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A B S T R A C T

Avoidance behavior is a hallmark in pathological anxiety disorders and results in impairment of daily activities.
Individual differences in avoidance responses are critical in determining vulnerability or resistance to anxiety
disorders. Dopaminergic activation is implicated in the processing of avoidance responses; however, the me-
chanisms underlying these responses are unknown. In this sense, we used a preclinical model of avoidance
behavior to investigate the possibility of an intrinsic differential dopaminergic pattern between good and poor
performers. The specific goal was to assess the participation of dopamine (DA) through pharmacological ma-
nipulation, and we further evaluated the effects of systemic injections of the dopaminergic receptor type 1 (D1
antagonist - SCH23390) and dopaminergic receptor type 2 (D2 antagonist - sulpiride) antagonists in the good
performers. Additionally, we evaluated the effects of intra-amygdala microinjection of a D1 antagonist
(SCH23390) and a D2 antagonist (sulpiride) in good performers as well as intra-amygdala microinjection of a D1
agonist (SKF38393) and D2 agonist (quinpirole) in poor performers. Furthermore, we quantified the contents of
dopamine and metabolites (3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)) in the
amygdala, evaluated the basal levels of tyrosine hydroxylase expression (catecholamine synthesis enzyme) and
measured the volume of the substantia nigra, ventral tegmental area and locus coeruleus. Our results showed
that it could be possible to convert animals from good to poor performers, and vice versa, by intra-amygdala
(basolateral and central nucleus) injections of D1 receptor antagonists in good performers or D2 receptor ago-
nists in poor performers. Additionally, the good performers had lower levels of DOPAC and HVA in the
amygdala, an increase in the total volume of the amygdala (AMG), substantia nigra (SN), ventral tegmental area
(VTA) and locus coeruleus (LC), and an increase in the number of tyrosine hydroxylase-positive cells in SN, VTA
and LC, which positively correlates with the avoidance behavior. Taken together, our data show evidence for a
dopaminergic signature of avoidance performers, emphasizing the role of distinct dopaminergic receptors in
individual differences in avoidance behavior based on pharmacological, immunohistochemical, neurochemical
and volumetric analyses. Our findings provide a better understanding of the role of the dopaminergic system in
the execution of avoidance behavior.
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1. Introduction

Avoidance behavior consists of the transition from fear reactions to
motor actions to avoid a harmful or unpleasant stimulus, increasing the
animal's chance of survival in the face of potential damage (Skinner,
1969; Lang et al., 1998). It has been observed in different species, in-
cluding humans, primates and rodents (LeDoux, 1996; Sheynin et al.,
2014). Conversely, the manifestation of avoidance responses in the
absence of real potential danger is the central characteristic of several
mental disorders (e.g., panic disorder, avoidant personality disorder)
(World Health Organization, 2004; Lampe, 2016) and is related to an-
xiety disorders (e.g., social anxiety disorder and social phobia) (Moitra
et al., 2008; American Psychiatric Association, 2013; Bardeen et al.,
2014).

Preclinical models of avoidance behavior are fundamental to better
understand the course and etiology of the behavior and to provide in-
sights for new human pharmacological treatments (Krypotos et al.,
2015). The two-way active avoidance task is performed in a shuttle box
that is divided into two compartments by a door, and the rats are
trained to exhibit the avoidance behavior by moving from one com-
partment to another in order to avoid the delivery of the footshocks
(Martinez et al., 2013). This is a particularly interesting model because
two different subpopulations are distinguished based on the avoidance
response, the good (high avoiders) and poor (low avoiders) performers,
with higher levels of anxiety displayed by the poor performers
(Martinez et al., 2013). Therefore, in the context of post-traumatic
stress disorder (PTSD) and other anxiety disorders, the distinction be-
tween good and poor performers could be helpful to study the persistent
and maladaptive threat responses (Mahan and Ressler, 2012; Galatzer-
Levy et al., 2014).

It is suggested that a fronto-limbic-striatal network controls this
behavior and that maladaptive responses could be due to a reduction in
frontal and limbic activity, especially related to the amygdala and
prefrontal cortex (Schlund et al., 2011; Martinez et al., 2013; Ramirez
et al., 2015). The central (Ce), basolateral (BLA) and basomedial (BMA)
amygdala nuclei are critical for the modulation of avoidance behavior
(Choi et al., 2010; Martinez et al., 2013; Ramirez et al., 2015; Jiao
et al., 2015). In addition, the close involvement of the ventral tegmental
area, nucleus accumbens and habenula to this neurocircuitry points to a
possible dopaminergic modulation of avoidance behavior (Carlezon and
Thomas, 2009; Darvas et al., 2011; Stamatakis and Stuber, 2012;
Fernando et al., 2014; Sanna et al., 2014; 2017). In fact, dopamine
(DA)-deficient mice have impaired avoidance behavior, and the re-
storation of the DA system in the amygdala and striatum is sufficient to
restore this behavior (Darvas et al., 2011). In this sense, dopaminergic
activation in the ventral tegmental area and substantial nigra has been
implicated in processing avoidance response (Rigoli et al., 2016);
however, the mechanisms underlying these responses are unknown.

Considering the key role of avoidance in normal and psychiatric
status, it is critical to improve our understanding of the mechanisms
responsible for modulating avoidance response. To investigate the
participation of DA through pharmacological manipulation, we eval-
uated the effects of systemic injections of a D1 antagonist (SCH23390)
and a D2 antagonist (sulpiride) in the good performers. Additionally,
we evaluated the effects of intra-amygdala microinjection of dopami-
nergic receptor type 1 (D1) antagonist (SCH23390) and a dopaminergic
receptor type 2 (D2) antagonist (sulpiride) in the good performers and
intra-amygdala microinjection of a D1 agonist (SKF38393) and a D2
agonist (quinpirole) in poor performers. Furthermore, to assess the
possibility of an intrinsic differential DA pattern between good and poor
performers, we quantified DA and its metabolites (3,4-dihydrox-
yphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the
amygdala, evaluated the basal levels of tyrosine hydroxylase (TH) ex-
pression (catecholamine synthesis enzyme) and measured the volumes
of the substantia nigra, ventral tegmental area and locus coeruleus.

2. Materials and methods

2.1. Subjects

Male Wistar rats (N = 246) from the animal facility of the
University of Sao Paulo were used as subjects. The animals weighed
200–300 g and were housed in polypropylene cages (40 × 34× 17 cm)
in groups of three under a 12:12 dark/light cycle (lights on at 07:00 h),
room temperature maintained at 24 °C ± 1 °C, wood shavings and free
access to food and water throughout the experiment. Animals were
maintained in the animal facility for 7 days before experiments for
habituation. The experiments reported in this paper were performed in
compliance with the recommendations of the Brazilian Society of
Neuroscience and Behavior, which, in turn, are based on the US
National Institutes of Health Guide for Care and Use of Laboratory
Animals. The study was approved by the Ethics Committee on the Use
of Animals at Hospital Sirio-Libanes (CEUA #2013/12) and the Medical
School of the University of Sao Paulo (CEP #083/11).

