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Abstract

Objective: Intestinal proteases carry out a variety of functions in the gastrointestinal (GI) tract. Studies have reported
that elevated enteric proteases in patients with GI disease can alter intestinal physiology, however the origin (human
vs. microbial) of elevated proteases in patients with GI disease is unclear.
Aim: The aim of this study was to investigate the association between protease activity and the microbiota in human
fecal samples.
Design: In order to capture a wide range of fecal protease (FP) activity stool samples were collected from 30 IBS
patients and 24 healthy controls. The intestinal microbiota was characterized using 454 high throughput pyro-
sequencing of the 16S rRNA gene. The composition and diversity of microbial communities were determined and
compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. FP activity levels were determined
using an ELISA-based method. FP activity was ranked and top and bottom quartiles (n=13 per quartile) were
identified as having high and low FP activity, respectively.
Results: The overall diversity of the intestinal microbiota displayed significant clustering separation (p = 0.001)
between samples with high vs. low FP activity. The Lactobacillales, Lachnospiraceae, and Streptococcaceae groups
were positively associated with FP activity across the entire study population, whilst the Ruminococcaceae family and
an unclassified Coriobacteriales family were negatively associated with FP activity.
Conclusions: These data demonstrate significant associations between specific intestinal bacterial groups and fecal
protease activity and provide a basis for further causative studies investigating the role of enteric microbes and GI
diseases.
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Introduction

Proteases, or proteolytic enzymes, catalyze the breakdown
of proteins by hydrolysis of peptide bonds. Compared to all
other organs in the human body, the gastrointestinal (GI) tract
contains the highest levels of endogenous and exogenous
proteases [1]. Initially the function of proteases was considered
to be the breakdown of protein relevant to food digestion and
intracellular protein turnover; however it was discovered that
precise cleavage of proteins by proteases leads to a very
subtle means of regulation [2]. It is now known that proteases

are involved in diverse processes such as cell-cycle
progression, cell proliferation and cell death, DNA replication,
tissue remodeling, coagulation, wound healing and the immune
response [3]. Indeed, proteolytic activity is tightly regulated to
prevent any destructive activity of proteases.

Protease-related genes make up approximately 2% of the
mammalian genome and host proteases significantly contribute
to the enzymatic content of the GI tract. However, the enteric
microbiota is also a substantial source of serine, cysteine, and
matrix metalloproteinases (MMPs) in the intestine [4-6]. This is
exemplified by the reduction of colonic bacteria densities and
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protease activity by oral administration of antibiotics to mice [7].
Additionally, bacterial proteolytic activity in the intestine is
reported to be ubiquitous and independent of inflammation [8].

Several studies have reported elevated levels of fecal
protease activity in patients with certain GI diseases including
inflammatory bowel diseases (IBD, e.g., ulcerative colitis) and
irritable bowel syndrome (IBS) [6,9-14]. However, the origin of
fecal proteolytic activity, host or microbial, was not determined
in these studies. In addition, to date there are limited data
regarding which specific intestinal bacterial groups are
associated with enteric protease activity. Our study investigates
the hypothesis that intestinal protease activity in humans
correlates with specific enteric bacterial taxa. Thus, we carried
out high throughput sequencing of the 16S rRNA gene to
characterize the microbiota in fecal samples with a range of
protease activity. Given the reported increase in protease
activity in irritable bowel syndrome (IBS) patients (refs), we
performed our analysis on fecal samples from healthy
individuals and patients with various severities of IBS
symptoms to enable the capture of a wide range of fecal
protease activity.

Materials and Methods

Ethics Statement
The study was approved by the UNC Internal Review Board

(IRB) and all subjects provided written consent prior to
participation in the study.

Sample Collection and Preparation
Fecal samples were collected from 54 subjects (30 patients

with IBS and 24 healthy controls). All subjects were 18 years or
older, and of any gender, race, or ethnicity. Healthy controls
had no recurring GI symptoms. Patients had active GI
symptoms and met the Rome III criteria for IBS. Participants
were excluded if they had a history of treatment with antibiotics,
anti-inflammatory agents, or if they had intentionally consumed
probiotics two months prior to the study. An eight-week wash-
out period was required for subjects who reported intentional
consumption of antibiotics or probiotics prior to enrollment. All
subjects were recruited from the Chapel Hill general population
and from the University of North Carolina (UNC) healthcare
outpatient clinics. The study was approved by the UNC Internal
Review Board (IRB) and all subjects provided written consent
prior to participation in the study.

