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Abstract: The endosymbiotic Wolbachia bacteria frequently cause cytoplasmic incompatibility (CI)
in their insect hosts, where Wolbachia-infected males cross with uninfected females, leading to no
or fewer progenies, indicating a paternal modification by Wolbachia. Recent studies have identified
a Wolbachia protein, CidB, containing a DUB (deubiquitylating enzyme) domain, which can be
loaded into host sperm nuclei and involved in CI, though the DUB activity is not necessary for CI in
Drosophila melanogaster. To investigate whether and how Wolbachia affect protein ubiquitination in
testes of male hosts and are thus involved in male fertility, we compared the protein and ubiquitinated
protein expressions in D. melanogaster testes with and without Wolbachia. A total of 643 differentially
expressed proteins (DEPs) and 309 differentially expressed ubiquitinated proteins (DEUPs) were
identified to have at least a 1.5-fold change with a p-value of <0.05. Many DEPs were enriched in
metabolic pathway, ribosome, RNA transport, and post-translational protein modification pathways.
Many DEUPs were involved in metabolism, ribosome, and proteasome pathways. Notably, 98.1%
DEUPs were downregulated in the presence of Wolbachia. Four genes coding for DEUPs in ubiquitin
proteasome pathways were knocked down, respectively, in Wolbachia-free fly testes. Among them,
Rpn6 and Rpn7 knockdown caused male sterility, with no mature sperm in seminal vesicles. These
results reveal deubiquitylating effects induced by Wolbachia infection, suggesting that Wolbachia can
widely deubiquitinate proteins that have crucial functions in male fertility of their hosts, but are not
involved in CI. Our data provide new insights into the regulatory mechanisms of endosymbiont/host
interactions and male fertility.
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1. Introduction

Wolbachia is a genus of endosymbionts that infect various arthropods and nematodes.
The most common phenotype in insects induced by Wolbachia is cytoplasmic incompatibility
(CI), where no or fewer progenies are produced when Wolbachia-infected males mate with
uninfected females [1,2]. Recent studies have demonstrated that the host sperms are
modified by Wolbachia Cif (CI factor) proteins and thus contribute to CI-defining embryonic
lethality [3,4].

The ubiquitin proteasome pathway (UPP) is one of the most important proteolytic
pathways in eukaryotic cells. It is involved in various biological processes, including cell
cycle process, apoptosis, transcriptional regulation, DNA repair, and immune response [5].
Ubiquitination refers to a complex process where ubiquitin is first activated by ubiquitin-
activating enzymes (E1), then transferred to ubiquitin-conjugating enzymes (E2), and finally
linked to the target protein’s Lys residues by ubiquitin ligase enzymes (E3). Usually, the
target proteins ligated to polyubiquitin chains at K48 lysine residues are transported to
proteasome for proteolysis [5,6]. Before targeted proteins enter the proteolytic core of pro-
teasomes, the ubiquitin should be removed normally by deubiquitinating enzymes (DUBs).
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Ubiquitin was first found in the testes of trout and mammals [7], implying its essential
role in male reproduction. A growing number of studies revealed that UPP plays a vital
regulatory role in spermatogenesis [7–10]. Animal spermatogenesis is a complex process,
including the maintaining and differentiation of germ stem cells (GSCs), mitosis, meiosis,
and a complicated metamorphosis from round spermatids to unique morphology of mature
sperms, which is called spermiogenesis. During spermiogenesis in Drosophila melanogaster,
the round spermatid undergoes nuclear condensation, elongation of flagellar axoneme,
mitochondrial morphogenesis, and extrusion of the excess cytoplasm [11]. Many of these
processes are involved in UPP. Mutation of the polyubiquitin gene Ubi-p63E in Drosophila
resulted in arrest at the G2/M transition of the first meiotic division [12]. During mouse
spermiogenesis, H2A/H2B ubiquitination after meiosis may destabilize nucleosomes, and
thus facilitate histone-to-protamine replacement [13,14]. Rnf8 E3 ubiquitin ligase can
catalyze the ubiquitination of H2A and bind to H4K16 acetyltransferase MOF (males absent
of the first) to promote H4 acetylation in mice [15]. Impairments of RNF8 and MOF-
dependent histone ubiquitination and acetylation due to the absence of phosphorylated
GRTH (Gonadotropin-regulated testicular RNA helicase) caused arrest of spermatogenesis
at the round spermatid stage with defects in histone replacement, chromatin condensation
and spermatid elongation [14,16]. In Drosophila, a lack of Archipelago, a member of the E3
ligase complex, also resulted in defects in nuclear shaping [17].