2.2. Apparatus/procedure

2.2.1. Sidman active avoidance
Behavioral training/testing was conducted in two-way shuttle boxes

(Insight Equipments, Brazil). Animals were randomly assigned for ex-
perimental or box control; experimental animals were submitted to
seven 25-min daily training sessions in the two-way shuttle box and
tested on the eighth day; control animals received equivalent exposure
to the box without the footshock delivered. Shuttling between com-
partments delayed the delivery of scrambled footshock unconditioned
stimulus - US (0.6 mA; 0.5 s) by 30 s (R–S interval). In the absence of
shuttling, US delivery occurred every 5 s. The response to stimulus
(R–S) interval shuttles comprised avoidance responses and stimulus to
stimulus (S–S) interval shuttles comprised escape responses. All shuttles
produced 0.3 s feedback stimuli (house light blink). Animals were di-
vided into good and poor performance groups according to the number
of avoidance responses exhibited in the last two training sessions. The
animals that performed more than 20 avoidance responses were con-
sidered good performers, while animals that did not achieve this
number were considered poor performers (Lázaro-Muñoz et al., 2010;
Martinez et al., 2013; de Oliveira et al., 2016). Freezing was defined as
the absence of movement except that required for breathing (Blanchard
and Blanchard, 1969) and it was assessed during the first 2 min of the
tests based on a previous study (Lázaro-Muñoz et al., 2010). The eva-
luation was performed by an observer blinded to the group specifica-
tion.

2.2.2. Open field test
After the test at day 8 on the two-way shuttle boxes, animals were

evaluated in the open field for general motor activity. The apparatus
consists of a 0.6 m square dark gray Formica surrounded by 50-cm high
Formica walls. Each rat was placed in the center of the open field and
allowed to explore it freely for 10 min. Sessions were recorded with a
video camera for future analysis. After each animal completed the test,
the open field was cleaned with 5% ethanol and then dried with a dry
cloth.

2.2.3. Dopaminergic drugs
For the pharmacological manipulation of avoidance behavior, the

following drugs were used: (see Table 1)

2.2.4. Cannula implantation
Animals were anesthetized with isoflurane (4% induction; 2%

maintenance in 100% oxygen) through a face-mask attached to the
stereotaxic instrument (David Kopf, Germany). For optimizing an-
algesia, immediately after hair trichotomy, animals had received local
anesthetic (0.1 mL of Lidocaine chlorhydrate with norepinephrine,
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Cristalia, Brazil) and were injected intraperitoneally with 0.1 mL of
morphine sulfate (10 mg/mL, Cristalia, Brazil). The animal's scalp was
cleaned with 10% iodopovidone, the skull was exposed and the peri-
osteum was removed. Using a dental drill (LB-100; Beltec - Brazil),
bilateral holes were made in the skull for the implantation of the can-
nula directed to the basolateral (AP: 3.0 mm; ML: 5.1 mm; DV: 7.0 mm)
or central (AP: 2.4 mm; ML: 4.0 mm; DV: 7.0 mm) nuclei of the
amygdala, following the coordinates described at Paxinos and Watson
Atlas (Paxinos and Watson, 2005). The cannulas were fixed with acrylic
resin (JET, Brazil) and two screws previously fixed and sealed with a
stainless steel wire to protect it against obstruction, which was removed
at the time of the microinjection.

After surgery, animals were injected subcutaneously with 0.3 mL
broad-spectrum veterinarian Pentabiotic Reinforced (Wyeth, Brazil)
and received sodium dipyrone (50 mg/mL, Medley) diluted in sterile
injection water (final concentration: 2.5 mg/mL) for three consecutive
days. Animals were allowed to recover from surgery for seven days.

2.2.5. Amygdala drugs microinjection
On the test day (8th day), the cannula seal was removed from the

animal's head, and an infusion needle was introduced (1 mm below the
guide cannula) for solution injection. An infusion pump (Harvard
Apparatus) with a flow rate of 0.25 μL/min was used for drugs and
saline microinjection. The infusion needle was kept in place for one
extra minute after the end of the microinjection to maximize the dif-
fusion process (Macedo et al., 2005). After a 10-min interval, animals
were tested on the two-way shuttle box for avoidance and freezing
behavior evaluation. Poor performers received microinjections of DA
agonists (quinpirole; SKF38393) or saline in the basolateral or central
nuclei of the amygdala, while good performers received DA antagonist
microinjections (SCH23390; sulpiride) or saline in the same targets.

2.2.6. Systemic drug administration
On the test day (8th day), good performers were intraperitoneally

injected with dopaminergic receptor antagonist (SCH23390 30-min
interval; sulpiride 10-min interval) or saline and tested in the two-way
shuttle box for avoidance and freezing behaviors evaluation (de Souza
Caetano et al., 2013).

2.2.7. Brain extraction
2.2.7.1. Perfusion. Ninety minutes after testing, the animals were
deeply anesthetized with thiopental (40 mg/kg) and morphine sulfate
(10 mg/mL) and perfused transcardially with a solution of 4.0%
paraformaldehyde in 0.1 M phosphate buffer, using a peristaltic
pump (Cole Parmer). Brains were removed, placed in
paraformaldehyde for 3 h, and then transferred to a 30% sucrose/
0.1 M phosphate buffer at 4 °C. Frozen whole brain coronal sections
(40 mm thick) were sliced with a sliding microtome (Leica Biosystems).

2.2.7.2. Decapitation. Animals were deeply anesthetized with
thiopental (40 mg/kg) and morphine sulfate (10 mg/mL), and heads
were removed using a rodent guillotine (Insight Equipments, Brazil).
After removal from the skull, brains were placed on an iced brain
matrix and cut (1 mm), according to bregma reference (Paxinos and
Watson, 2005). Samples were weighed and kept in a deep freezer
(−80 °C) until analysis.

2.2.8. C-fos and TH immunohistochemistry
Brain sections were processed with anti-c-Fos antiserum raised in

rabbit (Ab-5, Calbiochem, lot-D07099; dilution 1:20,000) or anti-TH
raised in mouse (Millipore; Lot-LV1679333; dilution 1:1000). Primary
antiserum was localized using an avidin–biotin complex system (ABC;
Vector Laboratories). Briefly, sections were incubated in biotinylated
goat anti-rabbit IgG solution (Vector Laboratories), then placed in the
mixed avidin–biotin horseradish peroxidase complex solution (ABC
Elite Kit; Vector Laboratories) (90 min/step at 22 °C). The peroxidase
complex was incubated in a chromogen solution containing 0.02% 3,3′-
diaminobenzidine tetrahydrochloride (DAB; Sigma) with 0.3% nickel-
ammonium sulfate in 0.05 M Tris-buffer (pH 7.6), followed by in-
cubation in this chromogen solution with hydrogen peroxide (1:3000)
(10 min/step) (Introini-Collison et al., 1979). Extensive washing in PBS
buffer (pH 7.4) halted the DAB reaction. Sections were mounted on
gelatin-coated slides, dehydrated, and coverslipped with DPX (Sigma).
An adjacent reference series was Nissl stained for cytoarchitectonic
purposes.

