size, because of individual differences, the degree of differ-
entiation may not significantly vary between the lower GS (GS≤6 and 
GS=7), as shown in Fig. 6(d). The extraction of one parameter of slope 
may not provide a clear distinction. Because the sample size is limited, 
only statistical results can be used for quantitative analysis, and the 
method is not suitable for grading an individual currently. ResNet-18 is 
used to acquire more PA information and grade different GS tissues in 
detail. Deep learning extracts more PA information to achieve better 
classification, for example the information of the PA intensity at 
different locations and frequencies, the overall accuracy rate for the 
distinction between the four different tissues was greater than 89%, as 
shown in Fig. 7(a) and (b). 

The feasibility of grading PCa tissue with different GS using the WT- 
PASA method was demonstrated in this study. The PA parameter 
extracted in this study was relatively simple and only covered the 
structural size. In the future, we will attempt to extract more 
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dimensional parameters to comprehensively evaluate the physical 
properties of tissues, such as the curvature of the cavity and elasticity. 
More samples should be accumulated and additional data should be used 
in the ResNet-18 to improve the accuracy of the tissues with high GS. In 
fact, the accuracy rate gradually increased with the continuous accu-
mulation of the sample size during the last two years. Furthermore, thus 
HE staining is the result of staining the nucleus, and the PA absorption 
band of the nucleus falls in the ultraviolet (UV) wavelengths band [23]. 
As the result, we intend to include ultraviolet (UV) wavelengths to 
quantify the GS and then directly compare it with the H&E stained 
histology results to acquire additional comprehensive diagnostic 
information. 

5. Conclusion 

WT-PASA method can be used to comprehensively and accurately 
distinguish the influence of the GS structure size on the tumor region 
based on the PWMF difference to eliminate the influence of normal 
tissue on PASA parameters in the prostate section. From the pathological 
results, we were able to identify that the lipid and collagen molecules 
grow around the glandular cavity structure. Further, the slope was found 
to be related to the size of the glandular cavity structure and can be used 
for grading GS: a high GS indicated a small glandular cavity structure 
and a high slope. In addition, we used ResNet-18 to comprehensively 
classify different GSs, with an accuracy of more than 89% at both 
1210 nm and 1310 nm wavelengths. The PA results were consistent with 
the pathological results, demonstrating that the proposed approach can 
objectively and effectively assess the aggressiveness of PCa. In addition, 
for each sample, the PA detection time was about 3 min. The post- 

processing time was approximately 2 min, and decision-making time 
about 1 min. All the procedure done took less than 7 min, which was 
about the same for all samples. In the future, we aim to miniaturize and 
integrate the PA signal acquisition device into a fine needle, thereby 
achieving minimal invasive assessment of the aggressiveness of PCa in 
vivo and relieving patients’ pain and complications such as inflamma-
tion caused by needle biopsies. 
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Appendix A. : Simulation work 

To evaluate the feasibility of the WT-PASA method, we implemented numerical simulation on a model with the modified Gleason grading diagram 
in advance, as shown in Fig. A1. We extracted the three typical groups (GS≤6, GS = 4 +3 = 7, GS = 8) that affect the PA power spectrum for the 
simulation and simplified the model to a two-dimensional entity without loss of physical meaning. The simulated model was scaled to the actual 
human PCa biopsy needle strip size. The total length of the simulated model was scaled to 15 mm. The length of the simulated GS≤6, GS= 3 + 4 = 7 
and GS= 8 model was scaled to 5 mm respectively. The software used for PA simulation was the MATLAB k-wave toolbox (R2019b, MathWorks, 
Natick, MA) [52]. According to the simulation setting in k-wave, the white pixels in Fig. A1(a) represent the microstructure of human PCa biopsy 
needle strip, and they were designated as PA sources with the initial acoustic pressure of 1, whereas the black pixels were designated as the other 
biological tissue without initial acoustic pressure. The speed of sound was set at 1500 m/s for the simulated area, and an acoustic sensor was placed on 
the extension line along the length direction of the simulated model to receive PA signals, as shown in Fig. A1(b). The distance of the acoustic sensor to 
the simulated model was set to 3 mm. Fig. A1(c) shows typical PA signals of the simulated model. 

Fig. A2(a) shows the PA-TFS image of the simulated model with three typical Gleason groups (GS≤6, GS=4 +3 =7 and GS=8). The PA-TFS images 
reflect the frequency spectrum distribution at each moment, reflecting different levels of malignancy corresponding to different location. In the region 
of GS≤6, as shown in Fig. A2(a), there are lower frequencies than GS= 4 + 3 = 7 and GS= 8 regions. By contrast, much higher frequencies appeared in 
the GS= 8 regions. The reason for this is that the poorer the differentiation, accompanied by the smaller size of glandular cavity structure appearing. It 
is consistent with the theory that PA signals produced from smaller size structures have higher acoustic frequency components [25–28]. To choose the 
region with the highest degree of malignancy, we propose the parameter PWMF. We calculate PWMF along the time axis and propose an average 
PWMF for each group to characterize its structure, as shown in Fig. A2(b). We can see GS= 8 group has higher average PWMF, and PWMF can help 
choose the region with the highest degree of malignancy. Then, we conduct PASA on each group, proposing the parameter slope to grade GS. As shown 

Fig. A1. (a) Simulation model. (b) Simulation area setting. (c) Simulated photoacoustic signal in time domain.  
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in Fig. A2(c), GS= 8 group has higher slope, which is consistent with the result of the appeared higher frequency and disappeared lower frequency in 
Fig. A2 (a). 