Studies have revealed that CidB (CifB), a Wolbachia protein including two nuclease
domains and a DUB (deubiquitylating enzyme) domain, is deposited in maturing sperm
and may act as a kind of “toxin” factor to poison the embryos when these sperm fertilize
uninfected eggs [3]. A single mutation within the DUB domain of CidB reduced both DUB
efficiency and CI strength [18]. However, a recent study showed that the inactivation of the
deubiquitylase activity of CidB did not decrease the ability to induce CI-like phenotype
in Drosophila. The deubiquitylase activity of CidB could contribute to the localization or
stabilization of CidB in the spermatid after histone-to-protamine transition and could thus
be involved in CI [3]. Shropshire et al. demonstrated that cifB expression could not explain
age-dependent CI-strength variation. The expression level of cifB in testes increases as
wMel-infected males’ age, though CI strength declines [19]. By comparative proteomics of
the spermatheca and seminal receptacle (SSR, containing sperm proteins and seminal fluid
proteins from their mates) from uninfected females shortly after mating with Wolbachia-
infected or uninfected males, we previously identified several proteins in UPP that were
significantly downregulated due to Wolbachia infection [20], consistent with the role of
UPP in Wolbachia-induced modification in host sperms. These indicate that the role of
deubiquitylase activity of Wolbachia proteins in CI remains controversial.

To investigate whether and how Wolbachia modifies host sperms through UPP, we
compared the global profiling of the proteome and ubiquitome of Wolbachia-infected (DWT)
and uninfected D. melanogaster testes (DTT). Surprisingly, 98.1% of differentially expressed
ubiquitinated proteins (DEUPs) were downregulated in the presence of Wolbachia, sup-
porting the deubiquitinating function of Wolbachia proteins. RNAi analysis demonstrated
that some of the DEUPs were essential for Drosophila spermatogenesis. Our data provide
not only new evidences supporting the deubiquitinating role of Wolbachia proteins in host
testes, but also an abundant dataset for further studies on their functions in male fertility
of animals.

2. Results
2.1. Proteomic Profiles of Wolbachia-Infected and Uninfected Drosophila Testes

To investigate the protein background of the testes of D. melanogaster, and the effect of
Wolbachia infection on protein expressions in fly testes, we first performed LC-MS/MS to
identify total proteins in the testis of 1-day-old (1 d) flies with or without Wolbachia. In total,
1038 proteins and 1185 proteins were quantified in DWT and DTT, respectively (Figure 1A,
Table S1).
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2.2. Analysis of Differentially Expressed Proteins between DWT and DTT 
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Figure 1. The proteome analysis of DWT vs. DTT. (A) Venn diagram showing overlaps of protein
in DWT and DTT. (B) Gene ontology enrichment analysis based on biological process (GOBP) of
proteins that were downregulated in the presence of Wolbachia. (C) KOBAS pathway analysis of
proteins that were downregulated due to Wolbachia infection. (D) GOBP analysis of proteins that
were upregulated in the presence of Wolbachia. (E) KOBAS pathway analysis of proteins that were
upregulated due to Wolbachia infection. DWT: Drosophila (Wolbachia-infected) testes; DTT: Drosophila
(treated with tetracycline, Wolbachia-free) testes. (C,E): The color indicates the difference in protein
counts. The redder the color, the more the count; the greener the color, the less the count.

2.2. Analysis of Differentially Expressed Proteins between DWT and DTT

Among the quantified common proteins in both the DWT and DTT groups, differen-
tially expressed proteins (DEPs) were selected with the criteria of a fold change of ≥1.5 and
a p-value of <0.05. On the base of these criteria, 148 proteins were downregulated and
only 5 proteins were upregulated in DWT relative to DTT. Furthermore, 320 proteins were
specifically detected in DTT, and 170 were specifically in DWT.

