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Abstract: Obesity, type 2 diabetes (T2D), and severe coronavirus disease 2019 (COVID-19) are
closely associated. The aim of this study was to elucidate the casual and mediating relationships
of human serum metabolites on the pathways from obesity/T2D to COVID-19 using Mendelian
randomization (MR) techniques. We performed two-sample MR to study the causal effects of 309
metabolites on COVID-19 severity and susceptibility, based on summary statistics from genome-wide
association studies (GWAS) of metabolites (n = 7824), COVID-19 phenotypes (n = 2,586,691), and
obesity (n = 322,154)/T2D traits (n = 898,130). We conducted two-sample network MR analysis to
determine the mediating metabolites on the causal path from obesity/T2D to COVID-19 phenotypes.
We used multivariable MR analysis (MVMR) to discover causal metabolites independent of body
mass index (BMI). Our MR analysis yielded four causal metabolites that increased the risk of severe
COVID-19, including 2-stearoylglycerophosphocholine (OR 2.15; 95% CI 1.48–3.11), decanoylcarnitine
(OR 1.32; 95% CI 1.17–1.50), thymol sulfate (OR 1.20; 95% CI 1.10–1.30), and bradykinin-des-arg(9)
(OR 1.09; 95% CI 1.05–1.13). One significant mediator, gamma-glutamyltyrosine, lay on the causal
path from T2D/obesity to severe COVID-19, with 16.67% (0.64%, 32.70%) and 6.32% (1.76%, 10.87%)
increased risk, respectively, per one-standard deviation increment of genetically predicted T2D and
BMI. Our comprehensive MR analyses identified credible causative metabolites, mediators of T2D
and obesity, and obesity-independent causative metabolites for severe COVID-19. These biomarkers
provide a novel basis for mechanistic studies for risk assessment, prognostication, and therapeutic
purposes in COVID-19.

Keywords: COVID-19; human serum metabolites; type 2 diabetes; obesity; Mendelian randomization;
mediation analysis

1. Introduction

Since the outbreak of the coronavirus disease 2019 (COVID-19) in late 2019, as of May
2022, more than 400 million people were infected, with 6 million deaths worldwide [1].
There is marked heterogeneity in the clinical course of COVID-19 due to severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), ranging from asymptomatic infection
to acute respiratory failure or death [2]. There is global evidence indicating that severe
COVID-19 is closely linked to preexisting conditions such as obesity, diabetes, hypertension,
cardiovascular–renal disease, heart failure, chronic respiratory disease, and cancers [3–8].
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Among these conditions, type 2 diabetes (T2D) [5,9] and obesity [3] are major risk
factors for severe COVID-19 requiring hospitalization, assisted ventilation, and premature
death. However, the underlying molecular pathways involved in the association between
T2D/obesity and COVID-19 remain unclear [5]. Recent research has proposed metabolic
biomarkers as functional intermediates to investigate the impact of genetics on metabolic
disorders including T2D and obesity. Metabolites are intermediates or end products of
metabolic pathways that may be perturbed in cardiometabolic diseases [10]. To this end,
aberrant metabolites due to abnormal energy metabolism in diabetes and obesity may
mediate the susceptibility and severity of COVID-19. Recently, metabolomic analysis in
patients with COVID-19 identified serum metabolites and lipidomic markers related to
disease severity [11,12]. However, the small sample size with insufficient statistical power
might have led to over- or underestimating the effect of these biomarkers. Besides, the
cross-sectional and observational nature of these studies precluded ascertainment of causal
nature, in part because of unmeasured or unknown confounders.

Mendelian randomization (MR) is a statistical approach that uses randomly allocated
genetic variants as instruments to verify the causal nature of modifiable exposures on
clinical outcomes [13]. If designed properly, MR analysis can provide credible causal
inference for biomarkers that may be prone to measurement error with small sample sizes or
unknown confounders. Recent MR studies suggested that obesity, but not T2D or glycemic
traits, was causally associated with severe COVID-19 [4,14]. Hence, to disentangle the
causal relationship among obesity/T2D, metabolites, and COVID-19 susceptibility/severity,
we adopted a network MR analysis framework using summary statistics from large genome-
wide association studies (GWASs) in this study. We aimed to systematically evaluate
the mediating roles of human serum metabolites in the link between obesity/T2D and
COVID-19. To this end, we used genetic variants as instruments and performed relevant
multivariable MR (MVMR) analysis to explain the potential pleiotropy when estimating
the mediation effects of metabolites.

2. Results
2.1. Study Overview

The framework of MR analysis in this study is described by the directed acyclic graphs
(DAGs) shown in Figure 1. We conducted both two-sample network MR and MVMR to
test the hypothesis that the link between obesity/T2D and COVID-19 was mediated by
metabolites (Figure 1A). The network MR included three steps when we performed the
analysis using univariable two-sample MR approaches (Figure 1B). We first explored the
total effect of T2D/obesity on the COVID-19 phenotypes as outcomes (step 1). We then
investigated the causal relationship between human serum metabolites and outcomes to
prioritize suggestive candidates (step 2). We finalized the network MR by assessing the
causal relationships between these COVID-19-associated metabolites and T2D/obesity
(step 3). Mediation effects of the metabolites from T2D/obesity to COVID-19 outcomes were
derived from the estimates obtained in the network MR. To further address the potential
pleiotropic effects, we supplemented the mediation analysis using MVMR to estimate the
residual effects of each metabolite on the outcomes, adjusted for the genetic instruments of
T2D/obesity (Figure 1C). Finally, to account for confounding due to correlations among
metabolites within the same biochemical categories or pathways, we consolidated our
findings by performing another MVMR analysis for the correlated metabolites (Figure 1D).
And Supplementary Material Table S1 summarizes the detailed information from the GWAS
summary data used in this study.
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Figure 1. Overview of the study design. (A) Directed acyclic graphs illustrating the hypothetical 
causal model of T2D/obesity, metabolites, and COVID-19 susceptibility/severity. Dashed arrow: in-
direct effect via mediator; grey arrow: direct effect. (B) Framework of network Mendelian random-
ization. The analysis flow started from the estimation of total effect of T2D/obesity on the outcomes 
(①), followed by outcome-related metabolite screening (②). The final step in the network MR was 
an assessment of the causality between metabolites and T2D/obesity (③). Dashed arrow: instru-
mental variables of exposures; black arrow: directions of causal association. (C) Further analyses on 
the metabolites with suggestive associations with outcomes from network MR. These analyses in-
cluded multiple hypothesis-testing corrections to prioritize credible causative metabolites, multi-
variable Mendelian randomization for single metabolites adjusting for BMI, and mediation analysis 
to identify the mediators. Dashed arrow: instrumental variables of exposures; black arrow: direc-
tions of causal association. (D) Multivariable Mendelian randomization for metabolites with corre-
lated serum levels. Dashed arrow: instrumental variables of exposures; black arrow: directions of 
causal association. 