Appendix B. : Power study to determine the number of patients needed 

Before we performed the dual-wavelength photoacoustic detection experiment before, we performed the photoacoustic detection based on the 
punctured prostate tissue strips (including 3 groups). Moreover, we performed power studies using PASS software to calculate the minimum number of 
samples required in experiment. In particular, three-sample (GS≤6, GS=7 and GS=8) F-test assuming equal variance were prepared. The results are 
shown as follows:  

• Based on the results at 1210 nm, the mean values of slopes were − 1.16 (GS≤6), − 0.66 (GS=7) and 0.5 (GS=8) respectively, and the numeric 
results for three-sample F-test assuming equal variance are shown in Table B1 and Fig. B1. 

Fig. A2. Results of numerical simulation. (a) Photoacoustic time-frequency spectrum (PA-TFS) of the simulated model. (b) The average power-weighted mean 
frequency (PWMF) of three groups (GS≤6, GS=7 and GS=8). (c) Photoacoustic power spectrum analysis (PASA) parameters slope of different GS (GS≤6, =7, and =8). 

Table B1 
Power study results based on slopes of photoacoustic power spectrum at 1210 nm.  

Target power Actual power Average n G (group) Total N K (means multiplier) Std Dev of σm  Standard Deviation σ  Effect Size Alpha 

0.7  0.7866  6  3  18  1  0.67  0.66  1.0194  0.01 
0.8  0.8828  7  3  21  1  0.67  0.66  1.0194  0.01 
0.9  0.9393  8  3  24  1  0.67  0.66  1.0194  0.01 
0.7  0.76  4  3  12  1  0.67  0.66  1.0194  0.05 
0.8  0.8825  5  3  15  1  0.67  0.66  1.0194  0.05 
0.9  0.9461  6  3  18  1  0.67  0.66  1.0194  0.05  

Fig. B1. Power study results based on slopes of photoacoustic power spectrum at 1210 nm.  
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• Based on the results at 1310 nm, the mean values of slopes were − 1.83 (GS≤6), − 1.48 (GS=7) and − 1.01 (GS=8), respectively, and the numeric 
results for three-sample F-test assuming equal variance are shown in Table B2 and Fig. B2. 

According to the power study results, each group sample size from 5 to 10 can meet the minimum sample requirements. Thus, over the last two 
years, we collected totally 56 punctured prostate tissue strip samples (34 for normal tissue, 10 for GS=6 tissue, 6 for GS=7 tissue and 6 for GS=8 
tissue). For the stability of the system, each sample was detected 10 times and all the data thus obtained were used for ResNet-18 classification (total 
56 samples for WT-PASA analysis and 560 images for ResNet-18 classification). All participants provided their informed consent, and all procedures 
were approved by the Institutional Review Committee of Tongji Hospital. 

Appendix C. : Photoacoustic experimental results 

Figs. C1 and C2 show the typical PA time-domain signals, corresponding PWMF curve and PA-TFS of the tumor region of different GS samples at 
1210 nm and 1310 nm, respectively. 

As shown in Fig. C1(b), (e), (h) and C2(b), (e), (h), the power-weight mean frequency (PWMF) along the time axis is different, which reflects the 
difference of tissue structural size at different location. With higher malignant degree, the smaller size of glandular cavity structure appearing, which 
lead to PA signals have higher acoustic frequency components [25–28]. As shown in Fig. C1(a), (d), (g) and C2(a), (d), (g), PA time-domain signals 
having highest acoustic frequency components corresponds to the highest PWMF value. It shows that PWMF can help us choose the tumor region. 
Further, we can see PWMF also can qualitatively reflect the GS grade, it shows that GS= 8 tissues with highest PWMF value and GS≤ 6 with the lowest 
at both two wavelengths. As shown in Fig. C1(c), (f), (i) and C2(c), (f), (i), we can see that PA time-frequency spectrum (PA-TFS) of the highest-grade 
tissues (GS=8) have much higher acoustic frequency than others, and PA-TFS were totally different between different GS tissues, which can be the 
characteristic parameter for machine learning. 

Table B2 
Power study results based on slopes of photoacoustic power spectrum at 1310 nm.  

Target power Actual power Average n G (group) Total N K (means multiplier) Std Dev of σm  Standard Deviation σ  Effect Size Alpha 

0.7  0.7847  8  3  24  1  0.34  0.4  0.8399  0.01 
0.8  0.8556  9  3  27  1  0.34  0.4  0.8399  0.01 
0.9  0.9059  10  3  30  1  0.34  0.4  0.8399  0.01 
0.7  0.7273  5  3  15  1  0.34  0.4  0.8399  0.05 
0.8  0.8281  6  3  18  1  0.34  0.4  0.8399  0.05 
0.9  0.938  8  3  24  1  0.34  0.4  0.8399  0.05  

Fig. B2. Power study results based on slopes of photoacoustic power spectrum at 1310 nm.  
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