Based on the Gene Ontology (GO) biological process (BP), we found that, among
the 468 proteins that were not detected and downregulated (320 + 148) in DWT relative
to DTT (integrally regarded as downregulated thereafter), the largest group of proteins
was related to peptide biosynthetic process, followed by homeostatic process, purine-
containing compound metabolic process, generation of precursor metabolites and energy,
and ribonucleoprotein complex biogenesis. Proteins involved in regulation of catabolic
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process, regulation of protein stability, and mitochondrial transport were also significantly
enriched (Figure 1B). Pathway enrichment of the downregulated proteins showed that
many proteins were involved in metabolic pathways, ribosome, oxidative phosphorylation,
RNA transport, and citrate cycle (Figure 1C).

Among the proteins that were specifically identified and upregulated (170 + 5) in DWT
relative to DTT (integrally regarded as upregulated thereafter), the majority of proteins were
involved in peptide biosynthetic process, organic acid metabolic process, small molecule
biosynthetic process, purine-containing compound metabolic process, and generation of
precursor metabolites and energy (Figure 1D). Pathway analyses of these proteins exhibited
that metabolic pathways, post-translational protein modification, protein processing in
endoplasmic reticulum, translation, RNA transport, and proteasome were significantly
enriched (Figure 1E).

To explore how the DEPs might interact with diverse pathways, we constructed the
protein–protein interaction (PPI) networks that were involved in the ubiquitin-proteasome
pathway and in male fertility (Figure 2). A network containing 24 DEPs, including
14 downregulated and 10 upregulated proteins, was retrieved to be associated with UPP,
including subunits of the regulatory particle lid of proteasome Rpn1, Rpn2, Rpn12R, and
subunits of the core particle of proteasome Prosβ6 (Figure 2A). A large network consisting
of 57 DEPs, including 45 downregulated and 12 upregulated proteins, was constructed to be
associated with male fertility (Figure 2B). bgcn, CadN, Nedd8, and Tctp were all involved
in testis germline stem cell maintenance and differentiation, while loopin-1, S-Lap2, S-Lap3,
and S-Lap8 were all in the major mitochondrial derivative and related to the formation of
sperm nebenkern.
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Figure 2. Protein–protein interaction (PPI) analyses of differentially expressed proteins (DEPs)
between Wolbachia-infected and uninfected testes of D. melanogaster. (A) PPI analyses of DEPs that
were involved in the ubiquitin-proteasome pathway. (B) PPI analyses of DEPs that were associated
with male fertility.

2.3. Proteome-Wide Analysis of Ubiquitinated Proteins in DWT and DTT

To investigate the global effect of Wolbachia infection on protein ubiquitination in fly
testes and thus on male fertility, we performed proteome-wide analysis of lysine ubiquiti-
nation sites and proteins in DWT and DTT.

A total of 471 lysine ubiquitination sites were identified in 356 ubiquitinated peptides,
corresponding to 600 lysine ubiquitinated proteins (Figure 3A, Table S1). The length of most
ubiquitinated peptides ranged from 6 to 47 amino acids. Among these 356 ubiquitinated
peptides, most (275, 77.25%) of them contained only a single ubiquitination site, while the
others carried multiple ubiquitination sites, including 8 (2.25%) with five or more sites
(Figure 3B). Hsc70-4 was the most intensely ubiquitinated protein, having 8 different lysine
ubiquitination sites (Figure 3C).
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Figure 3. Identification of lysine ubiquitination sites in DTT and DWT. (A) Venn diagram showing
overlaps of proteins in UB-DTT and UB-DWT. (B) Distribution of the number of lysine ubiquitination
sites in the identified ubiquitinated peptides. (C) Eight lysine ubiquitination sites (red K) present in
HSC70-4 protein. The underline sequences indicate the detected peptides. The red “K” is the lysine
ubiquitination site.

