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Abstract Introduction: We investigated the association between olfactory identification and Alzheimer’s
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disease biomarkers, including amyloid, tau, and neurodegeneration.
Methods: Thirty-four older adults, including 19 cognitively normal (CN), 10 subjective cognitive
decline (SCD), and 5 mild cognitive impairment, underwent amyloid positron emission tomography,
magnetic resonance imaging, and the University of Pennsylvania Smell Identification Test (UPSIT).
Twenty-six also underwent tau positron emission tomography. Associations between the UPSIT and
regionally sampled amyloid, tau, and temporal atrophy were evaluated. Voxel-wise regressionmodels
were also utilized. Analyses were conducted with the full sample and only CN/SCD.
Results: Lower UPSIT scores were associated with increased temporal and parietal tau burden in
regional and voxel-wise analyses in the full sample and in CN and SCD only. Temporal lobe atrophy
was associated with lower UPSIT score. Amyloid was not associated with the UPSIT.
Discussion: Impairment on the UPSIT may be a good marker for tau and neurodegeneration in
preclinical or prodromal Alzheimer’s disease.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is the most common age-related
neurodegenerative disease and is characterized by gradually
progressive impairment in cognitive function and dementia
[1]. In addition to the dementia syndrome of AD and the
more limited amnestic deficits typical of its prodromal stage,
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mild cognitive impairment (MCI) [2], changes in sensory
function have also been reported. Olfactory identification
(the ability to correctly identify a smell) is impaired in AD
and MCI, as well as in patients with Parkinson’s disease
and other neurodegenerative conditions [3–10].
Furthermore, olfactory identification measured using the
University of Pennsylvania Smell Identification Test
(UPSIT) is sensitive to predicting future conversion from
MCI to AD and even future cognitive decline in cognitively
normal (CN) older adults and Parkinson’s patients [4,11–14].

The precise biological correlates of the observed changes
in olfactory identification have not been specifically
imer’s Association. This is an open access article under the CC BY-NC-ND
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identified. However, previous studies have sought to deter-
mine the impact of the two major pathophysiological hall-
marks of AD, amyloid b plaques and tau neurofibrillary
tangles, on olfaction in animal models of AD [15–22],
autopsy studies [23–29], and more recently in living
human beings using imaging biomarkers of amyloid
pathology, measured using neuroimaging with positron
emission tomography (PET) techniques [30–32]. Animal
models of AD show considerable olfactory deficits that are
related to the deposition of amyloid and tau in
the olfactory bulb and throughout the olfactory network
[15–22,33]. In human autopsy studies, amyloid and tau, as
well as other pathologies such as progranulin and TDP-43
deposition, are found in the olfactory bulb and throughout
the olfactory network (including temporal piriform cortex)
in patients with AD and other neurodegenerative diseases,
and levels of amyloid and tau deposition are associated
with the level of olfactory deficits [23–29,34]. The
associations of UPSIT performance with
neurodegeneration and brain function, measured using
magnetic resonance imaging (MRI) or [15O]H2O PET,
have also been investigated [4,14,31,35–41]. In vivo
imaging studies have shown weak associations between
amyloid and olfactory impairments [30–32]. However,
more significant relationships between olfactory
impairment and atrophy are apparent in olfactory-related re-
gions (amygdala, piriform cortex, entorhinal cortex, etc.) in
MCI and AD patients, as well as amyloid-positive CN older
adults [4,14,31,32,36,38,40]. Impaired olfactory
identification on the UPSIT was also correlated with white
matter degeneration in the splenium of the corpus
callosum and superior longitudinal fasciculus, as measured
with diffusion tensor imaging [38]. Schofield et al. (2012)
also showed that poorer recovery on the UPSIT after cholin-
ergic challenge with atropine was associated with a lower
hippocampal volume in MCI and AD dementia patients
[37]. Furthermore, in vivo activation of the primary olfactory
cortex is reduced in patients with MCI and AD [35,40,41].
Despite the evidence for relationships between olfaction
and amyloid, structural, and functional markers in AD,
there are no in vivo assessments of the relationship
between olfactory identification and tau deposition, likely
due to the lack of an in vivo marker for tau until recently.