2.2. Instrument Strength 
The number of genetic variants used as instrumental variables of the 309 human se-

rum metabolites under investigation varied from 3 to 284, with a median number of 15. 
These instruments explained 0.9–87.6% of the variance for their respective metabolites. 
We discarded seven metabolites from our MR analysis because of their aberrant R2 result-
ing from the small effective sample size. The minimum F-statistic of the remaining 302 
metabolites was 21.53. All these genetic instrumental variables were sufficiently informa-
tive (F > 10) for network MR analysis (Supplementary Material Table S2). 

2.3. Network MR Step 1: Causal Associations between T2D, Glycemic Traits, Adiposity Traits 
and COVID-19 Phenotypes 

Using the latest version of COVID-19 GWAS data, we confirmed findings from pre-
vious MR studies on the causal relationships between T2D, glycemic traits, adiposity traits 

Figure 1. Overview of the study design. (A) Directed acyclic graphs illustrating the hypothetical
causal model of T2D/obesity, metabolites, and COVID-19 susceptibility/severity. Dashed arrow:
indirect effect via mediator; grey arrow: direct effect. (B) Framework of network Mendelian random-
ization. The analysis flow started from the estimation of total effect of T2D/obesity on the outcomes
( 1©), followed by outcome-related metabolite screening ( 2©). The final step in the network MR was an
assessment of the causality between metabolites and T2D/obesity ( 3©). Dashed arrow: instrumental
variables of exposures; black arrow: directions of causal association. (C) Further analyses on the
metabolites with suggestive associations with outcomes from network MR. These analyses included
multiple hypothesis-testing corrections to prioritize credible causative metabolites, multivariable
Mendelian randomization for single metabolites adjusting for BMI, and mediation analysis to identify
the mediators. Dashed arrow: instrumental variables of exposures; black arrow: directions of causal
association. (D) Multivariable Mendelian randomization for metabolites with correlated serum levels.
Dashed arrow: instrumental variables of exposures; black arrow: directions of causal association.

2.2. Instrument Strength

The number of genetic variants used as instrumental variables of the 309 human serum
metabolites under investigation varied from 3 to 284, with a median number of 15. These
instruments explained 0.9–87.6% of the variance for their respective metabolites. We dis-
carded seven metabolites from our MR analysis because of their aberrant R2 resulting from
the small effective sample size. The minimum F-statistic of the remaining 302 metabolites
was 21.53. All these genetic instrumental variables were sufficiently informative (F > 10)
for network MR analysis (Supplementary Material Table S2).

2.3. Network MR Step 1: Causal Associations between T2D, Glycemic Traits, Adiposity Traits and
COVID-19 Phenotypes

Using the latest version of COVID-19 GWAS data, we confirmed findings from previ-
ous MR studies on the causal relationships between T2D, glycemic traits, adiposity traits
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and COVID-19 phenotypes (Supplementary Material Figure S1 and Supplementary Mate-
rial Table S3a). There were suggestive associations between T2D and COVID-19 severity (B2:
ORIVW 1.05; 95% CI 1.01–1.10; PIVW = 0.0067) and susceptibility (C2: ORIVW 1.02; 95% CI
1.00–1.04; PIVW = 0.039), albeit with possible horizontal pleiotropy (PMR–PRESSO Global < 0.05,
PMR–Egger intercept < 0.05, Supplementary Material Table S3b). After adjusting for BMI
(T2DadjBMI), we found that all causal associations between T2D and COVID-19 phenotypes
were rendered nonsignificant (PIVW > 0.05). In addition, BMI but not glycemic traits (FG,
FI, HbA1c, and 2hGlu) was causally associated with all three COVID-19 phenotypes (Sup-
plementary Material Table S3a; A2: ORIVW 1.70; 95% CI 1.39–2.07; PIVW < 0.001; B2: ORIVW
1.52; 95% CI 1.33–1.75; PIVW < 0.001; C2: ORIVW 1.14; 95% CI 1.08–1.20; PIVW < 0.001).
The causal associations between BMI and COVID-19 severity (B2) and susceptibility (C2)
remained robust in sensitivity analyses and passed the tests of pleiotropic effects (Supple-
mentary Material Table S3a,b). No causal relationship was observed between the outcomes
and another adiposity trait, WHR, either with or without BMI adjustment.

2.4. Network MR Step 2: Causal Association between Human Serum Metabolites and
COVID-19 Phenotypes

From the 302 metabolites with valid IVs, initial screening yielded 70 suggestive as-
sociations with COVID-19 phenotypes at nominal significance levels (PIVW < 0.05). After
removing associations with potential horizontal pleiotropic effects (PMR–Egger intercept < 0.05),
we obtained 56 unique metabolites that contributed to 24, 24, and 18 causal associations
with COVID-19 phenotypes A2 (severity), B2 (severity), and C2 (susceptibility), respec-
tively (Figure 2 and Supplementary Material Table S4). These metabolites were enriched
in pathways implicated in “carnitine metabolism” (A2; hypergeometric test Phyper = 0.013),
“Krebs cycle” (A2; Phyper = 0.032), “purine metabolism” (B2; Phyper = 0.0016), and “food
component, plant” (C2; Phyper = 0.013). Six causal associations between metabolites and
COVID-19 severity remained significant per 1 log10 unit increase in the serum level af-
ter correction for multiple hypothesis testing using the conservative Bonferroni threshold
(PIVW < 0.05/302 = 1.66 × 10−4): 2-stearoylglycerophosphocholine with A2 (odds ratio from
IVW method (ORIVW) 2.15; 95% CI 1.48–3.11; PIVW = 5.54× 10−5), bradykinin-des-arg(9) with
B2 (ORIVW 1.09; 95% CI 1.05–1.13; PIVW = 2.11 × 10−6),
1-heptadecanoylglycerophosphocholine with B2 (ORIVW 1.34; 95% CI 1.18–1.52;
PIVW = 4.04 × 10−6), decanoylcarnitine with B2 (ORIVW 1.32; 95% CI 1.17–1.50;
PIVW = 1.36 × 10−5), thymol sulfate with B2 (ORIVW 1.20; 95% CI 1.10–1.30; PIVW = 2.66× 10−5),
and glutamate with B2 (ORIVW 1.39; 95% CI 1.17–1.65; PIVW = 1.36 × 10−4) (Supplemen-
tary Material Figure S2). These six metabolites were involved in “lysolipid”, “polypep-
tide”, “carnitine metabolism” and “glutamate metabolism” pathways. None of the six had
pairwise serum-level correlation larger than 0.04 (|r| > 0.2). The causal associations of
2-stearoylglycerophosphocholine, bradykinin-des-arg(9), decanoylcarnitine, and thymol sul-
fate with COVID-19 severity remained robust in sensitivity analyses
(Pweighted-median < 0.05; Table 1 and Supplementary Material Table S4).