2.4. Analysis of Differentially Expressed Ubiquitinated Proteins (DEUPs) between DTT and DWT

When the ubiquitome quantification results were normalized to protein amount in
each sample, we found that 14 proteins were significantly downregulated but no proteins
were significantly upregulated in DWT relative to DTT. In addition, 289 ubiquitinated
proteins were specifically identified in DTT, and six were specifically in DWT. Among the
ubiquitinated proteins that were not expressed and downregulated (289 + 14) in DWT
relative to DTT (integrally regarded as downregulated thereafter in DWT, i.e., specifically
or highly expressed in DTT), a large group of ubiquitinated proteins for BP classification
were related to the carboxylic acid metabolic process, generation of precursor metabolites
and energy, cytoplasmic translation, and proteasome-mediated ubiquitin-dependent pro-
tein catabolic process. Proteins involved in chromatin assembly or disassembly were also
significantly enriched (Figure 4A). KOBAS pathway analyses revealed that many downreg-
ulated ubiquitinated proteins were highly enriched in carbon metabolism, ribosome, and
proteasome pathways (Figure 4B).
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Figure 4. Analysis of downregulated ubiquitinated proteins in the testis of D. melanogaster due to
Wolbachia infection. (A) Gene ontology enrichment analysis based on biological process. (B) KOBAS
pathway analysis. The color indicates the difference in protein counts. The redder the color, the more
the count; the greener the color, the less the count.

There were only six ubiquitinated proteins that were specifically identified in DWT
(regarded as upregulated thereafter), including fan, Atpalpha, ND-20, SH3PX1, G6P, and
Cse1. GOBP analyses showed that fan was involved in sperm individualization [21].
Atpalpha and ND-20 were associated with proton transmembrane transport [22] and
determination of adult lifespan [23]. G6P was related to gluconeogenesis [24]. Cse1 was
involved in protein export from the nucleus [25]. ND-20, fan, and G6P were significantly
enriched in the metabolism pathway.

A network containing 24 DEUPs was involved in the ubiquitin–proteasome pathway,
including ubiquitin-activating enzyme Uba1, ubiquitin-conjugating enzyme Ubc4, and
many subunits of the proteasome, such as Rpn1, Rpn7, and Prosα7, Prosβ6. All of them
were significantly downregulated in the presence of Wolbachia (Figure 5A). A large network
containing 46 DEUPs was related to male fertility (Figure 5B). For example, bel has been
shown to play an essential role in male germline stem cell maintenance and division in
Drosophila [26]. S-Lap5, S-Lap7, and S-Lap8 were all the main components of the major
mitochondrial derivative (eventually form the nebenkern) of sperms [27,28]. These suggest
that UPP and pathways involved in male fertility displayed dense protein interaction
networks which may lead to their coordination and cooperation in male reproduction.
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2.5. The Correlation Analysis between DEPs and DEUPs

To assay the correlation between DEPs and DEUPs, 468 downregulated DEPs and
303 downregulated DEUPs were used to graph a Venn diagram. As shown as Figure 6A,
81 downregulated proteins were overlapped, including 13 proteins that are ribosomal
proteins involved in protein synthesis, such as RpL4, and RpS27, and 4 proteins that are
in the UPP, such as proteasome subunits Rpn1, Rpn2, and Rpn12R. This indicates that
the pathways involved in protein synthesis and degradation through UPP in fly testis are
notably affected by Wolbachia infection.
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ubiquitinated proteins. The color indicates the difference in protein counts. The redder the color, the
more the count; the greener the color, the less the count. (C) Venn diagram of the correlation numbers
between upregulated proteins and upregulated ubiquitinated proteins.

However, 222 out of a total 303 DEUPs (66.67%) were not found in the DEPs (Figure 6A).
For example, bol (boule), which plays an essential role in spermatogenesis for meiosis and
spermatid differentiation [29,30], was not identified in DWT (regarded as downregulated)
in ubiquitination expression, while there was no significant change in the protein level
(1.18-fold) between DWT and DTT. On the other hand, 387 out of 468 (82.69%) DEPs
were not found in DEUPs. For instance, the S-Lap2 was significantly downregulated
(0.35-fold, p < 0.05) in the protein level in the presence of Wolbachia, but did not show a
difference in DEUPs (0.68-fold, p > 0.05). KOBAS analyses of these overlapped 81 proteins
showed that most of the proteins were involved in metabolic pathways, ribosome, oxidative
phosphorylation, and the proteasome pathway (Figure 6B).