New PET tracers targeting tau neurofibrillary tangles
have become available, including [18F]Flortaucipir ([18F]
AV-1451) [42]. Our goal was to evaluate the association of
UPSIT scores with tau deposition (indexed with [18F]Flor-
taucipir PET), amyloid deposition ([18F]Florbetapir or
[18F]Florbetaben), and neurodegeneration (structural
MRI). Our cohort included CN older adults without signifi-
cant cognitive concerns, older adults with subjective cogni-
tive decline (SCD), and patients with MCI. Previous
literature examining in vivo imaging has suggested a strong
association of UPSIT performance and neurodegeneration
on MRI, but a weaker association with amyloid deposition.
Thus, we hypothesized that impairments on the UPSIT
would be associated with tau deposition and neurodegener-
ation (gray matter [GM] loss) in regions involved in olfac-
tory processing (i.e., medial temporal lobe) but show less
of an association with cortical amyloid deposition.
2. Methods

2.1. Participants

Thirty-four older adults (age 551 years) were recruited
from the Indiana Alzheimer Disease Center to undergo
advanced PET and MRI neuroimaging and sensory testing.
UPSIT administration was performed as previously
described, with UPSIT total score being the primary
outcome measure of olfactory identification (maximum
score 5 40; higher scores reflect better performance) [43].
Individuals with a history of a broken nose, severe allergies,
or who were currently experiencing an upper respiratory
infection, as well as those who were unable to undergo
MRI or PET imaging were excluded. Five participants
were diagnosed with MCI using previously established
guidelines. Briefly, MCI participants had a significant
complaint about their cognition from themselves and/or an
informant or a clinician, as well as a significant deficit
(.1.5 standard deviation below normal) in either memory
or another cognitive domain [2]. Ten individuals were
characterized as SCD according to the following criteria:
elevated levels of subjective memory concerns on the
20-item Cognitive Change Index (CCI-20) reflected as a
score of 20 or more on the first 12 items, with or without
increased levels of informant-based concerns [44] and
without a measurable cognitive deficit. Nineteen older
adults without significant memory concerns (12-item
CCI total ,20) and without measurable cognitive deficit
were considered CN. All procedures were approved by
the Indiana University School of Medicine Institutional
Review Board, and informed consent was obtained accord-
ing to the Declaration of Helsinki and the Belmont Report.
2.2. Amyloid PET

Amyloid PET scans were acquired with either [18F]Flor-
betapir (Amyvid, Eli Lilly and Co.) or [18F]Florbetaben
(Neuraceq, Piramal Ltd.). Briefly, for the [18F]Florbetapir
scans, approximately 10 mCi of [18F]Florbetapir was
injected intravenously, and after a 50-minute uptake period,
participants were imaged on a Siemens mCT for 20 minutes
using continuous list-mode data acquisition. For the [18F]
Florbetaben scans, approximately 8 mCi of [18F]Florbetaben
was injected intravenously, and after a 90-minute uptake
period, data were acquired for 20 minutes using continuous
list-mode acquisition on a Siemens mCT. A computed
tomography (CT) scan was acquired for scatter and attenua-
tion correction. List-mode data were subsequently rebinned
into four 5-minute frames. Reconstructions were conducted
on the software platform (Siemens; Knoxville, TN). Ordered
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subset expectation maximization was applied, using param-
eters from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) protocol (http://adni.loni.usc.edu), with corrections
for scatter and random coincidence events, attenuation, and
radionuclide decay. Using Statistical Parametric Mapping 8
(SPM8), the four 5-minute frames were spatially aligned to
each subject’s magnetization-prepared rapid gradient-echo
(MP-RAGE), motion corrected, normalized to Montreal
Neurologic Institute (MNI) space, averaged to create a 50-
to 70-minute static image for the [18F]Florbetapir or a 90-
to 110-minute static image for the [18F]Florbetaben, smoothed
with an 8-mm full-width half maximum gaussian kernel, and
intensity normalized to the whole cerebellum to create stan-
dardized uptake value ratio (SUVR) images. The whole cere-
bellum region of interest (ROI) was taken from the Centiloid
project (http://www.gaain.org/centiloid-project; [45]). [18F]
Florbetapir scans were then processed with the Centiloid algo-
rithm (a form of data normalization that permits grouping data
from different amyloid tracers) using the formula
[(175.43*SUVR)2182.26] at a voxel-wise level as previously
defined by the Centiloid project (http://www.gaain.org/
centiloid-project; [45]). See SupplementaryData for further in-
formation. [18F]Florbetaben was also processed with the Cen-
tiloid algorithm using the published formula
[(153.4*SUVR)2155] (Supplementary Data; [45]).