Fresh stool samples were collected from all 54 subjects on
site when possible during a single study visit at UNC as
previously described [15]. Subjects unable to provide stool
samples at the visit were instructed to collect a specimen at
home and return it to study staff at the same morning.
Following delivery, fecal samples were placed in a cooler (4°C)
until it reached the laboratory. At the laboratory each sample
was homogenized, divided into aliquots and stored at -80°C for
future DNA isolation and molecular microbiological analysis. It
has previously been shown that the composition of the
microbiota [16] and protease activity [17] is stable in fecal
samples maintained at 4°C.

Detection of Fecal Protease Activity
FP activity was quantified in all stool samples using an

ELISA-based method as previously described [6,10]. In brief,
stool samples were thawed at 4°C. 1 g of each stool sample
was transferred to 4 mL of reaction buffer (0.15 mol/L NaCl and
20 mmol/L Tris-HCl) and homogenized. Coarse particles were
removed from fecal homogenates by filtration with a 0.8-μm
size syringe filter (Nalgene; Nalge, New York, NY) after
centrifugation at 4500 rpm for 10 minutes at 4°C. 25 μL of
supernatants from fecal homogenates were incubated with 1
mL of reaction buffer and 1 mL of 0.5% (w/v) azocasein
(Sigma, St.-Quentin, France) at 40°C for 20 minutes. The
reaction was stopped by adding 1 mL of 10% (v/v)
trichloroacetic acid (Sigma). After centrifugation at 4500 rpm for
10 minutes at 4°C, absorption of the clear supernatant was
measured at 366 nm and compared with standard curves
obtained from a titration series of azocasein. Protein
concentration of the filtered supernatant of colonic content was
assessed with the BCA-200 Protein Assay Kit (Pierce,
Rockford, IL), with bovine serum albumin as a standard.
Protease activity was expressed as units of trypsin activity per
mg of protein. Two different protease inhibitors (aprotinin and
soybean tryptase inhibitor) were used to confirm assay
specificity.

Isolation of fecal DNA
Bacterial DNA was isolated from a total of 54 fecal samples

using a phenol/chloroform extraction method combined with
physical disruption of bacterial cells and a DNA clean-up kit
(Qiagen DNeasy® Blood and Tissue extraction kit [Qiagen,
Valencia, CA]) as previously described [15].

454 pyro-sequencing of 16S rRNA genes
Bacterial community composition in isolated DNA samples

was characterized by amplification of the V1-3 (forward, 8f: 5'-
AGAGTTTGATCMTGGCTCAG-3'; reverse 518r: 5'-
ATTACCGCGGCTGCTGG-3') variable regions of the 16S
rRNA gene by polymerase chain reaction (PCR) as previously
described [15]. These regions were chosen as it has been
reported that multiple regions provide better taxonomic
resolution [18].

Analysis of 16S rRNA sequences using the QIIME
pipeline

16S rRNA sequence data generated by the 454 GS FLX
Titanium sequencer was processed by the quantitative insights
into microbial ecology (QIIME) pipeline[19]. Briefly, sequences
that were less than 200 bp or greater than 1,000 bp in length,
contained incorrect primer sequences, or contained more than
1 ambiguous base were discarded. Operational taxonomic
units (OTUs) were picked using BLAST and the greengenes
reference database at a level of 97% similarity [20]. Principal
coordinates were generated using un-weighted and weighted
UniFrac distances for samples with high and low FP activity
(n=26) [21,22]. PCoA plots were used to visualize the
similarities or dissimilarities between high and low FP activity
groups that best represent the pair-wise distances between

Protease Activity and the Intestinal Microbiota

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e78017



sample groups. Statistical differences between high and low FP
activity groups were tested using analysis of similarity
(ANOSIM – available through QIIME) by permutation of group
membership with 999 replicates. The test statistic R, which
measures the strength of the results, ranges from −1 to 1: R =
1 signifies differences between groups, while R = 0 signifies
that the groups are identical. An OTU network-based analysis
was used to visualize OTU sharing between sample groups
where a bipartite network was generated in which high and low
FP activity samples were designated as one node type, and
bacterial OTUs were designated as a second node type. A
given sample was connected to a given bacterial OTU node
through a line (edge) if that OTU was detected in the sample.
The number of observed bacterial species and the Shannon
index of diversity were compared between high and low FP
activity groups following rarefaction of OTUs using a student’s t
test. Bacterial taxonomic groups were used for correlation
analysis if they appeared in at least 15% of samples.