2.2.9. Quantification
For c-Fos-immunoreactive neuron quantification, brain slides were

scanned using Pannoramic and Case Viewer (Biogen), and images were
processed using ImageJ (News Version 1.44b). c-Fos positive neuron
density was determined by dividing the resulting number by the area of
the region of interest (delimited based on the Paxinos and Watson atlas)
(Paxinos and Watson, 2005). The structures evaluated along the ante-
roposterior axis were prefrontal cortex (prelimbic and infralimbic) in
bregma: 3.00 mm, 3.75 mm and 3.72 mm and amygdaloid nuclei (ba-
solateral, lateral, medial and central) in bregma: 2.04 mm, −2.28 mm,
−2.76 mm and −3.00 mm. For the TH quantification, photo-
micrographs of brain slides were taken using a 10x objective of a mi-
croscope equipped with Camera Lucida (NIKON ECLIPSE E600). The
count was performed using ImageJ (News Version 1.44b) following the
same protocol described above. The structures evaluated along the
anteroposterior axis were the SN, VTA and LC in bregma: 6.72 mm;
−10.08 mm; −9.96 mm. All the quantifications were performed by an
observer blinded to the behavioral results.

2.2.10. High-performance liquid chromatography (HPLC)
The HPLC system was equipped with a reversed-phase column

(Hypurity Elite C18, 250 mm× 4.6 mm, 5 μm and 100 Å pore-diameter
particle size; Hypersil, Cheshire, United Kingdom) together with elec-
trochemical detection. The samples were homogenized in 0.2 M per-
chloric acid containing dihydroxybenzylamine (DHBA) and centrifuged
at 15,000 rpm for 20 min at 6 °C. A 50 μL sample dilution was injected
into the HPLC system along with a proper buffer (150 mM chloroacetic
acid, 120 mM NaOH, 0.67 mM EDTA, 0.86 mM sodium octylsulfate,
3.5% acetonitrile, 2.6% tetrahydrofuran; adjusted to pH 3.0) at a flow
rate of 1.2 mL/min. The maximum sensitivity of the electrochemical
detector was set at 2 nA, and the electrode oxidation potential was set
at 850 mV versus a reference electrode. The ratios of DOPAC/DA and
HVA/DA were used as indices of dopaminergic activity (Carvalho et al.,
2005).

2.2.11. Volumetric analysis
Brain sections were mounted on gelatin-coated slides and Nissl

stained according to the protocol previously described (Paul et al.,
2008). Corresponding bregma slices were selected for evaluation, based

Table 1
Drugs and doses used for pharmacological DA manipulation.

Type of Drug Intraperitoneal Injection
(Name/Dose)

Intra-amygdala Injection
(Name/Dose)

D1 agonist NA (SKF38393, Tocris)
0.4 μL

D1 antagonist (SCH23390, Sigma-Aldrich)
0.025 mg/kg and 0.05 mg/kg

(SCH23390, Sigma-Aldrich)
0.3 μL (0.1 μg/0.1 μL)

D2 agonist NA (Quinpirole, Tocris)
0.1 μL

D2 antagonist (Sulpiride, Sigma-Aldrich)
20 mg/kg and 40 mg/kg

(Sulpiride, Tocris)
0.2 μL

Saline Sterile Saline Solution (0.9%)
10 mL/kg

Sterile Saline Solution (0.9%)
0.1–0.4 μL

Abbreviations: DA: dopaminergic; NA: not applicable; D1: dopamine receptor 1;
D2: dopamine receptor 2. Intra-amygdala drug dilution 1:1.
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on The Rat Brain Atlas (Paxinos and Watson, 2005), as follows: 1.
Amygdala: bregma−1.20 to−4.08; 2. SN: bregma−4.36 to−6.72; 3.
VTA: bregma −4.68 to −6.84; 4. LC: bregma −9.48 to −10.32.
Images were acquired using a Digital Microscope Zeiss AxioCam Plus
(exposure: 28 ms; length: 2.5 × 1300 zvs) and analyzed with the
software AxioVision 3.0.6.1©1998–2000 (Carl Zeiss Vision Microima-
ging GmbH, Germany). The final volume estimation was determined as
the sum of all bregma measures for that specific structure, considering
the interval between slices (150 μm), as described in a previous work
(Keeley et al., 2015).

2.2.12. Statistical analyses
Data are presented as the mean ± standard error of the mean

(SEM). Freezing time, number of avoidance responses and administra-
tion of drugs were analyzed with two-way repeated measure analysis of
variance ANOVA (factors: Group and Session). Data obtained in the
open field, dopamine and metabolites quantification, volume and TH
staining and c-Fos pattern were evaluated with the one-way ANOVA
test. Correlations were set using the Pearson correlation test. When
necessary, the Newman-Keuls post hoc test was applied. Significance
was set at p < 0.05.

2.3. Study design

The study design is shown in Fig. 1A.

2.4. Experiment 1 – dopaminergic manipulation

2.4.1. Systemic pharmacological DA manipulation
As shown in Fig. 1A, after the habituation period in our animal

facility, animals were submitted to seven daily training sessions in the
two-way shuttle box and subsequently divided in good and poor per-
formance according to the behavioral response exhibited. On the eighth
day, good performers were randomly assigned to the control or ex-
perimental group and systemic administration of saline or dopami-
nergic antagonists, respectively. After a standard period of time, ani-
mals were evaluated in the two-way shuttle box and in the open field
test. Ninety minutes after testing, animals were perfused; brains were
removed, sliced in a freezing microtome and processed for c-Fos im-
munohistochemistry and Nissl staining.

2.4.2. Intra-amygdala pharmacological DA manipulation
After the habituation period in our animal facility, animals were

submitted to a surgical procedure for the implantation of the infusion
cannula. Consecutively to the surgical recovery period, animals were
submitted to seven daily training sessions in the two-way shuttle box
and divided in good and poor performance according to the number of
avoidance responses exhibited in the last two sessions. On the eighth
day, animals were randomly assigned to the control or experimental
group and administered saline or pharmacological agents. Good per-
formers assigned for the experimental group received dopaminergic
antagonists and poor performers assigned for the experimental group
received dopaminergic agonists. After a standard period of time, ani-
mals were evaluated in the two-way shuttle box and in the open field

Fig. 1. (A). Experimental design of the study divided in Experiment 1 that consisted of dopaminergic manipulation that was performed systemic and intra-amygdala
manipulation in good and poor performers; and Experiment 2 that evaluated intrinsic differences. (B). Flowchart of the animals used in the study illustrating the
number of the animals used per experiment in each experimental condition. QUIN: quinpirole. SCH: SCH23390; SKF: SKF38393.
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test. Immediately after testing, animals were perfused; brains were re-
moved, sliced in freezing microtome and processed for Nissl staining for
validation of cannula placement.