2.5. Network MR Step 3: Causal Relationship between COVID-19-Related Metabolites and
T2D/Obesity

We next evaluated the relationship between T2D/obesity and each of the 56 metabolites
from our screening above by treating genetically predicted T2D or BMI as exposure in the
two-sample MR analysis. We identified eight metabolites causally affected by the genetic
predisposition to T2D per unit increase in log odds of T2D risk (Supplementary Material
Table S5): inosine (βIVW = −0.054; 95% CI (−0.095, −0.012); PIVW =1.00 × 10−2), hep-
tanoate (βIVW = −0.014; 95% CI (−0.023, −0.005); PIVW = 3.20 × 10−3), valine (βIVW = 0.006;
95% CI (0.001, 0.012); PIVW =1.69 × 10−2), lactate (βIVW = 0.011; 95% CI (0.001, 0.021);
PIVW =3.10 × 10−2), indoleacetate (βIVW = 0.016; 95% CI (0.001, 0.030); PIVW = 3.52 × 10−2),
gamma-glutamyltyrosine (βIVW = 0.016; 95% CI (0.007, 0.025); PIVW = 4.73 × 10−4), gluta-
mate (βIVW = 0.027; 95% CI (0.013, 0.041); PIVW = 1.83 × 10−4), and fructose (βIVW = 0.023;
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95% CI (0.007, 0.038); PIVW = 3.63 × 10−3). In MVMR analysis, in which the poten-
tial confounding effect of T2D on the metabolite-COVID associations was adjusted, two
out of the eight metabolites had their causal associations with the outcomes remain at
nominal significance level (Supplementary Material Figure S3 and Supplementary Ma-
terial Table S6): gamma-glutamyltyrosine with B2 (ORMV-IVW: 2.15, 95% CI 1.27–4.09;
PMV-IVW = 2.02 × 10−2) and glutamate with C2 (ORMV-IVW: 0.73, 95% CI 0.56–0.96;
PMV-IVW = 2.46 × 10−2).

We also identified 14 metabolites which were causally affected by BMI (PIVW < 0.05;
Supplementary Material Table S7). Of these, six were inversely correlated with BMI:
phenol sulfate (βIVW = −0.060; 95% CI [−0.110, −0.011]; PIVW = 0.0169), heptanoate
(βIVW = −0.031; 95% CI [−0.049, −0.013]; PIVW = 0.0006), 1-oleoylglycerophosphocholine
(βIVW = −0.031; 95% CI [−0.056, −0.006]; PIVW = 0.0144), 2-stearoylglycerophosphocholine
(βIVW = −0.038; 95% CI [−0.071, −0.004]; PIVW = 0.0275), and 2-tetradecenoyl carnitine
(βIVW = −0.046; 95% CI [−0.091,−0.002]; PIVW = 0.042). The remaining eight had incremen-
tal serum levels ranging from 0.014 (valine) to 0.123 log10 unit (quinate) per 1 SD increase
in BMI. In MVMR analysis, five metabolites retained their causal associations with the out-
comes at PMV-IVW < 0.05 (Supplementary Material Figure S4 and Supplementary Material
Table S8): valine with A2 (ORMV-IVW 8.89; 95% CI 1.22–64.64; PMV-IVW = 3.09 × 10−2), alpha-
glutamyltyrosine with both A2 (ORMV-IVW 1.40; 95% CI 1.02–1.94; PMV-IVW = 3.92 × 10−2)
and C2 (ORMV-IVW 1.10; 95% CI 1.02–1.19; PMV-IVW = 1.24× 10−2), gamma-glutamyltyrosine
with B2 (ORMV-IVW 1.62; 95% CI 1.03–2.54; PMV-IVW = 3.49 × 10−2), and glutamate with C2
(ORMV-IVW 0.82; 95% CI 0.69–0.98; PMV-IVW = 3.07 × 10−2).
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vitamins.
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Table 1. Summary of the primary findings in this study.

Methods Role of Metabolites Directed Acyclic Graph Evidence Level COVID-19 A2 (Severity) COVID-19 B2 (Severity) COVID-19 C2 (Susceptibility)

Univariable MR analysis (after
Bonferroni correction) Causative (risk *)
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2.6. Mediation Effects of Metabolites

We assessed the mediating effects of metabolites that were associated with both expo-
sures (T2D/BMI) and outcomes (COVID-19 phenotypes) in the network MR analysis. For
T2D, we detected two significant positive indirect effects (Table 2 and Figure 3): glutamate
with B2 (indirect effect in log OR scale (Betaindirect) 0.009 per unit increase in log odds of
T2D risk; 95% CI [0.002, 0.015]) and gamma-glutamyltyrosine with B2 (Betaindirect 0.009;
95% CI [0.002, 0.016]). The proportion of the association between T2D and COVID-19
phenotypes mediated by these metabolites were 16.78% (95% CI [1.04%, 32.52%]) and
16.67% (95% CI [0.64%, 32.70%]), respectively. In combination with results from MVMR
analysis, we considered gamma-glutamyltyrosine as a mediator with strong evidence in the
association between T2D and COVID-19 severity. Meanwhile, glutamate was a mediator
with moderate evidence for both COVID-19 severity and susceptibility.