Nevertheless, only three upregulated proteins were overlapped between DEPs and
DEUPs, including Cse1, ND-20, and SH3PX1 (Figure 6C). Ubiquitinated Atpalpha, fan, and
G6P were all specifically identified in DWT (regarded as upregulated), while in the protein
level Atpalpha and fan were not significantly different between DWT and DTT, G6P was
downregulated (0.40-fold) in the presence of Wolbachia though the p-value was > 0.05.

2.6. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Validation and
Screening

Based on a larger difference in expression in the proteome and ubiquitome analyses,
12 protein coding genes were selected for qRT-PCR for further screening candidates in-
volved in male fertility. As shown in Figure 7, nine genes including Rpn12R, His2Av, Rpn7,
Prosα7, CSN4, Phb2, Prosβ1, Cul2, and CSN5 were all significantly downregulated due to
Wolbachia infection in the testes of D. melanogaster, exhibiting similar changes as in the mass
spectrometric analyses. Both Rpt4R and Rpn6 are important UPP members and exhibited
lower expression levels in proteomic analyses in DWT than in DTT, despite a higher p-value
(>0.05). Hsc70-4 had the most ubiquitination sites (Figure 3C), and showed much lower
expression levels (0.19-fold) in ubiquitome analyses in the presence of Wolbachia, although
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with a p > 0.05. Therefore, the expressions of these three protein coding genes were also
measured by qRT-PCR, and the result showed that these three genes were significantly
downregulated in fly testes by Wolbachia infection (Figure 7).
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2.7. Functional Analysis of Candidates in Male Fertility

We next used gene knockdown to test some genes coding for four subunits of pro-
teasomes, including Rpn6, Rpn7, Rpt4R, and Prosα7, for their functions in male fertility.
qRT-PCR analyses showed that these genes were all successfully knocked down driven by
bamGal4 in fly testes (Figure 8A).

Then, the 1 d gene knockdown males were selected to respectively cross with Wolbachia-
free virgin females. The hatch rates of eggs derived from these crosses were all significantly
lower than that from the control group (Figure 8B). Especially, the Rpn6 and Rpn7 knock-
down males were completely sterile, the egg hatch rate from these two cross groups was 0
(Figure 8B).

To examine whether the knockdown of Rpn6 and Rpn7 in fly testes damaged sper-
matogenesis, thus causing male sterility, we dissected Rpn6 or Rpn7 knockdown fly testes,
respectively, and stained them with Vasa antibody and DAPI. We observed that the testis
from Rpn6 knockdown males did not show visible differences in the whole appearance
when compared to the control testes (Figure 8C,G). In the head region, the control testes
contained developing germ cells with different sizes (Figure 8D), while in the Rpn6 knock-
down testes, we observed some tumor-like cysts containing many small cells that could
not be stained by Vasa antibody (arrows in Figure 8H). DAPI staining showed that in the
base of the control testes, the spermatid nuclei were tightly clustered (arrows in Figure 8E).
In contrast, the spermatid nuclei in Rpn6 knockdown testes were dissociated from the
bundles, with some scattered around individually, and some accumulated together loosely
(arrows in Figure 8I). When observing carefully, we found that the nuclei of the spermatid
were less condensed (Figure 8I) than those in the controls (Figure 8E). Finally, the seminal
vesicle was completely empty (Figure 8J), in contrast to the vesicle full of mature sperms
with needle-like heads in the control (Figure 8F). Similarly, the seminal vesicle of Rpn7
knockdown testes was also empty (Figure 8N). In addition, Rpn7 knockdown testes looked
smaller than the controls (Figure 8C,K), and the defects in germ cell developments occurred
earlier since no big spermatocytes and spermatids appeared at all (Figure 8L,M).
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Figure 8. Knockdown of candidate genes in the testis of D. melanogaster impaired male fertility.
(A) qRT-PCR analyses showed that the four genes were successfully knocked down driven by bam-
Gal4 in fly testes. (B) Hatch rates of eggs derived from the crosses with the four gene knockdown
males. bamGal4 > w– males were used as control. ** p < 0.01; *** p < 0.001; **** p < 0.0001. (C–N) Fly
testes stained with Vasa antibody and DAPI. (C–F) Control testis; (G–J) Rpn6 knockdown testis;
(K–N) Rpn7 knockdown testis. (C,G,K) Whole images of testes; (D,H,L) Apical regions of fly testes.
Germ cells were stained with Vasa antibody (red); Nuclei were stained with DAPI (blue). (E) The
spermatid nuclei were tightly bundled (white arrows) in the base region of the control testis, but the
spermatid nuclei were scattered or disorganized (white arrows) in Rpn6 knockdown testis (I) or were
not observed in Rpn7 knockdown testis (M). DAPI staining shows the seminal vesicle full of mature
sperms with needle-like nuclei in control testis (F) or the seminal vesicles with no sperms in Rpn6 or
Rpn7 knockdown testes (J,N). SV: Seminal vesicle. (D,E,H,I,L,M) correspond to the dotted box areas
in (C,G,K), respectively. Dotted frames in (D,L) represent the 16-cell stage of germ cells. Scale bars:
100 µm (C,G,K); 25 µm (D,F,H,J,L,N); 12.5 µm (E,I,M).