2.5. Experiment 2 –basal DA levels

As shown in Fig. 1A, after a habituation period in the animal fa-
cility, the animals were randomly divided into experimental or control
groups. Animals in the experimental group were submitted to eight
daily training sessions in the two-way shuttle box and subsequently
divided in good and poor performance groups according to the beha-
vioral response exhibited in the last two sessions. Control animals were
equally exposed to the shuttle box but never received any footshock.

On the last day, immediately after testing, a portion of the animals
was decapitated, the brain was removed, and the amygdala was dis-
sected for the quantification of dopamine and dopamine metabolites by
HPLC. Another portion of the animals was perfused; the brains were
removed, sliced in a freezing microtome and processed for TH im-
munohistochemistry and volumetric analysis.

3. Results

The number of animals used in each Experiment is shown in Fig. 1B.

3.1. Experiment 1 – DA manipulation

3.1.1. Behavior assessment
After the habituation period in the animal facility, the animals were

trained in the two-way shuttle box. Along the seven daily training
sessions, the animals were divided into good and poor performance
groups based on the number of avoidance responses. The good per-
formance group presented a continuous increase in the number of
avoidance responses (interaction factor F(12,1790) = 29.487;
p = 0.000000; Fig. 2 A) and a reduction in the percentage of freezing
(interaction factor F(4,766) = 19.501; p = 0.00000; Fig. 2 B).

3.1.2. Systemic pharmacological DA manipulation
On the 8th day, animals with good performance (N = 36) were

randomly divided into five groups: 1) saline (N = 7), 2) dopamine D1
receptor antagonist SCH 0.025 mg/kg (N = 7), 3) dopamine D1 re-
ceptor antagonist SCH 0.05 mg/kg (N = 6), 4) dopamine D2 receptor
antagonist sulpiride 20 mg/kg (N = 8), and 5) dopamine D2 receptor
antagonist sulpiride 40 mg/kg (N = 8). After systemic drug adminis-
tration, the behavior was evaluated in the two-way shuttle box and
open field. Groups SCH 0.025 mg/kg and SCH 0.05 mg/kg showed a
decreased number of avoidance responses after drug administration
(F(8,122) = 3.4368; p = 0.00133; Fig. 2 C). No changes were observed
in freezing behavior (F(8,122) = 0.20408; p = 0.98969; Fig. 2 D) or in
general motor activity (F(4,31) = 0.23501; p = 0.91648; Fig. 2 E).

3.1.3. c-Fos immunohistochemistry
The saline (N = 6), SCH 0.025 mg/kg (N = 6) and SCH 0.05 mg/kg

(N = 5) groups were evaluated for c-Fos-positive cell density in the
basolateral complex (basolateral + lateral, BLA), basomedial complex
(basomedial + medial, BMA) and central nucleus (Ce) of the amygdala.
Both SCH groups presented smaller c-Fos positive cell densities in re-
lation to controls in the BMA (F(2,14) = 7.0708; p = 0.00754;
Fig. 3A–D) and BLA (F(2,14) = 8.5815; p = 0.00369; Fig. 3E–H), and no
differences were observed in the Ce (F(2,14) = 0.82084; p = 0.46017;
Fig. 3I–L). Additional data regarding c-Fos expression of other amyg-
dala subnuclei and in SCH 0.025 mg/kg, SCH 0.05 mg/kg, sulpiride
20 mg/kg and sulpiride 40 mg/kg groups are shown in Supplementary
Table 1.

3.1.4. Intra-amygdala pharmacological DA manipulation
Prior to training in the two-way shuttle box, animals were submitted

to stereotaxic surgery for bilateral cannula placement in the BMA, BLA
or Ce. Fig. 4 illustrates the cannula placement. On the 8th day, animals
with good performance were randomly divided into groups 1) Saline
(N = 9), 2) Dopamine D1 receptor antagonist SCH (BMA N = 6, BLA
N = 9, Ce N = 9), and 3) Dopamine D2 receptor antagonist sulpiride
(BMA N = 5, BLA N = 6, Ce N = 6) and the poor performers were
randomly divided into three groups 1) Saline (N = 9), 2) Dopamine D1
receptor agonist SKF (BMA N = 4, BLA N = 9, Ce N = 9), and 3)
Dopamine D2 receptor agonist quinpirole (BMA N = 4, BLA N = 9, Ce
N = 9). After drug administration, behavior was evaluated in the two-
way shuttle box and open field. No differences were observed in
avoidance behavior in animals with cannula targeting the BMA (good:
F(2,25) = 0.2462; p = 0.97571, poor: F(4,54) = 0.01181; p = 0.99972;
Fig. 5 A). For the BLA and Ce cannula groups, SCH animals presented
decreased avoidance behavior (BLA: F(2,31) = 4.3462; p = 0.02168; Ce
F(2,31) = 3.7541; p = 0.03468; Fig. 5B and C), and quinpirole animals
showed increased avoidance behavior (BLA: F(4,94) = 5.3927;
p = 0.00059; Ce F(4,94) = 4.5334; p = 0.00216; Fig. 5B and C). No
changes were observed in freezing behavior (BMA: good
F(2,25) = 0.35890; p = 0.70198, poor: F(4,54) = 0.51430; p = 0.72548;
BLA: good F(2,31) = 0.00009; p = 0.99991, poor: F(4,94) = 0.73201;
p = 0.57235; Ce: good F(2,31) = 0.00962; p = 0.99043, poor:
F(4,94) = 1.4678; p = 0.21821; Fig. 5D–F) or in general motor activity
(BMA: F(4,27) = 0.21867; p = 0.92570; BLA: F(4,40) = 1.8856;
p = 0.13183; Ce: F(4,40) = 0.63915; p = 0.63765; Fig. 5G–I).

3.2. Experiment 2 – basal DA levels

3.2.1. Behavior assessment
After a habituation period in the animal facility, the animals were

randomly divided into experimental or control groups (see Fig. 1B –
Experiment 2). During the training sessions, the experimental group
was divided into good performance (N = 13) and poor performance
(N = 15) groups based on the avoidance response presented in the two-
way shuttle box. The good performance group presented a continuous
increase in the number of avoidance responses (interaction factor
F(14,414) = 4.9798; p = 0.0000; Fig. 6 A) and a reduction in the per-
centage of freezing (interaction factor F(12,288) = 2.3964; p = 0.00610;
Fig. 1 B). Control animals were exposed to the shuttle box but received
no footshock; thus, control animals presented a low percentage of
freezing behavior and no avoidance responses (Fig. 6 B).