Among the 14 BMI-associated metabolites, we observed 5 statistically significant
positive-mediating effects on the causal path from BMI to COVID-19 phenotypes (Table 3
and Figure 4): valine with A2 (indirect effect in log OR scale (Betaindirect) 0.018 per 1 SD
increase in BMI; 95% CI [0.001, 0.036]), heptanoate (7:0) with A2 (Betaindirect 0.025; 95% CI
[0.001, 0.049]), glutamate with B2 (Betaindirect 0.017; 95% CI [0.002, 0.031]), and gamma-
glutamyltyrosine with both B2 and C2 (Betaindirect 0.023; 95% CI [0.006, 0.04]; Betaindirect
0.009; 95% CI [0.002, 0.015]). The proportions mediated were 4.19% (95% CI [0.03%, 8.35%]),
5.75% (95% CI [0.20%, 11.30%]), 4.59% (95% CI [0.69%, 8.49%]), 6.32% (95% CI [1.76%,
10.87%]), and 6.62% (95% CI [1.52%, 11.71%]), respectively. MVMR analysis supported that
valine and gamma-glutamyltyrosine were two mediators with sufficient evidence in the
association between obesity and COVID-19 severity.

Table 2. Mediation effects of human serum metabolites in the total effect between T2D and COVID-19
phenotypes.

Mediator Category Exposure Outcome BetaXM ORMY ORXY Betaindirect (95% CI) Proportion Mediated (95% CI) MVMR

valine Amino
acid T2D A2 0.006 3.516

1.057

0.008 (−0.001, 0.016) — * F †

indoleacetate Amino
acid T2D A2 0.016 0.670 −0.006 (−0.014, 0.002) — F

lactate Carbohydrate T2D A2 0.011 0.483 −0.008 (−0.018, 0.002) — F

fructose Carbohydrate T2D A2 0.023 0.505 −0.016 (−0.03, −0.001) — F

heptanoate (7:0) Lipid T2D A2 −0.014 0.454 0.011 (−0.001, 0.022) — F

indoleacetate Amino
acid T2D B2 0.016 0.784

1.054

−0.004 (−0.008, 0.001) — F

glutamate Amino
acid T2D B2 0.027 1.393 0.009 (0.002, 0.015) 16.78% (1.04%, 32.52%) F

inosine Nucleotide T2D B2 −0.054 1.094 −0.005 (−0.01, 0.001) — F

gamma-
glutamyltyrosine Peptide T2D B2 0.016 1.745 0.009 (0.002, 0.016) 16.67% (0.64%, 32.70%) P

glutamate Amino
acid T2D C2 0.027 0.877

1.019
−0.004 (−0.006, −0.001) — P

gamma-
glutamyltyrosine Peptide T2D C2 0.016 1.228 0.003 (0.001, 0.006) 17.63% (−2.83%, 38.08%) F

T2D: type 2 diabetes; BetaXM: causal effect estimates of exposure on the mediator; ORMY: causal effect estimates
of the mediator on the outcome in odds ratio scale; ORXY: total effect estimates of exposure on the outcome in
odds ratio scale; Betaindirect: indirect effect estimates of exposure on the outcome mediated by the mediator in
log OR scale; CI: confidence interval. MVMR: multivariable Mendelian randomization analysis. *: Proportion
of mediation effects was not calculated for indirect effects (Betaindirect) in the opposite direction from the total
effect (ORXY) or without statistical significance. Mediation effects supported by both significant Betaindirect and
proportion mediated are in boldface type. †: Indicator of statistical significance of MVMR analysis for casual
associations between mediators and COVID-19 phenotypes conditioning on genetically predicted T2D risk. “P” in
boldface type suggests that the mediator–outcome association remained significant in the MVMR analysis, while
“F” suggests that the association failed to keep significance after T2D adjustment.
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Figure 3. (A) Forest plots of 8 T2D-affected human serum metabolites. Left panel: causal effects of genetically
predicted BMI on the serum levels of metabolites. Beta (x-axis) was the log10 unit changes of metabolite
level per one-standard-deviation (1 SD) increase in T2D (T2D as exposure). Right panel: causal effects of
the 8 T2D-affected metabolites on the COVID-19 phenotypes. OR (x-axis) was the estimated odds ratio
of the outcome per 1 log10 unit increase in the serum levels of metabolites. Solid dots indicate significant
associations (PIVW < 0.05). (B) Diagrams illustrating the mediation effects of mediators on the causal path
from T2D to COVID-19 phenotypes A2 (red), B2 (red), and C2 (yellow). *: Indicator of statistical significance
of multivariable Mendelian randomization (MVMR) analysis for causal associations between mediators and
COVID-19 phenotypes conditioning on genetically predicted T2D risk.

Metabolites 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 4. (A) Forest plots of 14 BMI-affected human serum metabolites. Left panel: causal effects of 
genetically predicted BMI on the serum levels of metabolites. Beta (x-axis) was the log10 unit 
changes of metabolite level per one-standard-deviation (1 SD) increase in BMI (BMI as exposure). 
Right panel: causal effects of the 14 BMI-affected metabolites on the COVID-19 phenotypes. OR (x-
axis) was the estimated odds ratio of the outcome per 1 log10 unit increase in the serum levels of 
metabolites. Solid dots indicate significant associations (PIVW < 0.05). (B) Diagrams illustrating the 
mediation effects of mediators on the causal path from obesity to COVID-19 phenotypes A2, B2 and 
C2. *: Indicator of statistical significance of multivariable Mendelian randomization (MVMR) anal-
ysis for casual associations between mediators and COVID-19 phenotypes conditioning on BMI. 

2.7. Reassessment on the Independent Causal Effects of Metabolites and COVID-19 Phenotypes 
Finally, to adjust for close correlations among metabolites, we reassessed the direct 

effects of causal and mediating metabolites on COVID-19 phenotypes by conditioning on 
their corresponding correlated metabolites. None of the causal associations with the out-
comes detected above arose from correlation with other metabolites except for that of glu-
tamate (Supplementary Material Table S9). The causal relationship between glutamate 
and COVID-19 phenotypes was negated after adjustment of its correlated metabolite 
gamma-glutamyltyrosine. 