Regional [18F]Florbetapir and [18F]Florbetaben data
(centiloid units) were extracted from a global cortical ROI.
The global cortical ROI was generated from FreeSurfer,
version 5.1 (average of parcellations from 30 CN older adult
individuals from ADNI-2).
2.3. [18F]Flortaucipir PET

Of the 34 individuals, 26 underwent [18F]Flortaucipir
scans. Briefly, approximately 10 mCi of [18F]Flortaucipir
was injected intravenously; after a 75-minute uptake, partic-
ipants were imaged for 30 minutes using continuous list-
mode data acquisition on a Siemens mCT and subsequently
rebinned into six 5-minute frames. Scans were again recon-
structed using standard scanner software (Siemens; Knox-
ville, TN) and as described previously, using ordered
subset expectation maximization, with correction for scatter
and random coincident events, attenuation, and radionuclide
decay. Using SPM8, the middle four 5-minute frames (80–
100 minutes) were motion corrected, normalized to MNI
space, averaged to create an 80- to 100-minute static image,
smoothed with an 8-mm full-width half maximum gaussian
kernel, and intensity normalized to the cerebellar crus to
create SUVR images.

ROIs for target regions were generated from subject-
specific parcellations from FreeSurfer v5.1, and [18F]Flor-
taucipir SUVR for each region was extracted from the
SUVR images. Specifically, bilateral mean SUVR values
were extracted from the entorhinal cortex, fusiform gyri,
inferior temporal gyri, parahippocampal gyri, and mean tem-
poral lobe. In addition, bilateral mean [18F]Flortaucipir
SUVR in the piriform cortex, the largest of the olfactory
cortical areas, was extracted using functional ROIs defined
by the main effect of olfactory stimulation in a recent func-
tional magnetic resonance imaging (fMRI) study at P , .05
(family-wise error correction for multiple comparisons) [46].
2.4. Structural MRI

Structural accelerated 3-tesla MP-RAGE scans were
collected on a Siemens Prisma scanner using the ADNI
sequence (http://adni.loni.usc.edu). Scans were processed us-
ing FreeSurfer, version 5.1, to extract bilateral total
hippocampal volume, total entorhinal cortex, and temporal
lobe GM volumes [47–49]. The temporal lobe measurement
was the sum of the following GM volumes: mean of banks
of the superior temporal sulcus, inferior, middle, and superior
temporal gyri, entorhinal cortex, fusiform, parahippocampus,
temporal pole, and transverse temporal pole.
2.5. Statistical analyses

Continuous demographic and neuropsychological
variables, as well as the UPSIT total score, were evaluated
for differences between groups using a one-way analysis
of covariance, covarying for age, sex, and education when
appropriate, with false discovery rate (FDR) correction for
multiple comparisons. Differences between groups on
categorical variables were assessed using a chi-square test.
Neuroimaging target variables were preadjusted to remove
the effects of age, sex, and total intracranial volume as
appropriate. Briefly, a linear regression model including
sex and age (for UPSIT total, amyloid centiloid data, and
tau SUVR) or including sex, age, and intracranial volume
(for MRI variables) were calculated using CN and SCD
individuals only (“CN/SCD subsample”). The resulting b-
coefficients were used to calculate residuals of the target var-
iables for all participants (“preadjusted”). Then, associations
between the preadjusted (residual) UPSIT total score and the
preadjusted (residual) metrics of amyloid, tau, and neurode-
generation were assessed using Pearson correlation models.
Of note, all significant associations identified using the Pear-
son correlation model were also significant using Spearman
correlation models. Given the number of associations, FDR
adjustment for multiple comparisons was computed for the
regional association analyses. All P-values for the associa-
tion analyses (Figs. 1–3) were adjusted using FDR. The
association analyses were completed for the full sample, as
well as in the CN/SCD subsample. SPSS, version 24.0,
was used for all statistical analyses.