3.2.2. Dopamine and metabolite quantification
The concentration of dopamine and metabolites (DOPAC and HVA)

was evaluated in the total amygdala of controls (N = 5), good (N = 8)
and poor (N = 10) performers. There were no differences in dopamine
levels between groups in the right (F(2,20) = 0.17934; p = 0.83715),
left (F(2,20) = 0.59812; p = 0.55938) or total amygdala
(F(2,20) = 0.67928; p = 0.51830; Fig. 6 C). However, the metabolite
quantification showed lower levels of DOPAC in good performers
(Right: F(2,20) = 3.5959 p = 0.04634; Left: F(2,20) = 4.4693
p = 0.02486; Total: F(2,20) = 7.3101 p = 0.00414; Fig. 6 D) and higher
levels of HVA in poor performers (Right: F(2,20) = 5.0862 p = 0.01638;
Left: F(2,20) = 15.663 p = 0.00008; Total: F(2,20) = 10.482
p = 0.00077; Fig. 6 E). No differences were observed in dopamine
turnover in the right (DOPAC/DA: F(2,20) = 1.6276; p = 0.22136;
HVA/DA: F(2,20) = 0.24807; p = 0.78191), left (DOPAC/DA:
F(2,20) = 2.4942; p = 0.10787; HVA/DA: F(2,20) = 1.9352;
p = 0.17049) or total amygdala (DOPAC/DA: F(2,20) = 2.6346;
p = 0.09647; HVA/DA: F(2,20) = 1.9714; p = 0.16540; Fig. 6 F).

3.2.3. Volumetric analysis
The volume of the amygdala, substantia nigra (SN), ventral teg-

mental area (VTA) and locus coeruleus (LC) was estimated in control
(N = 3) good (N = 5) and poor (N = 5) performers. The Newman-
Keuls test showed that the good performance group presented greater
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volume in 1) Amygdala (Right: F(2,10) = 6.60; p = 0.01; Left:
F(2,10) = 5.96; p = 0.02, Total: F(2,10) = 9.49; p = 0.005; Fig. 7A and
B), 2) VTA (Right: F(2,10) = 5.00; p = 0.03; Left: F(2,10) = 4.33;
p = 0.04; Total: F(2,10) = 4.71; p = 0.036; Fig. 7E and F), and 3) LC
(Right: F(2,10) = 8.38; p = 0.007; Left: F(2,10) = 5.71; p = 0.02; Total:
F(2,10) = 9.04; p = 0.006; Fig. 7G and H). The Newman-Keuls test did
not show difference in the volume of the SN (Right: F(2,10) = 1.49;
p = 0.27; Left: F(2,10) = 2.11; p = 0.17; Total: F(2,10) = 2.40; p = 0.14;
Fig. 7C and D).

3.2.4. TH immunohistochemistry
TH+ neurons were evaluated in the SN, VTA and LC of control

(N = 3) good (N = 5) and poor (N = 5) performers. The Newman-
Keuls test showed that the good performance group showed greater
staining in all structures 1) SN (Right: F(2,10) = 5.61; p = 0.02; Left:
F(2,10) = 5.59; p = 0.00.023; Total: F(2,10) = 7.53; p = 0.011; Figs. 8A)
and 2) VTA (Right: F(2,10) = 4.59; p = 0.04; Left: F(2,10) = 4.67;
p = 0.00.037; Total: F(2,10) = 7.97; p = 0.008; Figs. 8C) and 3) LC
(Right: F(2,10) = 138.56; p = 0.0001; Left: F(2,10) = 6.77; p = 0.014
Total: F(2,10) = 155.78; p = 0.0001; Fig. 8E). Furthermore, there was a

Fig. 2. (A) Number of avoidance and (B) Percentage of the time spent in freezing exhibited by the poor and good avoiders. (C) Number of avoidance performed and
(D) Percentage of time spent in freezing behavior by the good performers on the 7th day of training and on the 8th day of training after the administration of saline
(N = 7), SCH 0.025 mg/kg (N = 7), SCH 0.05 mg/kg (N = 6), sulpiride 20 mg/kg (N = 8) or sulpiride 40 mg/kg (N = 8). (E) Total travel distance showed by good
performers after the administration saline (N = 7), SCH 0.25 mg/kg (N = 7), SCH 0.5 mg/kg (N = 6), sulpiride 20 mg/kg (N = 8) or sulpiride 40 mg/kg (N = 8).
***: p < 0.001 in comparison with poor performers.
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significant correlation between volume and the number of avoidance
responses in all structures (SN: R2 = 0.8199; p < 0.00031, VTA:
R2 = 0.6504; p < 0.00482; LC: R2 = 0.9771; p < 0.00000; Fig. 8B,
C, D).

4. Discussion

The present work showed that there is a distinct dopaminergic
pattern for good and poor performers that is critical for the expression
of avoidance behavior. Moreover, it could be possible to switch from
good to poor performer, and vice versa, by intra-amygdala (BLA and
Ce) injections of D1 receptor antagonist drugs in good performers or D2
receptor agonist drugs in poor performers. Furthermore, in comparison
with poor performers, the good performers had lower levels of DOPAC
in the amygdala, an increase in the total volume of the AMG, SN, VTA
and LC, and an increase in the number of TH + cells in the SN, VTA and
LC, which positively correlated with the avoidance behavior. Taken
together, our results suggest that the dopaminergic system could
modulate avoidance behavior.

The behavioral distinction between good and poor avoiders is well
established in the literature (Choi et al., 2010; Lázaro-Muñoz et al.,
2010; Martinez et al., 2013; Galatzer-Levy et al., 2014). The poor
performers failed in the transition from freezing to avoidance behavior
even after training (Campese et al., 2016; LeDoux et al., 2017; Boeke
et al., 2017).

Considering dopaminergic modulation, our data showed that sys-
temic injection of SCH23390, a D1 antagonist drug, could disrupt the
avoidance response in good performers without affecting motor ac-
tivity. These data have been supported by previous published papers
that showed that subtype-dopaminergic receptors modulate avoidance
(Beninger et al., 1989; Aguilar et al., 2000; Reis et al., 2004; Boschen
et al., 2011; Wietzikoski et al., 2012). According to our data, the sub-
strate for this systemic modulation is a reduction in the c-Fos activation

of the basomedial and basolateral nucleus of the amygdala. A possible
reason for this result could be the main localization of D1 receptors in
both nuclei (Weiner et al., 1991; Boyson et al., 1986). Specifically, the
anatomical pathway that regulates approach-avoidance conflict beha-
vior could be from the medial nucleus projecting to the ventromedial
hypothalamus and bed nucleus of the stria terminalis through the D1
receptor neuron population (Miller et al., 2019).