To investigate whether these genes were involved in CI induced by Wolbachia, we
used Wolbachia-infected females (Dmel wMel) to cross with the gene knockdown males.
The results showed that the Wolbachia-infected females could not rescue Rpn6 or Rpn7
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knockdown in male flies, the egg hatch rates were still both 0%. The hatch rate of eggs from
the cross group with Prosalpha7 knockdown males and Dmel wMel females increased only
slightly from 56.43% to 67.45%, although the statistical analyses showed that the difference
was significant (Table S2). This indicates that these genes are essential for male fertility but
they are not involved in Wolbachia-induced CI.

3. Discussion

In this study, we provide a first comprehensive quantitative analysis of the protein
and protein ubiquitination differences between DWT and DTT. The current workflow
led us to identify 643 DEPs, including 468 downregulated and 175 upregulated proteins,
and 309 DEUPs, with 303 downregulated and 6 upregulated ubiquitinated proteins in the
presence of Wolbachia. Many of them are involved in UPP and male fertility. Over 98% of
DEUPs were downregulated due to Wolbachia infection, supporting a deubiquitinating role
of proteins provided by Wolbachia.

Most proteins in the testis of D. melanogaster were downregulated by Wolbachia. We
have previously identified differentially expressed proteins in SSR of uninfected females
mated with 1 d Wolbachia-infected and uninfected male flies, and found that most (71.08%)
of them were downregulated [20]. In the present study, we identified 643 DEPs, and again,
most (72.78%) were downregulated due to Wolbachia infection. Among those significantly
changed proteins, many of them are involved in metabolic processes, which is similar to
the results observed in our previous study [20,31] and reports from other groups [32,33].
In studies on human, mouse, boar, and rainbow trout sperm proteome, many sperm pro-
teins were also related to the metabolic processes [34–37]. Many DEGs were involved in
ribosome and proteasome pathways. RpL22 and RpL22-like have been demonstrated to
be essential for spermatogenesis [38,39]. Proteasome has been shown to play a critical
role in spermatogenesis and fertilization [9,40,41]. Around a third of the 32 proteasome
subunits have evolved to be testis-specific, and been detected to predominantly localize to
the nucleus of mature, motile sperm [42,43]. Mutation of these testis-specific proteasome
subunits resulted in severe defects in meiosis, nuclear maturation, and sperm individu-
alization [41,43]. Yu et al. have demonstrated that protein synthesis and degradation are
essential to regulate GSC self-renewal or differentiation [44]. This is likely because, during
spermatogenesis, protein homeostasis should be precisely controlled to ensure the functions
of certain proteins at a definite stage and the elimination of them after this stage, and finally,
the sperm must accumulate some proteins preparing for the generation of enough energy
for upcoming strenuous movement and fertilization. Furthermore, sperm mitochondria are
normally labelled through ubiquitination during spermatogenesis [45] and thus marked
for elimination by the proteasome complex after entering the egg. Prohibitins have been
demonstrated to play a role in mtDNA inheritance [46] and are targets for ubiquitina-
tion in sperm mitochondria [47]. The species-specific expression differences of prohibitin
coding genes have been suggested to be involved in reproductive isolation [48]. In this
study, Phb2 was significantly downregulated by Wolbachia infection. In CI embryos, the
Wolbachia-modified sperm cannot normally develop when entering an uninfected egg,
which has been suggested to contribute to reproductive isolation in insects [1,49–51]. Hence,
these differentially expressed proteasome subunits and prohibitin might play a part in CI
induced by Wolbachia. Future analyses will be needed to disentangle the contributions of
eliminating paternal mitochondria (nebenkern) to CI induced by Wolbachia.