Figure 4. (A) Forest plots of 14 BMI-affected human serum metabolites. Left panel: causal effects of
genetically predicted BMI on the serum levels of metabolites. Beta (x-axis) was the log10 unit changes of
metabolite level per one-standard-deviation (1 SD) increase in BMI (BMI as exposure). Right panel: causal
effects of the 14 BMI-affected metabolites on the COVID-19 phenotypes. OR (x-axis) was the estimated
odds ratio of the outcome per 1 log10 unit increase in the serum levels of metabolites. Solid dots indicate
significant associations (PIVW < 0.05). (B) Diagrams illustrating the mediation effects of mediators on the
causal path from obesity to COVID-19 phenotypes A2, B2 and C2. *: Indicator of statistical significance
of multivariable Mendelian randomization (MVMR) analysis for casual associations between mediators
and COVID-19 phenotypes conditioning on BMI.
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Table 3. Mediation effects of human serum metabolites in the total effect between obesity and
COVID-19 phenotypes.

Mediator Category Exposure Outcome BetaXM ORMY ORXY Betaindirect (95% CI) Proportion Mediated
(95% CI) MVMR

valine Amino
acid BMI A2 0.014 3.516

1.698

0.018 (0.001, 0.036) 4.19% (0.03%, 8.35%) P †

heptanoate (7:0) Lipid BMI A2 −0.031 0.454 0.025 (0.001, 0.049) 5.75% (0.20%, 11.30%) F

taurochenodeoxycholate Lipid BMI A2 0.076 0.78 −0.019 (−0.043, 0.005) — * F

1-oleoylglycerophosphocholine Lipid BMI A2 −0.031 0.486 0.022 (−0.003, 0.048) — F

2-stearoylglycerophosphocholine Lipid BMI A2 −0.038 2.145 −0.029 (−0.058, 0.001) — F

2-tetradecenoyl carnitine Lipid BMI A2 −0.046 1.441 −0.017 (−0.038, 0.004) — F

alpha-glutamyltyrosine Peptide BMI A2 −0.063 1.322 −0.018 (−0.039, 0.004) — P

glutamate Amino
acid BMI B2 0.051 1.393

1.523

0.017 (0.002, 0.031) 4.59% (0.69%, 8.49%) F

xanthine Nucleotide BMI B2 0.039 0.671 −0.016 (−0.033, 0.001) — F

gamma-glutamyltyrosine Peptide BMI B2 0.041 1.745 0.023 (0.006, 0.04) 6.32% (1.76%, 10.87%) P

bradykinin, des-arg(9) Peptide BMI B2 0.109 1.087 0.009 (−0.001, 0.019) — F

glutamate Amino
acid BMI C2 0.051 0.877

1.141

−0.007 (−0.013,
−0.00016) — P

phenol sulfate Amino
acid BMI C2 −0.06 1.08 −0.005 (−0.01, 0.001) — F

propionylcarnitine Lipid BMI C2 0.026 0.896 −0.003 (−0.006, 0.001) — F

2-tetradecenoyl carnitine Lipid BMI C2 −0.046 1.058 −0.003 (−0.006, 0.001) — F

gamma-glutamyltyrosine Peptide BMI C2 0.041 1.228 0.009 (0.002, 0.015) 6.62% (1.52%, 11.71%) F

alpha-glutamyltyrosine Peptide BMI C2 −0.063 1.093 −0.006 (−0.012, 0.001) — P

quinate Xenobiotics BMI C2 0.123 0.956 −0.006 (−0.012, 0.001) — F

BMI: body mass index; BetaXM: causal effect estimates of exposure on the mediator; ORMY: causal effect estimates of
the mediator on the outcome in odds ratio scale; ORXY: total effect estimates of exposure on the outcome in odds ratio
scale; Betaindirect: indirect effect estimates of exposure on the outcome mediated by the mediator in log OR scale; CI:
confidence interval. MVMR: multivariable Mendelian randomization analysis. *: Proportion of mediation effects was
not calculated for indirect effects (Betaindirect) in the opposite direction from the total effect (ORXY) or without statistical
significance. Mediation effects supported by both significant Betaindirect and proportion mediated are in boldface type. †:
Indicator of statistical significance of MVMR analysis for casual associations between mediators and COVID-19 phenotypes
conditioning on genetically predicted BMI. “P” in boldface type suggests that the mediator–outcome association remained
significant in the MVMR analysis, while “F” suggests that the association failed to keep significance after BMI adjustment.

2.7. Reassessment on the Independent Causal Effects of Metabolites and COVID-19 Phenotypes

Finally, to adjust for close correlations among metabolites, we reassessed the direct
effects of causal and mediating metabolites on COVID-19 phenotypes by conditioning
on their corresponding correlated metabolites. None of the causal associations with the
outcomes detected above arose from correlation with other metabolites except for that of
glutamate (Supplementary Material Table S9). The causal relationship between glutamate
and COVID-19 phenotypes was negated after adjustment of its correlated metabolite
gamma-glutamyltyrosine.

3. Discussion

Obesity, diabetes, and COVID-19 are closely associated, although the nature of these
correlations remains uncertain. In this study, we performed comprehensive MR analyses to
find genetic evidence helpful for resolving the interrelationships between human serum
metabolites, obesity/T2D, and COVID-19. Using genetic variants as instruments, we
prioritized 56 human serum metabolites with possible causal associations with COVID-19
severity or susceptibility. From these candidates, we discovered (i) metabolites causally
increasing the risk of COVID-19 severity and (ii) metabolites exhibiting mediating effects on
the pathway from T2D/obesity to COVID-19. These findings underscored the importance
of dysregulation of lipid, choline, and carnitine metabolism, as well as that of inflammatory
processes, in severe COVID-19.
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From the metabolites found to increase the risk of severe COVID-19, we pinpointed
key contributors in the pathways related to COVID-19 progression. These included
2-stearoylglycerophosphocholine (lysolipid metabolism), bradykinin-des-arg(9) (inflamma-
tion), decanoylcarnitine (carnitine metabolism), and thymol sulfate (dietary plant phenol).
In a study of infants hospitalized for bronchiolitis, researchers reported an association be-
tween respiratory viruses and glycerophosphocholines (GCP), the metabolites from which
2-stearoylglycerophosphocholine is derived. This finding supported the role of GCP-related
lipid metabolism in virus infection [15]. Bradykinin-des-arg(9), an active metabolite of
bradykinin, is known to have a higher rate of degradation in women than in men [16].
The risk-conferring role of bradykinin-des-arg(9) in our analysis might explain the worse
prognosis among men infected with COVID-19 [17]. Decanoylcarnitine is involved in
carnitine and fatty acid metabolism, both of which are implicated in energy production.
Carnitine deficiency and dysregulation have been reported in endocrine disorders such as
diabetes [18] and may therefore contribute to the link between T2D and COVID-19 risk.
Thymol sulfate is the metabolized form of thymol in human plasma. Thymol is a naturally
occurring plant phenol with antibiotic and antiinflammatory properties [19]. The positive
causal association between thymol sulfate and COVID-19 severity implied a relationship
between host thymol metabolism and COVID-19 risk, suggesting the potential therapeutic
use of thymol for disease prevention.