Regarding D2 receptors, the systemic injection of sulpiride, a D2
antagonist, did not affect the avoidance responses or motor activity
exhibited by the good performers. Previous papers (Reis et al., 2004;
Boschen et al., 2011) showed a reduction in avoidance response after
systemic administration of sulpiride. However, a possible reason for
these discrepant results could be the training protocol: unsignaled
avoidance in our experiment versus signaled protocols (Reis et al.,
2004; Boschen et al., 2011). It has been shown that unsignaled and
signaled protocols have different learning pattern (Ulrich et al., 1964;
Powell, 1976; Mertens et al., 2018; Hurtado-Parrado et al., 2019) and
different neuroanatomical pathways (Troncoso et al., 1998; Cohen and
Castro-Alamancos, 2007, 2010; Hormigo et al., 2016, 2019). For in-
stance, in signaled protocols there is the involvement of the sensory
thalamus, which fires during signaled avoidance responses (Cohen and
Castro-Alamancos, 2010). Additionally, there is the projection of the
substantia nigra pars reticulata, a main GABAergic output, to the su-
perior colliculus, which is responsible for the expression of signaled
avoidance responses (Hormigo et al., 2016). An interesting hypothesis
concerns the possible role of dopaminergic inputs to the superior col-
liculus, which could contribute to the avoidance response (Essig and
Felsen, 2016). Another explanation could be the possibility that the
signaled protocol modulates the anxiety levels considering that there is
predictability and control over the harmful outcome (Sheynin et al.,
2014; Ng and Lovibond, 2017; Hormigo et al., 2019). In this line with
this thinking, it has been proposed that different mechanisms could
underlie the aversive response depending on the experimental protocol

Fig. 3. Representative photomicrographs of c-Fos staining in the basomedial complex, basolateral complex and central amygdala after the administration of (A, E, I)
saline, (B, F, J) SCH 0.25 mg/kg or (C, G, K) SCH 0.5 mg/kg in good performers. Mean density of c-Fos + cells in (D) Basomedial complex, (H) Basolateral complex
and (L) Central amygdala for good avoiders after the systemic injection of saline (N = 6), SCH 0.25 mg/kg (N = 6) or SCH 0.5 mg/kg (N = 5). Scale bars represent
400 μm in all photographs. **: p < 0.01 in comparison with the other groups.

G.F. Antunes, et al. Neurobiology of Stress 12 (2020) 100219

7



(Louilot et al., 1986; Campese et al., 2016, 2013).
Considering our microinjection target, the importance of basolateral

and central nuclei for avoidance behavior has been reported in several
papers (Werka et al., 1978; Wilensky et al., 2000; Rorick-Kehn and
Steinmetz, 2005; Lázaro-Muñoz et al., 2010; Moscarello and LeDoux,
2013; Jiao et al., 2015). Specifically, the role of the central amygdala in
avoidance has been investigated in active and passive avoidance pro-
tocol with different results. In passive avoidance CeA lesions impaired
avoidance behavior (Grossman et al., 1975; Jellestad and Bakke, 1985).
In active avoidance, Grossman et al. (1975) showed that lesions in CeA
consistently produced facilitatory effects on active avoidance, which is
supported by more recent studies (Lázaro-Muñoz et al., 2010; Choi
et al., 2010). The reason for this apparently contradictory effect could
be the technical method for performing the lesion, i.e., older studies
lesions were often large and/or not particularly specific to the amyg-
dala subnuclei; and different avoidance protocol.

The microinjection of the D1 antagonist into the basolateral and
central nuclei of the amygdala decreased the number of avoidances in
the good performers. The basolateral complex receives dopaminergic
innervation from the ventral tegmental area (Swanson, 1982; Nader
and LeDoux, 1999; de la Mora et al., 2010) and has D1 and D2 dopa-
minergic type receptors (Weiner et al., 1991; Scibilia et al., 1992; Levey
et al., 1993; Rouillard and Freeman, 1995; de la Mora et al., 2010),
while the central nucleus receives innervation from the SN (Rouillard
and Freeman, 1995) and has D1 and D2 type receptors (Weiner et al.,
1991; Scibilia et al., 1992). It has been shown that microinjection of D2
(sulpiride) or D1 (SCH23390) dopaminergic antagonist in the nucleus
accumbens reduced the number of avoidance responses (Wadenberg
et al., 1990; Wietzikoski et al., 2012). However, the administration of
sulpiride into the prefrontal cortex and dorsal striatum and SCH233990
in the dorsal striatum did not affect avoidance responses (Wadenberg
et al., 1990; Wietzikoski et al., 2012), suggesting that the

Fig. 4. Representative microinjection sites for basomedial complex, basolateral complex and central nucleus of amygdala along bregma −2.04, −2.52, −3.00 and
−3.48 mm. Each dot indicates the site of injection corresponding to poor avoiders (black dots) and good avoiders (white dots). BLA: basolateral nucleus of amygdala,
BMA: basomedial nucleus of the amygdala; Ce: central nucleus of amygdala, In: intercalated nucleus of the amygdala, LA: lateral nucleus of amygdala, LV: lateral
ventricle, Me: medial nucleus of amygdala; pir: piriform nucleus, opt: optic tract.
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microinjection site is the crucial factor. Supporting our data, de la Mora
et al. (2010) proposed that dopaminergic modulation in the central
nucleus is responsible for modulating avoidance.

The role of dopamine in acquisition is more consistent than in the
expression of the avoidance behavior. It has been shown that impair-
ment in the dopaminergic system elicits severe deficit in avoidance
acquisition (Fibiger et al., 1974; Beninger, 1983; Koob et al., 1984;
Wadenberg and Hicks, 1999; Darvas et al., 2011), while for avoidance
expression, some studies have shown that DA is involved (Wadenberg
et al., 1990; Takamatsu et al., 2015), while others have shown that it is
not (Dunn et al., 1986; Nasello and Felicio, 1990). A possible reason for
the discrepant results could be the variety of avoidance protocols used
in the literature (Nasello and Felicio, 1990; Johnson et al., 2001;
Declercq and De Houwer, 2008; Maia, 2010). Supporting this sugges-
tion, a phasic dopamine release pattern has been shown depending on
the experimental protocol (Oleson et al., 2012; Wenzel et al., 2018;
Pultorak et al., 2018). Specifically, warning signal protocols release
dopamine in comparison with unavoidable footshock which suppress
dopamine release (Overmier and Seligman, 1967; Oleson et al., 2012),
supporting the hypothesis that the protocol is an essential aspect for
explaining the variety of results concerning dopaminergic modulation.
Another confounder could be the dopaminergic role in encoding value
for the signals. It has also been shown a phasic dopaminergic pattern
depending on the value signal (Bromberg-Martin et al., 2010; Fiorillo,
2013; Gentry et al., 2016; Pultorak et al., 2018). Another possibility of

bias is the testing condition. When an animal is paired with a con-
specific that is shocked, the non-shocked rat exhibits an increase in the
DA release, reflecting the importance of the test environment in the
results (Lichtenberg et al., 2018). An acute dopaminergic reduction can
also have different results on avoidance learning varying with the age of
the animals that were used (Kelm & Boettiger, 2015). A last interesting
possibility is that dopamine has different roles in avoidance behavior
considering the concepts of safety, opponency and controllability (Huys
and Dayan, 2009; Lloyd and Dayan, 2016).