An exploratory analysis to investigate associations be-
tween the preadjusted UPSIT total score and tau deposition
at a voxel-wise level was completed in SPM8. Specifically,
the relationship between the preadjusted UPSIT total score
and [18F]Flortaucipir SUVR was assessed using a linear
regression model covarying for age and sex. The search
area was restricted to gray matter plus white matter. The
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Fig. 1. Tau in the temporal lobe is associated with UPSIT performance in the pooled sample (CN, SCD, and MCI individuals). Increased tau deposition in the

(A) entorhinal cortex (r 5 20.48, P , .05 FDR), (B) fusiform (r 5 20.66, P , .005 FDR), (C) inferior temporal gyri (r 5 20.58, P , .005 FDR), (D) para-

hippocampal gyri (r520.58, P, .005 FDR), and (E) whole temporal lobe (r520.45, P, .05 FDR) is associated with reduced preadjusted UPSIT total score

across CN, SCD, and MCI individuals (n5 26). A trend for an association between increased tau deposition in the (F) piriform cortex and UPSIT performance

(r 5 20.35, P , .1 FDR) was also observed. Abbreviations: CN, cognitively normal; FDR, false discovery rate; MCI, mild cognitive impairment; SCD, sub-

jective cognitive decline; SUVR, standardized uptake value ratio; UPSIT, University of Pennsylvania Smell Identification Test.

S.L. Risacher et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 9 (2017) 57-6660
exploratory results were visualized at P , .01 (uncorrected
for multiple comparisons) and minimum cluster size
(k) 5 100 voxels.
3. Results

3.1. Demographics

Demographics and neuropsychological performance
across groups are shown in Table 1. No differences in
age or education were observed; however, sex was
different across the groups, with more males in the MCI
group and more females in the CN/SCD subsample
(P , .05). MCI participants exhibited the expected
impairment in cognition, with significantly lower scores
on Montreal Cognitive Assessment, Trail Making A,
and story recall performance, and a significantly higher
Clinical Dementia Rating scale (CDR)–sum of boxes
(all P , .05). The CCI-self was significantly higher in
both MCI and SCD relative to CN (P , .001), but no dif-
ferences in the CCI-informant were observed. The UPSIT
total score was significantly different across groups, with
MCI patients showing significantly poorer performance
(P , .01).
3.2. Regional analyses

The preadjusted UPSIT total score was not associated
with amyloid deposition in either the full sample or the
CN/SCD subsample.

Significant associations between the preadjusted UPSIT to-
tal score and tau deposition in temporal lobe regions were
observed in the full sample (Fig. 1; n 5 26). Specifically,
tau in the entorhinal cortex (Fig. 1A; r 5 20.48, P , .05
FDR), fusiform gyri (Fig. 1B; r 5 20.66, P , .005 FDR),
inferior temporal gyri (Fig. 1C; r 5 20.58, P , .005 FDR),
parahippocampal gyri (Fig. 1D; r 5 20.58, P , .005 FDR),
and mean temporal lobe (Fig. 1E; r 5 20.45, P , .05 FDR)
was negatively associated with the preadjusted UPSIT total
score. A trend for an association between the preadjusted UP-
SIT total score and higher tau in the piriform cortex was
observed (Fig. 1F; r 5 20.35, P , .1 FDR).

After restricting the analyses to cognitively intact sub-
jects only (CN/SCD subsample; n5 21), associations across
the temporal lobe remained significant (Fig. 2). As in the full
sample, higher tau in the entorhinal cortex (Fig. 2A;
r 5 20.55, P , .05 FDR), fusiform gyri (Fig. 2B;
r 5 20.60, P , .01 FDR), inferior temporal gyri (Fig. 2C;
r 5 20.63, P , .01 FDR), parahippocampal gyri (Fig. 2D;



Fig. 2. Tau in the temporal lobe is associated with UPSIT performance in CN individuals with and without cognitive concerns (CN/SCD subsample). Similar to

the full sample, increased tau deposition in the (A) entorhinal cortex (r520.55, P, .05 FDR), (B) fusiform (r520.60, P, .01 FDR), (C) inferior temporal

gyri (r520.63, P, .01 FDR), (D) parahippocampal gyri (r520.64, P, .01 FDR), and (E) whole temporal lobe (r520.61, P, .01 FDR) is associated with

reduced preadjusted UPSIT total score in CN and SCD only (n5 21). In addition, a trend for an association between increased tau deposition in the (F) piriform

cortex and UPSIT performance (r520.46,P, .1 FDR) was also observed. Abbreviations: CN, cognitively normal; FDR, false discovery rate; SCD, subjective