We further expanded our understanding of the aforementioned 56 candidates by inter-
rogating their causal and mediating relationships with T2D and obesity, two well-reported
risk factors for COVID-19 from observational studies. We found sufficient evidence to
support the role of serum gamma-glutamyltyrosine in mediating the causal relationship
between genetically predicted T2D risk and COVID-19 severity. Gamma-glutamyltyrosine
is involved in the gamma-glutamyl amino acid pathway, which is closely related to insulin
sensitivity [20]. Plasma gamma-glutamyltyrosine was reported to be positively correlated
with HOMA-IR (homeostasis model assessment-estimated insulin resistance) [21], and
downregulated plasma levels of this metabolite were observed in T2D patients who were
on metformin treatment [22]. The mediation analysis results thus implicated a plausible
mechanism underlying the increased risk of severe COVID-19 in the T2D population. In
our estimation of the proportion mediated, we found that serum gamma-glutamyltyrosine
accounted for over 16% of the association between T2D and COVID-19 severity. Although
the proportion estimate was statistically significant, we would interpret this result cau-
tiously, given the weak total effect of T2D on COVID-19 severity indicated in step 1 of our
network MR analysis.

The positive mediating effect of serum gamma-glutamyltyrosine in the associations
between obesity and COVID-19 severity/susceptibility further confirmed the critical func-
tion of this metabolite in linking metabolic disorders and COVID-19. Besides this, we
synthesized strong evidence for another mediator, valine, that contributed to the increased
risk of severe COVID-19 caused by obesity. Valine is a branched-chain amino acid (BCAA).
Elevated circulating levels of BCAAs, frequently observed in individuals with obesity, have
been reported to be associated with worse metabolic health and increased risk of insulin
resistance followed by the development of T2D [21–23]. The causal relationship between
valine and COVID-19 severity thus suggested BCAA metabolism as a potential therapeutic
pathway for alleviating the disease progression in infected patients.

Moreover, we observed metabolites with negative mediating effects that might neu-
tralize the mediators with positive effects. For example, genetically predicted T2D causally
increased the serum fructose level, but serum fructose was found to reduce the risk of
COVID-19 severity in our study. Since no inverse correlation among metabolites with
opposite mediating effects was observed, these findings probably explained the discrep-
ancy between observational studies and MR studies on the relationship between T2D and
COVID-19 phenotypes.

We conducted MVMR analysis for all significant findings presented in the network
MR to examine the residual associations of metabolites with COVID-19 phenotypes con-
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ditioning on their correlated counterparts. In each analysis, we included only a pair of
correlated metabolites in the MVMR model, since too many exposures would reduce the
power of the model [24]. Except for glutamate, most of the causal associations remained
significant after adjusting for intercorrelations. The associations between glutamate and
COVID-19 B2 and C2 phenotypes were attenuated after adjusting for its correlated metabo-
lites gamma-glutamyltyrosine (r = 0.35) and gamma-glutamylglutamate (r = 0.61). There
are three possible explanations for this. First, glutamate may be implicated in COVID-19
without being the key causal factor. Second, in our network MR analysis, glutamate was
positively associated with COVID-19 severity but inversely associated with disease sus-
ceptibility, suggesting a nonlinear relationship between serum glutamate and COVID-19.
Third, the conditional F-statistic in this MVMR analysis was small for glutamate (less than
10), suggesting possible bias due to weak instruments. That said, a previous report on
the association between plasma glutamate level and incident cardiovascular events [25]
suggests that the causal and mediating role of glutamate in COVID-19 warrants further
investigation.

Our study had multiple strengths. This was the first attempt to use a comprehen-
sive MR framework to dissect the interrelationships between metabolites, obesity/T2D,
and COVID-19. The instruments for serum metabolite levels were derived from healthy
Europeans, while the GWAS data of metabolic traits and COVID-19 phenotypes were
generated from independent cohorts with few overlapping samples. The use of a large
sample size for the different traits enabled our MR analysis to overcome limitations due
to measured or unmeasured confounders between exposures and outcomes that cannot
be addressed by a single observational study. We examined the instrument strength for
each exposure in our two-sample network MR and evaluated the conditional instrument
strength in the MVMR analysis. We also minimized potential biases due to horizontal
pleiotropy, heterogeneity, and existence of outliers throughout our MR analyses. We applied
stringent criteria in prioritizing credible causal associations, as we required the metabolites
to be statistically significant in both primary and sensitivity analyses. Meanwhile, we also
retained metabolites with weaker evidence and proposed them as potential candidates for
future studies. Finally, we consolidated our findings in light of potential correlation among
serum metabolites.

Our study also had limitations. First, we did not consider nonlinearity between
metabolites and outcomes. A nonlinear MR analysis requires individual-level data and is
usually implemented in one-sample design [26]. We used a two-sample design to lever-
age the availability of multiple large databases in order to increase statistical power and
minimize confounding effects to draw more generalizable conclusions. Second, we did
not assess trait–metabolite or metabolite–metabolite interactions. All MR analyses were
conducted based on the assumption of no interaction between exposures and mediators
(network MR) or exposures and exposures (MVMR). We assumed that the effects of ex-
posures on both mediators and outcomes, as well as those of mediators on outcomes,
were homogeneous. This assumption of homogeneity might not have fully addressed our
research question, although MR methods that can account for interactions in two-sample
design are still being developed. Last, we were not able to verify our findings using an
independent metabolomic GWAS data because of a lack of similar datasets.