The ubiquitome difference between DWT and DTT exhibits a deubiquitinating role
of proteins from Wolbachia. Here, we globally compared the ubiquitome of DWT and
DTT. We identified many more downregulated ubiquitinated proteins than upregulated
proteins (303 vs. 6) due to Wolbachia infection. Notably, there were up to 289 ubiquitinated
proteins that were specifically identified in DTT, but could not be detected in DWT, in-
cluding His2Av and His2B. H2A/H2B ubiquitination is required for histone-to-protamine
replacement during sperm nuclear condensation [11]. A recent study has suggested that
the deubiquitylase activity of CidB could contribute to the localization or stabilization of
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CidB in the spermatid after histone-to-protamine transition [3]. Expressions of CifA and
CifB proteins cause abnormal histone retention and protamine deficiency in host sperms,
thus modifying paternal genome integrity, and result in embryonic lethality [4]. There-
fore, our result reveals the deubiquitinating effects of Wolbachia proteins in the testis of
D. melanogaster, and may thus damage male fertility. Furthermore, eIF3h, recently being
demonstrated to be a novel deubiquitinase [52], was identified specifically in DWT. This
may also result in the wide deubiquitination of proteins in DWT.

Up to 24 DEUPs involved in UPP were downregulated due to Wolbachia infection. For
example, Rpn7 and Prosα7 were unable to be detected in DWT (Figure 6A), although they
were indeed expressed in DTT. As discussed above, proteasomes play a pivotal function
during spermatogenesis and fertilization in many animals, including mammals [43,53–56].
These suggest that many subunits of proteasome were deubiquitinated due to Wolbachia
infection, which will alter the functions of UPP and impair male fertility.

Heat shock protein cognate 4 (Hsc70-4) protein was found to contain eight different
lysine ubiquitination sites (Figure 3C). The ubiquitinated Hsc70-4 was only 0.19-fold in
DWT relative to DTT. Hsc70-4 was required for the self-renewal of germline stem cells
and differentiation of spermatogonia in Drosophila. Knockdown of Hsc70-4 resulted in fly
testes full of small undifferentiated germ cells [44]. Recent studies suggested that Hsc70-4
possibly targeted Akt or Pdk1 acting downstream of PI3K, thus regulating spermatocyte
growth and meiosis initiation [57]. Therefore, the dramatic reduction of ubiquitinated
Hsc70-4 by Wolbachia infection might damage germ cell differentiation in Drosophila testes.

DEPs and DEUPs include new regulators of spermatogenesis. Knockdown of four
candidates all resulted in significantly reduced male fertility, with Rpn6 and Rpn7 giving no
progenies. Rpn6 was also identified to be downregulated by Wolbachia infection in SSR [20].
The mutation of Rpn6 in flies was able to hatch, but never develop to adults, indicating an
essential role in Drosophila development [58]. In this study, we found that knockdown of
Rpn6 in fly testes did not affect the viability, but caused male sterility. In the anterior region
of the testes, there appeared some tumor-like cysts containing small cells that were negative
for Vasa, indicating that they were not germ cells. Further studies will be necessary to
determine what kind of cells are in these tumor-like cysts. In the basal region, the spermatid
nuclear bundles were disrupted, and scattered spermatids contained less condensed nuclei.
These suggest that Rpn6 is required for spermiogenesis. Rpn7 knockdown in fly testes
led to viable adults, but resulted in defects in the earlier stage of spermatogenesis, with
no bigger spermatocytes in testes, indicating a crucial role of Rpn7 in cell growth before
meiosis. However, the Wolbachia-infected females could not rescue the defects in male
fertility, suggesting that these genes are indeed required for spermatogenesis, but they are
not involved in Wolbachia-induced CI.