cognitive decline; SUVR, standardized uptake value ratio; UPSIT, University of Pennsylvania Smell Identification Test.
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r520.64, P, .01 FDR), and mean temporal lobe (Fig. 2E;
r 5 20.61, P , .01 FDR) was associated with a lower pre-
adjusted UPSIT total score. In addition, higher piriform
cortex tau was associated with a lower pre-adjusted UPSIT
score at a trend level in this sample of CN individuals with
or without complaints (Fig. 2F; r 5 20.46, P , .1 FDR).
Fig. 3. Temporal lobe atrophy is associated with UPSIT performance in the poole

entorhinal cortex (r 5 0.45, P , .01 FDR), and (C) whole temporal lobe (r 5 0.5

across CN, SCD, and MCI individuals (n5 34). No significant associations betwe

viations: CN, cognitively normal; FDR, false discovery rate; GM, gray matter; M

University of Pennsylvania Smell Identification Test.
When the associations between UPSIT performance and
atrophy were evaluated, significant associations were only
observed in the full sample (n5 34). Specifically, lower hip-
pocampal volume (Fig. 3A; r5 0.53, P , .005 FDR), ento-
rhinal cortex GM volume (Fig. 3B; r5 0.45, P, .01 FDR),
and temporal lobe GM volume (Fig. 3C; r5 0.59, P, .005
d sample. Atrophy in the (A) hippocampus (r 5 0.53, P , .005 FDR), (B)

9, P , .005 FDR) is associated with reduced preadjusted UPSIT total score

en atrophy and UPSIT performance were seen in CN and SCD only. Abbre-

CI, mild cognitive impairment; SCD, subjective cognitive decline; UPSIT,



Table 1

Demographics and neuropsychological performance

CN (n 5 19) SCD (n 5 10) MCI (n 5 5) P-value Post hoc (P , .05 FDR)

Age (years) 68.5 (6.9) 72.2 (6.4) 75.7 (10.6) ns None

Education (years) 17.6 (2.0) 17.5 (2.0) 16.0 (4.0) ns None

Sex (male, female) 4, 15 4, 6 4, 1 .046 n/a

Race/Ethnicity (% non-Hispanic Caucasian) 94.7% 100.0% 60.0% ns n/a

APOE ε4 genotype* (% ε4 positive) 47.4 50.0 50.0 ns n/a

Ab positive (no, yes)y 13,6 6,4 3, 2 ns n/a

CDR–sum of boxesz 0.2 (0.3) 0.1 (0.2) 1.2 (1.6) .003 MCI . SCD, CN

MoCA total scorez 26.8 (2.5) 26.1 (2.3) 22.5 (3.8) .024 none

Trail Making A (seconds)z 26.6 (8.7) 28.0 (9.6) 41.0 (11.7) .015 MCI . SCD, CN

Trail Making B (seconds)z 64.8 (23.2) 66.3 (28.8) 100.4 (35.9) ns none

Craft Story Immediate Recallz,x 16.4 (3.5) 16.7 (2.1) 12.0 (2.7) .016 CN, SCD . MCI

Craft Story Delayed Recallz,x 15.8 (3.5) 17.5 (2.7) 10.1 (4.9) .001 CN, SCD . MCI

CCI–self (12 items)z,k 16.2 (4.1) 24.0 (4.4) 33.5 (12.7) ,.001 SCD, MCI . CN

CCI–self (20 items)z,k 25.8 (6.4) 36.5 (5.7) 48.2 (12.7) ,.001 SCD, MCI . CN

CCI–informant (12 items)z,{ 17.4 (6.6) 15.2 (3.8) 26.1 (2.8) ns none

CCI–informant (20 items)z,{ 28.4 (11.2) 23.7 (4.9) 40.4 (4.2) ns none

UPSIT total score** 34.5 (2.3) 35.7 (3.3) 28.7 (7.0) .006 CN, SCD . MCI

Abbreviations: Ab, amyloid b; APOE, apolipoprotein E; CCI, Cognitive Change Index; CDR, Clinical Dementia Rating scale; CN, cognitively normal; MCI,

mild cognitive impairment; MoCA,Montreal CognitiveAssessment; SCD, subjective cognitive decline; UPSIT, University of Pennsylvania Smell Identification

Test.

*Missing one MCI participant.
yAmyloid positivity: no 5 Centiloid , 2.51; yes = Centiloid . 2.51; cut-off determined using ADNI-GO/2 amyloid scans.
zCovaried for age, sex, and education.
xMissing two participants (one CN, one SCD); paraphrase scoring.
kMissing five participants (two CN, three MCI).
{Missing four participants (one CN, three MCI).