Quantitative real-time PCR (qPCR)
qPCR was performed using the SYBR ® Green PCR master

mix (Applied Biosystems, Carlsbad, CA) with primers that
amplify the genes encoding 16S rRNA from Faecalibacterium
prausnitzii (forward, 5'-GATGGCCTCGCGTCCGATTAG-3';
reverse, 5'-CCGAAGACCTTCTTCCTCC-3') and all bacteria
(forward, 5'-GTGSTGCAYGGYTGTCGTCA-3'; reverse, 5'-
ACGTCRTCCMCACCTTCCTC-3'). qPCR assays were
conducted in 96-well plates on an Eppendorf Realplex2
mastercycler thermocycler (Eppendorf, Hauppauge, NY). Each
PCR was carried out in a final volume of 25 µl and contained
the following: 1 × SYBR green master mix, 0.5 µM of each
primer and 10 ng of purified fecal DNA. PCR conditions were
as follows: 10 min at 95°C, followed by 40 cycles of 95°C for 15
s, 20 s at 50°C, and 72°C for 1 min. Each plate included
duplicate reactions per DNA sample, the appropriate set of
standards and a ‘no template’ negative control for each primer
set. qPCR standards were generated by PCR amplification of
target sequences from genomic DNA of an appropriate positive
control strain. Analysis of melting curves confirmed that the
fluorescence signal originated from specific PCR products and
not from primer-dimers or other artifacts.

Statistical Analyses
The goal of this study was to correlate the relative (percent)

concentrations of specific bacterial groups (identified by 16S
rRNA sequence data) with FP activity across the entire study
population (n=54), whilst adjusting for potential demographic
confounders such as age, race, sex, IBS status and body mass
index. Age and BMI were treated as continuous predictions.
Race, sex, and disease state were dichotomized to non-white/
white (1/0), male/female (1/0), IBS/healthy (1/0). FP activity
data were transformed to normality using a normal quantile
method. We emphasize that we anticipate FP activity to deviate
from normality, but such monotonic transformations mitigate
the analytical challenges while preserving validity of
association results. The abundances of 51 bacterial groups
(Phylum=6, Class=9, Order=12, Family=24) identified from
V1-3 16S rRNA sequences were correlated with FP activity.

An unadjusted analysis tested for the association between
each bacterial group’s relative concentration and FP activity
levels without adjusting for potential demographic confounders,
while an adjusted analysis took potential demographic
confounders into account. Both adjusted and unadjusted
analyses regressed FP activity levels on the concentration for
each bacterial group and constructed a wald-test to obtain a p-
value. For each strategy multiple comparisons were controlled
for using a false discovery rate (FDR) at the recommended
10% level [23].

For qPCR the percentage of F. prausnitzii was determined in
all fecal samples ([copies 16S rRNA gene for F. prausnitzii/
copies of 16S rRNA gene for all bacteria] ×100). The
percentage of F. prausnitzii was then correlated with FP activity
in each stool sample.

Results

Human fecal samples exhibit a wide range of FP
activity

The source of the fecal samples analyzed in this study
included 30 subjects with IBS (23 = diarrhea-predominant, 7 =
mixed bowel habit-predominant) and 24 HC, 79% females with
a mean age of 35 years. These samples demonstrated a wide
range of FP activity (Figure 1). FP activity was ranked from low
to high (0-450 U Trypsin/mg protein) and divided into quartiles.
The top and bottom quartiles were used to separate and further
investigate samples with high (n = 13) and low (n = 13) FP
activity (Figure 1). The FP activity data displayed a strong
degree of non-normality. Standard transformations such as log
and square root did not remove the non-normality. Accordingly,
we applied a normal quantile transformation to FP
measurements to normalize these data.