In summary, our comprehensive MR analyses identified human serum metabolites
causally associated with COVID-19 susceptibility and severity. We found genetic evidence
supporting gamma-glutamyltyrosine as a mediator on the causal path from T2D/obesity to
COVID-19 severity. Our findings provide a landscape view of how circulating metabolites
may affect COVID-19 progression. The proposed causal metabolites have the potential to
be developed into clinical biomarkers for risk stratification and treatment assignment while
providing the basis for mechanistic studies to unravel the pathophysiology of COVID-19
progression.
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4. Materials and Methods
4.1. Data Sources
4.1.1. Outcomes

We obtained the latest GWAS summary statistics for COVID-19 phenotypes from the
COVID-19 Host Genetics Initiative (HGI: https://www.covid19hg.org/, accessed on 30
December 2021, round 6, released on 15 June 2021). The primary COVID-19 outcomes
in our study included severe respiratory diseases (phenotype A2 defined in COVID-19
HGI) and hospitalization (phenotype B2) as indicators of severity and general COVID-19
(phenotype C2) as the indicator of disease susceptibility.

4.1.2. Exposure and Mediators

We obtained the full GWAS summary statistics of human blood metabolites from
comprehensive genetic association scan for more than 400 metabolites in 7824 adults from
2 European population studies: Cooperative Health Research in the Region of Augsburg
(KORA; n = 1768) and TwinsUK (n = 6056), as reported by Shin et al. [27]. The metabolites
were measured in either plasma or serum collected after overnight fasting in healthy
individuals. Based on their chemical identity, these metabolites were classified into nine
categories, including eight broad metabolic groups and an “unknown” group. The eight
metabolic groups were amino acids, carbohydrates, cofactors and vitamins, energy, lipids,
nucleotides, peptides, and xenobiotic metabolism. After stringent quality controls on
the metabolomic data, the authors retained 309 known and 177 unknown metabolites
for genetic analysis. In our study, we adopted the genetic associations, group/pathway
information, and pairwise correlations of the 309 known metabolites for our MR analyses.

Genetic data were curated from the GWAS summary statistics for T2D with or without
body mass index (BMI) adjustment from the DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) Consortium [28]. GWAS summary data of other glycemic traits,
including 2 h plasma glucose after a 75 g oral glucose tolerance test (2hGlu), fasting
glucose (FG), fasting insulin (FI), and glycated hemoglobin (HbA1c), were curated from
the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), one of the
largest genetic consortia on the glycemic traits of individuals without diabetes [29]. GWAS
summary data for adiposity traits, including BMI and waist-to-hip ratio (WHR) with or
without BMI adjustment, were curated from the Genetic Investigation of Anthropometric
Traits (GIANT) Consortium [30]. For all the exposure data we adopted, we focused on
those derived from European populations, since the majority of individuals included in the
COVID-19 GWAS were of European decent. Supplementary Material Table S1 summarizes
the detailed information from the GWAS database used in this study. All studies Were
approved by a relevant ethical review board with participants’ informed consent.

4.2. Genetic Instruments

We employed a conventional threshold of genome-wide significance (p < 5 × 10−8) to
select the candidates of genetic instruments for T2D, glycemic traits, and adiposity traits.
A less stringent threshold (p < 1 × 10−5) was used for each of the 309 serum metabolites
so as to explain a larger variation, since only a few genome-wide significant SNPs were
identified. We performed a clumping procedure to prune the set of significant SNPs by
setting a linkage disequilibrium threshold of r2 < 0.001 based on the reference panel of the
European population from the 1000 Genome Project. We retained the independent SNPs
with the lowest p-values within a 10,000 kb window. These SNPs were then harmonized
with the outcome GWAS summary statistics; SNPs were discarded if they were either
palindromic or not available in the outcome GWAS. We further applied the Steiger filtering
method to avoid reverse causation in subsequent analyses by removing SNPs of which the
association with the outcome was significantly stronger than that with the exposure [31].
The remaining SNPs were used as the final instrumental variables (IVs) for each trait and
metabolite. To validate the instrument strength assumption for MR analysis, we estimated
the proportion of variance in the exposure explained by genetic variants (R2) using the

https://www.covid19hg.org/
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formula R2 ≈
K
∑
i

β2
i

β2
i +N(se(βi))

2 , where βi is the effect size of genetic instrument variant

i, N is the effective sample size, se(βi) is the standard error of effect size for the genetic
variant i, and K is the number of independent genetic variants [32]. We then calculated the

F-statistic by F = (N−K−1)R2

K(1−R2)
and compared it with the empirical threshold of 10 to evaluate

the strength of these genetic instruments.
In MVMR analysis, genetic instruments were first selected using the same thresholds

as above for each trait or metabolite. We then pruned the composite instruments of
multiple exposures under the MVMR investigation with the aforementioned parameters
and reference panel. Only the independent SNPs selected in the analyses of all exposures
were subject to harmonization with the outcome GWAS data followed by Steiger filtering.
The remaining SNPs were considered as the genetic instruments for MVMR analysis. The
instrument strength for MVMR analysis was evaluated using the conditional F-statistic [33].

4.3. Statistical Analysis
4.3.1. Two-Sample Mendelian Randomization

We used the inverse-variance weighted (IVW) method with multiplicative random
effects as the primary approach to estimate the causal effect of exposures on outcomes
throughout our two-sample network MR analyses. We additionally performed sensitivity
tests to assess the robustness of the results from primary analyses under different assump-
tions about the instrument validity and pleiotropic effects, using the weighted median
method and the MR–Egger method. The two methods rely on weaker assumptions than
the IVW method and can provide reliable effect estimates when there exist invalid genetic
instruments or horizontal pleiotropy [34]. The weighted median method requires at least
half of IVs to be valid, thus being robust to outliers in instruments. The MR–Egger method
builds a weighted regression of IV-outcome associations on IV-exposure associations, with
an intercept term representing the average pleiotropic effect. We considered the presence
of directional pleiotropy if the intercept estimate of the MR–Egger regression significantly
deviated from 0 (PMR–Egger intercept < 0.05). We then adopted the regression slope as the
pleiotropy-corrected estimate of the causal effect. Furthermore, we evaluated the hetero-
geneity between variant-specific causal estimates using MR–Pleiotropy Residual Sum and
Outlier (MR–PRESSO) global test and Cochran’s Q statistic. When substantial heterogeneity
was observed (PMR–PRESSO Global < 0.05), we applied the MR–PRESSO outlier test to obtain
the pleiotropy-corrected IVW estimates with heterogeneous outliers removed. We also
classified the metabolites into two evidence levels based on their robustness in primary and
sensitivity analyses. Metabolites with significant associations in both were considered as
credible candidates, while those with significance only in primary analysis were considered
to have suggestive evidence for the causal relationship. All the two-sample MR analyses
were performed in R (version 4.1.2) using the R packages TwoSampleMR (version 0.5.6) and
MRPRESSO (version 1.0) [31,35,36].