**Covaried for age and sex.
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FDR) were associated with a lower preadjusted UPSIT total
score. No significant associations were observed between
any atrophy measure and the preadjusted UPSIT total score
within the CN/SCD subsample.
3.3. Voxel-wise analysis

The exploratory voxel-wise analysis showed significant
associations between higher tau deposition throughout the
bilateral temporal and parietal lobes and poorer UPSIT
performance, with stronger association in the left hemi-
sphere. Specifically, significant negative correlations were
found between the preadjusted UPSIT score and tau deposi-
tion in the left inferior occipital gyrus, left middle temporal
gyrus, left precuneus, left parahippocampal gyrus, left
uncus, left inferior parietal lobule, left paracentral lobule,
and left medial frontal gyrus, as well as the bilateral fusiform
gyri, bilateral lingual gyri, bilateral middle frontal gyrus,
bilateral posterior cingulate, and bilateral cerebellum
(Fig. 4A).

In the CN/SCD subsample, the exploratory voxel-wise
analysis also showed widespread regions of association
between tau deposition and UPSIT performance, although
the areas appeared to be more anterior than the results
from the full sample. Specifically, significant negative rela-
tionships existed between the preadjusted UPSIT total score
and tau deposition in the bilateral inferior, middle, superior,
and medial frontal gyri, bilateral precentral gyri, bilateral
inferior, middle, and superior temporal gyri, bilateral uncus,
bilateral anterior cingulate, bilateral thalamus, and bilateral
inferior occipital, as well as the left fusiform gyrus, right
cuneus, and right middle occipital gyri (Fig. 4B). No signif-
icant associations were seen in the opposite direction (i.e.,
higher tau associated with higher UPSIT score) for either
the full sample or in the CN/SCD subsample.
4. Discussion

This study explored the relationships between olfactory
identification ability and the cerebral measures of amyloid
and tau deposition and GM loss. We found that tau deposi-
tion and atrophy in the temporal lobe, but not amyloid
deposition, were associated with lower olfactory identifica-
tion (UPSIT total score) across a population of CN individ-
uals and older adults with SCD or MCI. We observed a
similar phenomenon in the subset of individuals without
measured cognitive impairment (CN/SCD subsample),
with negative correlations between tau in the temporal
lobe and lower UPSIT performance. There were no associ-
ations between UPSIT total score and amyloid or neurode-
generation in this subpopulation. Finally, exploratory
voxel-wise analyses in both the full sample and in the
CN/SCD subsample confirmed the regional findings and
also suggested that parietal, occipital, and frontal lobe
have correlations between higher tau and lower olfactory
identification.

Although prior studies have shown that olfactory process-
ing is related to more general evidence of cerebral integrity



Fig. 4. Exploratory voxel-wise associations show widespread regions where increased tau deposition is associated with reduced UPSIT performance. (A)

Across all individuals (CN, SCD, MCI; n 5 26), reduced preadjusted UPSIT total score was associated with increased tau in widespread medial and lateral

temporal lobe regions, as well as regions of the inferior parietal and occipital lobes. (B) In CN and SCD individuals only (n5 21), reduced preadjusted UPSIT

total score was associated with increased tau in the medial and lateral temporal lobes, as well as throughout the inferior, middle, and superior frontal lobes. No

associations were seen in the opposite direction (i.e., increased tau associated with better UPSIT score). Voxel-wise association are shown at a voxel-wise

threshold of P , .01 (uncorrected for multiple comparisons) and minimum cluster size (k) 5 100 voxels. Abbreviations: CN, cognitively normal; MCI,

mild cognitive impairment; SCD, subjective cognitive decline; UPSIT, University of Pennsylvania Smell Identification Test.
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(e.g., GM loss), these observed relationships between tau
and olfactory identification provide new evidence that poor
performance on an olfactory identification test may be
linked to specific ongoing pathophysiology in AD. In
MCI, tau and neurodegeneration are often found in areas
that are involved in olfactory processing, which may result
in the observable olfactory loss, as suggested by the strong
negative correlation between UPSIT performance and both
tau and neurodegeneration when MCI patients were
included in the analysis. However, when MCI patients
were excluded, only an association with tau, but not neuro-
degeneration (GM loss), was seen. This suggests that early
changes in UPSIT performance in at-risk CN individuals
may be indicative of active tau deposition in the brain before
significant atrophy. These findings support the use of the UP-
SIT as a biomarker of early presymptomatic disease.