Samples with high FP activity are compositionally
distinct to samples with low FP activity

The V1-3 region of the 16S rRNA gene was used to
characterize the microbiota in 54 fecal samples. A total of
472,031 16S rRNA sequences with acceptable quality were
obtained with an average of 8,741 reads per sample (range:
3,103-16,574; average length = 345bp). Using 3% dissimilarity
between sequences to define a ‘species-level’ OTU, we found
a total of 1,649 OTUs in the samples analyzed.

Comparison of the composition of the microbiotas between
samples with high and low FP activity was first carried out
using a bipartite. In Figure 2 high and low FP activity samples
are represented by one node type and bacterial OTUs are
designated as a second node type. High and low FP activity
nodes are connected to OTU nodes via ‘edges’. This OTU
network displays a clear separation between high and low FP
activity samples. In the second approach Principal Coordinate
Analysis (PCoA) of UniFrac distances revealed a significant
separation of the microbiotas between samples with high and
low FP activity based on un-weighted (p=0.001, R=0.22) and
weighted (p=0.003, R=0.14) distances (Figure 3).
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Bacterial richness is reduced in samples with high FP
activity

Bacterial richness was assessed by rarefaction of OTUs
found in high and low FP activity samples. A significant
decrease in the number of observed OTUs and the Shannon
index of diversity was found in samples with high compared to
low FP activity (p < 0.002) (Figure 4).

Specific bacterial taxa are associated with FP activity
Family level taxa were found to display compositional

differences between samples with high and low FP activity
(Figure 5). Correlation of bacterial groups with transformed FP
activity levels across the entire study population identified
significant associations with specific bacterial taxa at the
Family level at an FDR level of 0.1 (Table 1). The
Lactobacillales, Lachnospiraceae, and Streptococcaceae
groups were positively associated with FP activity across the
entire study population, whilst the Ruminococcaceae family
and an unclassified Coriobacteriales family were negatively
associated with FP activity (Table 1).

The Ruminococcaceae family encompasses an important
genus that has been reported to be important for GI health
(Faecalibacterium) [24,25]. Faecalibacterium prausnitzii is the
only microbial species within this genus. Thus, we determined
the abundance of this bacterial species in 53 out of 54 stool
samples (one sample repeatedly failed to detect to amplify F.
prausnitzii sequences) using qPCR. We found a significant
(p=0.01) negative correlation of F. prausnitzii with FP activity
(Figure 6). Association of FP activity with baseline
demographic data (age, race, BMI, and IBS status) revealed no
confounding individual predictors (p=0.67).

Discussion

Although it has been known for some time that the intestinal
microbiota is a significant source of protease activity in the GI
tract, to date there has only been one report that correlated
specific enteric bacterial taxa with FP activity in the human gut
[26]. By analyzing the protease activity of representative enteric
bacterial strains and human fecal samples it has previously
been suggested that the activity of specific classes of
proteases present in human feces are likely to originate from
Bacteroides, Streptococcus, and Clostridium species [5].
Interestingly, Midtvedt et al. [26] reported an inverse correlation
between Bacteroides and fecal tryptic activity, however this
association was reported with respect to Crohn’s disease
patients and not healthy individuals. Our study used molecular
methods to identify the enteric bacterial taxa that are
associated with FP activity, thus adding to the knowledge of
human protease activity in the human GI tract.

We found a significant difference in the overall composition
of the microbiota between fecal samples with high versus low
FP activity. This compositional difference was detected using
both un-weighted and weighted UniFrac distances. The former
calculates phylogenetic distances between samples based on
the presence or absence of an OTU, whilst the latter calculates
distances based on the presence and abundance of OTUs
[21,22]. A significant difference between the microbiotas of high
versus low FP activity samples using both un-weighted and
weighted analyses suggests that the difference in microbial
communities between these groups is based on both dominant
and low abundance bacterial taxa present in fecal samples.
This finding is supported by the estimation of α-diversity
measures (rarefaction) between fecal samples with high versus
low FP activity. We found that the number of observed bacterial