A possible explanation for the differential role of D1 and D2 in poor
and good performers could be due to the bidirectional modulatory role
of those subtypes of receptors. The opposite modulations of D1 and D2
receptor signaling have already been shown in previous publication
(Moustafa et al., 2008; Doll et al., 2011; Cox et al., 2015; Nguyen et al.,
2019). There are bidirectional differences in D1 and D2 concerning
transduction mechanisms. In the central nervous system, the activation
of D2 receptors is through the mediation of G (βγ) proteins by in-
hibiting adenylate cyclase and reducing the intracellular cyclic adeno-
sine monophosphate (cAMP) concentration while D1-receptor activa-
tion is linked to an increase in cyclic adenosine monophosphate and the
activation of phospholipase C (Onali et al., 1985; Undie and Friedman,
1990; Gingrich and Caron, 1993, Jin et al., 2001; Neve et al., 2004; de
la Mora et al., 2010). A bidirectional modulatory role for dopamine in
avoidance through segregated D1 and D2 cortico-striatal pathways has
also been proposed (Cox et al., 2014).

Fig. 5. Number of avoidance performed by good performers on the 7th day of training (basal) and on the 8th day of training after the administration of saline, SCH
0.3 μL, sulpiride 0.2 μL and by poor avoiders on the 7th day of training (basal) and on the 8th day of training after the administration of saline, SKF 0.4 μL, or
quinpirole 0.1 μL into the (A) basomedial complex, (B) basolateral complex or (C) central nucleus of amygdala. Percentage of time spent in freezing behavior
performed by good performers on the 7th day of training (basal) and on the 8th day of training after the administration of saline, SCH 0.3 μL, sulpiride 0.2 μL and by
poor avoiders on the 7th day of training (basal) and on the 8th day of training after the administration of saline, SKF 0.4 μL, or quinpirole 0.1 μL into the (D)
basomedial complex, (E) basolateral complex or (F) central nucleus of the amygdala. Total travel distance showed by good performers after the administration of
saline, SCH 0.3 μL, sulpiride 0.2 μL and by the poor avoiders on the 7th day of training (basal) and on the 8th day of training after the administration of saline, SKF
0.4 μL, or quinpirole 0.1 μL into the (G) basomedial complex, (H) basolateral complex or (I) central nucleus of amygdala. Group good avoiders: saline (N = 9), SCH
0.3 μL (basomedial N = 6, basolateral N = 9, central N = 9), sulpiride 0.2 μL (basomedial N = 5, basolateral N = 6, central N = 6). Group poor avoiders: saline
(N = 9), SKF 0.4 μL (basomedial N = 4, basolateral N = 9, central N = 9) or quinpirole 0.1 μL (basomedial N = 4, basolateral N = 9, central N = 9). *: p < 0.05 in
comparison with the corresponding 7th day.
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Dopaminergic neurons are phasically activated by alerting signals
(Bromberg-Martin et al., 2010), and dysfunction in this system could
contribute to an abnormal processing of environment cues in the ba-
solateral and central nucleus of the amygdala, leading to an impairment
in the avoidance response. In this sense, our data support the hypothesis
(LeDoux et al., 2017) that the dopaminergic system could be considered
a potential target for pharmacological therapy.

Some lines of data point to a competition between the production of
the freezing response that directly opposes avoidance (Wilensky et al.,
2006; Ciocchi et al., 2010; Haubensak et al., 2010; Choi et al., 2010;
Lázaro-Muñoz et al., 2010). Our data regarding pharmacological in-
tervention did not show this pattern which could be due to the varia-
bility in freezing assessments, such that in our protocol was evaluated at
the beginning of the test, but in other paradigms, was evaluated

Fig. 6. Data are reported as the means ± SEM. (A). Number of active avoidance responses in good and poor performers across training sessions. (B). Percentage of
time spent in freezing behavior along sessions. (C). Quantification of dopamine (ng/mg of tissue) in the right, left and both hemispheres considering control, poor and
good performers. (D). Quantification of 3,4-dihydroxyphenylacetic acid - DOPAC (ng/mg of tissue) in the right, left and both hemispheres considering control, poor
and good performers. (E). Quantification of homovanillic acid - HVA (ng/mg of tissue) in the right, left and both hemispheres considering control, poor and good
performers. (F). Quantification of dopamine turnover of DOPAC and HVA in the right, left and both hemispheres considering control, poor and good performers.
Poor: poor performers, Good: good performers, Control: control group. DOPAC/DA: turnover rate for DOPAC; HVA/DA: turnover rate for HVA, right: right hemi-
sphere, left: left hemisphere, total: right and left hemisphere. For the behavioral data: control (N = 5), good (N = 13) and poor (N = 15). For the HPLC data: control
(N = 5), good (N = 8) and poor (N = 10) and **: p < 0.01 in comparison with poor performers, ***: p < 0.001 in comparison with poor performers, #: p < 0.05
in comparison with good and poor performers, ##: p < 0.01 in comparison with good and poor performers; ###: p < 0.001 in comparison with good and poor
performers.
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throughout the session (Choi et al., 2010; Ciocchi et al., 2010). Our data
is supported by the suggestion that fear levels are not crucial for af-
fecting avoidance (Grossman et al., 1975).

Focusing on the intrinsic difference between groups, we consider
that the maladaptive behavior shown by the poor performers could be
attributed to the dopaminergic systems. Our data showed that good
performers have a decreased DOPAC content in the amygdala without
affecting DA levels and dopaminergic turnover. These data are sup-
ported by Csillag (1999), who compared brain samples of control and
trained animals and showed that there is no difference in the avoidance
task considering dopamine and dopamine turnover rate. Although
quantitatively DA levels are the same, the mechanism of the adaptive
compensatory response may be changed in these animals, specifically
those related to the availability of dopaminergic receptors and the
pattern of phosphorylation of the D1 and D2 receptors (Carvalho et al.,
2005; Frederick et al., 2015; Yapo et al., 2017). Considering the HVA
and DOPAC results, our data suggest that timing for metabolization

could be responsible for the intrinsic differences between poor and good
performers. To support this suggestion, Heffner et al. (1984) showed
that dopaminergic metabolites are quickly eliminated during the
learning process.