Our results support previous imaging studies that found a
strong significant relationship between olfactory impairment
and neurodegeneration and a relatively weaker correlation
with amyloid. For example, Bahar-Fuchs et al. reported a
significant negative association of the UPSIT with amyloid
deposition, but only across (not within) diagnostic groups,
and concluded that the UPSIT impairment was due diag-
nostic differences rather than directly to amyloid deposition
[30]. Consistent with this interpretation, we propose that tau
deposition in medial temporal and other primary olfactory-
related regions may be the main cause of the olfactory defi-
cits seen in MCI, as well as in at-risk individuals such as
those with SCD. Tau deposition may lead to neurodegenera-
tion in these regions over time, in turn resulting in the
observed association between olfactory deficits and atrophy
in the MCI stages. Given that we observed an association
between tau, but not atrophy, and UPSIT performance in
the CN individuals with and without complaints, we suggest
that tau is the primary driver of the early olfactory identifica-
tion deficits.

Numerous studies have found amyloid and tau deposition
in the olfactory bulbs of humans at autopsy and in AD
animal models [15,16,20,22–24,27,28]. PET does not offer
sufficient resolution for measurement of amyloid and/or
tau deposition in the olfactory bulb in humans. However,
future PET studies of amyloid and tau in conjunction with
olfactory mucosa sampling [50] may help to determine
whether the primary olfactory system has amyloid and tau
deposition that mirrors that seen in the brain.

This study has a few important limitations. The sample
size is relatively small, particularly for the MCI population,
necessitating larger future studies for replication and
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extension of the findings. In this study, we only included
amyloid and tau PET imaging and structural MRI. Future
studies incorporating resting-state fMRI or even task-based
fMRI of olfactory response could help to further describe
the early changes in olfaction in those at risk for AD. Finally,
the small number of amyloid-positive individuals in our
study may have limited our ability to detect amyloid-
related association with olfactory performance (Table 1).
However, when we limited the sample to only those who
were amyloid positive or borderline amyloid positive, a
very strong association between the UPSIT total score and
tau deposition was observed (data not shown); in amyloid-
negative participants, no association between the UPSIT
total score and tau was observed (data not shown) in the
full sample. These findings suggest that tau deposition in
the presence of amyloid may be driving the observed associ-
ations. However, effects of other neurodegenerative
conditions resulting in tau accumulation and/or neurodegen-
eration may result in impairment on the UPSIT, as has
been previously observed in Parkinson’s disease and
other degenerative conditions. Future studies with larger
samples of amyloid-negative and amyloid-positive individ-
uals, along with tau PET imaging, will help to further clarify
this issue.

In summary, we observed significant associations between
tau deposition in medial and lateral temporal regions and per-
formance deficits on a measure of olfactory identification.
These associations were observed across CN, SCD, and
MCI individuals, as well as within CN and SCD only. Asso-
ciations between olfactory identification and temporal lobe
atrophy were observed in the full sample only
(CN 1 SCD 1 MCI); there were no associations observed
with amyloid deposition in either the full sample or the CN/
SCD subsample. These results suggest that measures of olfac-
tory identification may be sensitive biomarkers of concurrent
tau deposition. In turn, these behavioral tests, which are inex-
pensive and are easy and quick to administer in primary care
settings, could be useful for identifying individuals at risk for
the development of AD.
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RESEARCH IN CONTEXT

1. Systematic review: In order to investigate associa-
tions between olfactory identification and amyloid,
tau, and neurodegeneration, we searched PubMed
for various combinations of “olfaction,” “imaging,”
“tau,” “amyloid,” and “MRI.” We then combined
the returned articles to generate a summary of asso-
ciations of olfaction with amyloid, tau, and Alz-
heimer’s disease (AD) in animal models, autopsy
studies, and in vivo imaging studies.

2. Interpretation: Our results provide new evidence that
impairment in olfactory identification in early at-risk
and prodromal AD participants is related to tau
deposition and neurodegeneration. These findings
suggest that olfactory identification measured using
the University of Pennsylvania Smell Identification
Test (UPSIT) is a good biomarker for tau accumu-
lation in individuals at risk for AD.

3. Future directions: To confirm the current findings,
additional analyses with larger samples would be
beneficial. In addition, longitudinal follow-up
studies with repeated UPSIT administration would
help to determine whether the UPSIT can predict and
monitor decline.
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