Figure 1.  Levels of protease activity in fecal supernatants from all subjects (healthy controls and IBS patients) that
participated in this study.  Top and bottom quartiles representing samples high and low FP activity, respectively, are indicated.
doi: 10.1371/journal.pone.0078017.g001
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species (based on species-level OTUs) and Shannon index of
diversity were significantly lower in fecal samples with high FP
activity. The biological relevance of a diverse intestinal
microbiota has not yet been established; however it is
important to note that the diversity of microbial species in the
gut is reduced in patients with intestinal diseases such as IBD
and IBS [15,27]. Together, these findings indicate that
individuals with high FP activity have lower numbers and
diversity of bacterial species in their intestine and harbor a
microbiota that is distinct from individuals with low FP activity.

When we applied a stringent association analysis and
adjusted for confounding demographic data across our entire
study population between FP activity and specific bacterial
taxa, we found the Lactobacillales, Lachnospiraceae, and
Streptococcaceae groups and an unclassified Coriobacteriales
family were positively associated with FP activity. The
Lactobacillales order encompasses seven bacterial families
[20] including the Streptococcaceae family. The

Streptococcaceae family is likely the driving force behind the
association between the Lactobacillales order and FP activity.
Streptococcaceae encompasses the Lactococcus, and
Streptococcus genera, which are both lactic acid producers.
Although, this family contains a probiotic organism
(Lactococcus lactis) it is dominated by Streptococcus species:
one of the groups postulated to be associated with protease
activity in the intestine [5]. Interestingly, members of the
Streptococcus genus have been found to produce proteases
with a broad range of functions [28-33].

In all the samples studied we found that the
Lachnospiraceae were the dominant bacterial group at the
family level (on average approximately 50% of 16S rRNA
sequences). This family encompasses twenty one bacterial
genera with diverse functions [20] and contain Clostridium
species. It has previously been shown that the abundance of
Clostridium species coincide with proteolytic activity in human
fecal samples [34], which is in line with our findings.

Figure 2.  Operational Taxonomic Unit (OTU) network analysis of bacterial communities from samples with high and low
fecal protease (FP) activity.  Nodes represent high FP activity samples (n=13, blue circles), low FP activity samples (n=13, yellow
circles) samples, and OTUs (white circles). Edges (lines) connecting samples with high FP activity nodes (blue edges) or low FP
activity nodes (yellow edges) to OTUs indicate whether a given OTU was found in that sample. The clustering of blue and yellow
nodes and edges indicates that samples with high FP activity share numerous OTUs in common, and segregate from the shared
OTUs between low FP activity samples.
doi: 10.1371/journal.pone.0078017.g002

Protease Activity and the Intestinal Microbiota

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e78017



Interestingly, specific members of the Lachnospiraceae family
(Ruminococcus torques, Ruminococcus gnavus, and
Clostridium coccoides), have been reported to be associated
with IBS and IBD [24,27,35-37].

We also found that the Ruminococcaceae family was
negatively correlated with FP activity. The Ruminococcaceae
are a family of obligate anaerobes that encompass twelve
bacterial genera, some of which are responsible for producing
short-chain fatty acids in the gut (including: Butyricicoccus,
Clostridium, Faecalibacterium, Ruminococcus,
Subdolingranulum spp.). Faecalibacterium prausnitzii is the
only member of the Faecalibacterium genus, and this
bacterium is believed to be protective of inflammation in the gut
[24,25]. Indeed, our qPCR analysis confirmed an association
between F. prausnitzii and FP activity. The Butyricicoccus
genus contains Butyricicoccus pullicaecorum, a butyrate
producing microbe [38]. Butyrate plays an important role in the
metabolism and normal development of colonic epithelial cells,

and has been implicated in protection against cancer and
ulcerative colitis [39]. Additionally, we found that an
unclassified Coriobacteriales family was associated with FP
activity. Given the lack of information regarding this group of
bacteria, we cannot speculate on the relevance of its
relationship to FP activity. As the Ruminococcaceae family
encompasses beneficial bacterial species and the
Streptococcaceae family encompasses protease producers, it
is tempting to speculate that a microbiota associated with low
FP activity is associated with a more beneficial to the host than
a microbiota with high FP activity.