Other data supporting intrinsic differences could be observed in the
increase in the volume and quantification of TH + cells of the SN,
ventral tegmental area and locus coeruleus, as shown by the good
performers that were positively correlated with the avoidance behavior.
The VTA and SN contain DA neurons (Watabe-Uchida et al., 2012; Beier
et al., 2015; Lerner et al., 2015; Menegas et al., 2015). The reduction in
the pattern of TH neurons in the SN can lead to impairments in memory
and, learning (Moreira et al., 2012) and in avoidance tasks (Díaz-Véliz
et al., 2002). Additionally, monitoring the substantia nigra and VTA
volume could be an index of cognitive status, considering that their
volume has been considered a parameter of the progression of neuro-
degenerative diseases (Chen et al., 2014; De Marco and Venneri, 2018;
D'Amelio et al., 2018). Additionally, the dopaminergic system controls

Fig. 7. Representative photomicrographs of
(A) the Amygdala nuclei, (C) Substantia
Nigra, (E) Ventral Tegmental Area, (G)
Locus Coeruleus. Data are reported as the
means ± SEM. Volumetric estimates in (B)
the Amygdala nuclei, (D) Substantia nigra,
(F) Ventral Tegmental Area, (H) Locus
Coeruleus considering the right and left
hemisphere and the total volume con-
sidering control, poor and good performers.
BLA: basolateral nucleus of amygdala; BMA:
basomedial nucleus of amygdala; Ce: cen-
tral nucleus of amygdala, LC: locus coer-
uleus; Me: medial nucleus of amygdala; SN:
substantia nigra; VTA: ventral tegmental
area. Control (N = 3), Good (N = 5), Poor
(N = 5). Scale bars represent 400 μm in all
photographs. *: p < 0.05 in comparison
with poor performers; **: p < 0.01 in
comparison with poor performers, ***:
p < 0.001 in comparison with poor per-
formers.
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motivation, and electrical stimulation of the VTA has been suggested as
an effective target for depressive disorders (Yadid and Friedman, 2008;
Friedman et al., 2009; 2012; Gazit et al., 2015).

The LC is the main noradrenergic nucleus (Schwarz and Luo, 2015;
Feinstein et al., 2016) that has been suggested to be responsible for the
elaboration of the avoidance response (Shelkar et al., 2016; Clewett
et al., 2018) probably due to the locus coeruleus-amygdala circuitry
(Sabban et al., 2018). Clarifying the elaboration of the avoidance, intra-
LC injections of the putative neurotransmitter agmatine increases the
inhibitory avoidance mediated by alfa2-adrenoreceptors and nitric
oxide (Shelkar et al., 2016). Further, approximately a month after the
inhibitory avoidance test, there is an increase in noradrenergic re-
ceptors, neuropeptide Y receptors, corticotropin-releasing hormone

receptors and the endocannabinoid system in the LC and amygdala
(Clewett et al., 2018). Good performers present a higher number of TH
neurons than poor performers in the LC, which could be supported by a
study that showed that injury of the noradrenergic system impairs in-
strumental avoidance probably through the loss of cells in the LC
(Radwanska et al., 2010). Another possible interpretation could be that
TH + cells in the LC may reflect signaling of a different catecholamine
instead of only noradrenergic regulation. Supporting this hypothesis,
there is close interaction between the dopaminergic and noradrenergic
systems (Antelman and Caggiula, 1977; Lisieski et al., 2019; Zerbi et al.,
2019), as LC stimulation induces a concomitant release of DA and NA
(Devoto et al., 2001; 2003a, 2003b, 2004, 2005) and there is an ana-
tomically specific connectomic fingerprint of LC with dopamine

Fig. 8. Data are reported as the means ± SEM. TH positive cells/mm2 in (A) Substantia nigra, (C) Ventral Tegmental Area, (E) Locus Coeruleus considering the right
and left hemisphere and the total volume considering control, poor and good performers. Correlation data between the number of avoidance and tyrosine hydro-
xylase-positive cells/mm2 in the (B) Substantia Nigra, (D) Ventral Tegmental Area and (E) Locus Coeruleus considering poor and good performers. Control (N = 3),
Good (N = 5), Poor (N = 5). LC: locus coeruleus; SN: substantia nigra; VTA: ventral tegmental area. Scale bars represent 400 μm in all photographs. *: p < 0.05 in
comparison with poor performers; **: p < 0.01 in comparison with poor performers, ***: p < 0.001 in comparison with poor performers, #: P < 0.05 in
comparison with all groups.
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receptors (Zerbi et al., 2019).
In the same line of thinking, previous works from other paradigms

such as reversal learning, lever press, the decision-making task and,
instrumental learning support the assumption that the dopamine system
is crucial for modulating individual differences (Tomie et al., 2000;
Cheng and Feenstra, 2006; Randall et al., 2012; Vollbrecht et al., 2015;
Klanker et al., 2015; Groman et al., 2019).

Although volumetric changes in the LC could not be directly cor-
related with function (Mounton et al., 1984), it could represent a cog-
nitive status (Theofilas et al., 2017) because there is a decrease in LC
volume in neurodegenerative diseases (Chen et al., 2014; Theofilas
et al., 2017).

The amygdala is involved in the modulation of avoidance responses
(LeDoux, 2000; Schlund and Cataldo, 2010; Lázaro-Muñoz et al., 2010;
Martinez et al., 2013; Ramirez et al., 2015; Ardeshiri et al., 2017; Korn
et al., 2017). Our data are in contrast with a previous published paper
(Rio-Álamos et al., 2017) that showed that low avoider rats had greater
amygdala volume in comparison with high avoider rats. A possible
reason for this difference could be the use of high- and low-avoidance
animals inbred strains, which were originally selected and bred in ac-
cordance with their performance in the avoidance task, as previously
suggested by our research group (de Oliveira et al., 2016). In this same
line of thinking, Mozhui et al. (2007) quantified the basolateral
amygdala across 35 inbred lines, showing huge variability in volume
and cell populations between strains. Additionally, Sultana et al. (2019)
showed that inbred strains exhibited contrasting characteristic beha-
viors and differences in genetic background.

Taken together, our data have provided evidence for a dopami-
nergic signature of avoidance performers, emphasizing the role of dis-
tinct dopaminergic receptors in individual differences in avoidance
behavior based on pharmacological, immunohistochemical, neuro-
chemical and volumetric analyses.

Regarding technical limitations, the invasiveness of the guide can-
nula and the microinjection procedure, and the impossibility to perform
a drug-free test on the day 9 should be considered. Additionally, the
pattern of drug spread was not evaluated and there were no offsite
controls; however, the drug and dose used was based on previous pa-
pers that targeted the same structure. Further, we did not infuse the
agonist in the good performers or the antagonist in the poor performers
as counterproof and to minimize the drug effects.

5. Conclusion

The results of our study provide a better understanding of the role of
the dopaminergic system in the execution of avoidance behavior.
Specifically, good performers have DA patterns in the amygdala, SN,
VTA and LC that are intrinsically different from those of poor perfor-
mers, and it could be possible to convert animals from good to poor
performers through manipulation of D1 and D2 receptors. In the future,
we expect that our results will provide insights into the treatment of
psychiatric disorders.
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