4.3.2. Pathway Analysis

We followed the pathway annotation of the 309 metabolites in the original study by
Shin et al. [27] to conduct pathway enrichment analysis for the causal metabolites of COVID-
19 phenotypes identified in our network MR analysis. We adopted a hypergeometric test to
assess the overrepresentation of pathways enriched in the prioritized metabolites, using all
309 metabolites as the background. A hypergeometric test p-value (Phyper) less than 0.05
was considered statistically significant in the enrichment analysis.

4.3.3. Mediation Analysis

Serum metabolites with causal associations detected in both steps 2 and 3 of the net-
work MR were regarded as potential mediators on the causal paths from obesity/T2D to
COVID-19 phenotypes. We assessed their mediating effects by multiplying the two causal
effect estimates from network MR (i.e., β̂exposure→mediator × β̂mediator→outcome, the product of
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coefficients method in conventional mediation analysis) [24]. For each causal metabolite,
the product provided an estimate of the indirect effect from exposure to outcome mediated
by the serum level of this particular metabolite (mediation effect). We also computed the
proportion of the effect explained by the mediating metabolite by dividing the aforemen-

tioned product by the total effect:
β̂exposure→mediator×β̂mediator→outcome

β̂exposure→outcome
× 100%. The denominator

was estimated by the IVW method (or the outlier-corrected MR–PRESSO method when
applicable) in step 1 of the network MR. This proportion provided another measure of
mediation expressed as the contribution of the metabolite in the causal association between
exposure and outcome. We used the multivariate delta method [37,38] to calculate the
confidence intervals for the indirect effects and proportions mediated. Metabolites with
mediation effects significantly different from 0 were considered as the mediators in the
pathway from obesity/T2D to COVID-19.

4.3.4. Multivariable Mendelian Randomization (MVMR)

Multivariable MR analysis is an extension of univariable MR analysis for quantifying
the direct effects of multiple exposures on the outcome [24]. MVMR analysis estimates the
independent causal relationship between exposure and the outcome conditioning on the
effects of other exposures. The multiple exposures could be either confounders, mediators,
or colliders of each other or related to pleiotropic pathways. To test the robustness of
the causal association between metabolites and COVID-19 phenotypes in our primary
analysis, we performed sensitivity analyses by constructing an MVMR model that included
obesity/T2D as the covariable for each suggestive metabolite from step 2 of the network
MR. This MVMR model provided estimates for the direct causal effects of the metabolite
on outcomes independently of obesity/T2D, thus adjusting for possible pleiotropic effects
shared by exposures (obesity/T2D) and mediators (metabolites).

On the other hand, since metabolites with correlated serum levels were likely to
have shared genetic factors, it was difficult to find specific genetic instruments for each
of the correlated metabolites without loss of statistical power. Two-sample MR based
on nonunique IVs has limited power to distinguish true causation from correlation with
the causal metabolites. We therefore performed another MVMR analysis targeting at the
correlated metabolites. From the supplementary information from the study by Shin et al.,
we identified metabolite pairs with serum-level correlation larger than 0.2 (|r| > 0.2, where
r was the Pearson’s correlation coefficient) as correlated metabolites. We adopted the
multivariable extension of the IVW method for all the MVMR analyses in this study, using
the R packages MVMR (version 0.3) [33] and MendelianRandomization (version 0.5.1) [39].

Based on the MVMR results, we assigned different evidence levels to the potential
mediators. Metabolites that both remained causally associated with the outcomes in MVMR
and had statistically significant positive-mediating effects were considered to be mediators
with strong evidence. Meanwhile, metabolites that met only one of the two criteria were
regarded as mediators with moderate evidence. The remaining metabolites that failed both
were proposed as potential mediators.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12070598/s1, Supplementary Material Figure S1. Causal
associations between metabolic traits and COVID-19 phenotypes, Supplementary Material Figure S2.
Relationship of the SNP (instrument variable) effects on the metabolite serum levels with the SNP
effects on the COVID-19 phenotypes estimated by three different MR methods for the six metabolites
that passed the Bonferroni correction (PIVW < 0.05/302 = 1.66 × 10−4), Supplementary Material
Figure S3. Residual associations between T2D-associated human serum metabolites and COVID-
19 phenotypes after adjusting for T2D, Supplementary Material Figure S4. Residual associations
between BMI-associated human serum metabolites and COVID-19 phenotypes after adjusting for BMI,
Supplementary Material Table S1. GWAS summary data used in the current study, Supplementary
Material Table S2. Instrument strength for the 56 metabolites causally associated with COVID-19
outcomes at nominal significance (PIVW < 0.05), Supplementary Material Table S3, (a) Association
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between genetically predicted metabolic traits and COVID-19 phenotypes, (b) Assessment of the
horizontal pleiotropic effects between metabolic traits and COVID-19 phenotypes, Supplementary
Material Table S4. Causal associations between human serum metabolites and COVID-19 phenotypes
from metabolite–outcome screening, Supplementary Material Table S5. Assessment of the causal
relationship between T2D and metabolites (T2D as exposure), Supplementary Material Table S6. Direct
effects of T2D-associated metabolites on COVID-19 phenotypes conditioning on T2D, Supplementary
Material Table S7. Assessment of the causal relationship between BMI and metabolites (BMI as
exposure), Supplementary Material Table S8. Direct effects of BMI-associated metabolites on COVID-19
phenotypes conditioning on BMI, Supplementary Material Table S9. Association between metabolites
and COVID-19 phenotypes after adjusting for other metabolites with correlated serum levels.
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