Unlike previous studies that observed a significant increase
in FP activity in IBS patients compared to healthy controls
[6,10], we did not find a substantial difference in FP activity
between these groups in the current study. However, the goal
of our study was not designed to compare protease activity
between IBS patients and healthy individuals, but to investigate
the association between intestinal protease activity and specific

Figure 3.  Bacterial community composition analysis between samples with high (n=13) and low (n=13) FP
activity.  Principal coordinates analysis (PCoA) plots of un-weighted and weighted UniFrac distances for samples with high (blue
circles) and low (yellow squares) FP activity are shown. Analysis of similarity (ANOSIM) demonstrated a significant separation in the
composition of fecal microbiotas between high and low FP activity samples using both un-weighted (p=0.001) and weighted
(p=0.003) UniFrac distances. The R statistic (where R=1 and R=0 signifies differences and no differences between groups,
respectively) is higher in the un-weighted analysis suggesting the separation between microbiotas is a result of both high and low
abundances bacterial species.
doi: 10.1371/journal.pone.0078017.g003
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bacterial groups in the gut microbiota. Indeed, we have
previously reported differences in enteric microbial
communities between IBS patients and healthy individuals [15].

In conclusion, we report a distinction between the
microbiotas within fecal samples with high and low FP activity.
The distinction between these microbiotas is likely due to the
presence of low microbial diversity and the absence of bacterial
taxa in fecal samples with high FP activity. Our results provide
evidence of an association between fecal protease activity and

specific members of the intestinal microbiota. One of the
strengths of our study includes the diverse source of fecal
samples (i.e., from HC and certain types of IBS patients) that
enable the analysis of human specimens with a broad range of
FP activity. However, although our data demonstrate a clear
association it does not determine whether these bacterial
groups are a cause for the increase in protease activity or a
response to the change in the intestinal luminal environment.
FPs have been shown to have the potential to alter intestinal

Figure 4.  Microbial richness of samples with high (n=13, blue) and low (n=13, yellow) FP activity.  Both the number of
observed bacterial species (based on species-level OTUs) and Shannon index of diversity are significantly lower in fecal samples
with high compared to low protease activity (p=0.002). Error bars represent the standard error.
doi: 10.1371/journal.pone.0078017.g004

Figure 5.  Abundances of Family level taxa in samples with high (n=13) and low (n=13) FP activity.  The composition and
abundances of bacterial families differ between the microbiotas of fecal samples exhibiting high and low FP activity.
doi: 10.1371/journal.pone.0078017.g005
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physiological functions (e.g., motility, sensation, permeability,
immune function) [10,14,40,41] which may by themselves be
associated with alterations in the intestinal microbiota.
Furthermore, the relative contribution of the altered microbiota
in individuals with elevated FP activity could be responsible for
the alterations in GI physiology and the pathogenesis of certain
GI diseases e.g., IBS and IBD [11,42-44]. Our study findings
provide a basis for further research, including metagenomic

sequencing, to investigate the role of the bacterial groups
identified in our study, and the proteases they produce, with the
pathogenesis of GI diseases.
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Table 1. Bacterial groups significantly correlated with fecal protease activity.

Taxonomy p FDR* Adjusted p¥ Adjusted FDR† Correlation coefficient (r)

Ruminococcaceae 0.0003 0.006 0.0011 0.026 -0.46

Lachnospiraceae 0.0027 0.032 0.0059 0.071 0.42

Streptococcaceae 0.0056 0.045 0.0143 0.086 0.36

Lactobacillales 0.0040 0.049 0.0090 0.108 0.37

Unclassified Coriobacteriales family 0.0133 0.080 0.0108 0.086 -0.30
*False discovery rate (FDR) to correct for multiple comparisons.
¥ p value adjusted for confounding demographic variables.
† FDR adjusted for confounding demographic variables.
doi: 10.1371/journal.pone.0078017.t001

Figure 6.  Correlation of Faecalibacterium prausnitzii with FP activity.  F. prausnitzii exhibits a significant (p=0.01) negative
correlation with FP activity. Blue and yellow circles indicate high and low FP activity samples used in previous analyses,
respectively.
doi: 10.1371/journal.pone.0078017.g006
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