In conclusion, we performed proteome-wide analysis of ubiquitylated proteins in
DWT and DTT, and identified 643 DEPs and 309 DEUPs. Most of the DEPs and DEUPs
are involved in protein metabolism and male fertility. Notably, 98.1% of the DEUPs were
downregulated in the presence of Wolbachia. Knockdown of genes coding for DEUPs
involved in UPP in the testis significantly decreased the male fecundity. Of those, Rpn6 and
Rpn7 are essential for Drosophila spermatogenesis. Our findings reveal a deubiquitinating
role of proteins from Wolbachia, thus influencing host male fertility, and provide insights
into the mechanisms of both endosymbionts/hosts interactions and male animal fertility.

4. Materials and Methods
4.1. Fly Lines

The D. melanogaster infected wMel Wolbachia was a gift from Professor Scott O’Neill
(Monash University, Melbourne, Australia). Wolbachia-uninfected flies were generated by
tetracycline treatment according to established protocols [59] and confirmed to be Wolbachia-
free by polymerase chain reaction (PCR) with Wolbachia surface protein gene (wsp) primers
(Table 1). To eliminate the influence of residual tetracycline, the flies were reared in
normal (tetracycline free) medium for more than 6 generations. The transgenic RNAi lines,



Int. J. Mol. Sci. 2022, 23, 9459 12 of 17

including Rpt4R-hp (65361) and Prosα7-hp (67909), were obtained from the Bloomington
Drosophila Stock Center (Bloomington, IN, USA). Rpn6-hp (THU4060) was from the Tsing
Hua Fly Center, Beijing, China. Rpn7-hp (v22104) was from the Vienna Drosophila Resource
Center (Vienna, Italy). The bamGal4 vp16 line was a kind gift from Professor Zhaohui
Wang at the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.
All flies were raised in 150 mL conical flasks with standard corn/sugar medium at 25 ◦C.

Table 1. Primers for qRT-PCR and PCR.

Genes Forward Primer (5′–3′) Reverse Primer (5′–3′)

Rpn12R GGGCAGATACAACAAGATA CCTCGTCCAGACACCACT
Rpn7 TGCCTTCCGCAAGACCTA CGCCACCGAGTAAACACC
Rpt4R GGTCGGGGAAATCCTGAAGC AGTGGTCACATCCAGGGCGA
Prosα7 AGGCAGCCAACTACAGACA GAAGTAACCGAAGGAGGAG
CSN4 GGAGACGGGTCAGAAACA TCCAGGACACGAGCATAA
Rpn6 TCACGCACTGAGCAACCT CTTTGGCGGACAGTAGATAG

Prosβ1 GCGGAGTGGTCATTGGAG TCGTGATAGTTCAGCGAGTAG
Phb2 CGGCATCCAGAGCGACAT GCAGATAGGGCAGGTTCA

His2Av GTGGGTCGCATCCATCGT CCTCGGCGGTCAGGTATT
Cul2 AAGAGTGCGAGGAGAAGT TGAGATTATCGGGTATGG

CSN5 AGGTGATGGGTCTAATGCT AATGGCTCCTGGTATGTCT
Hsc70-4 CCTCGGCGGTCAGGTATT TGCCGAGCAGGTTGTTGT

rp49 CGGTTACGGATCGAACAAGC CTTGCGCTTCTTGGAGGAGA
wsp TGGTCCAATAAGTGATGAAGAAAC AAAAATTAAACGCTACTCCA

4.2. Protein Extraction

The testes of 1 d male flies were dissected. Then, testes were grinded three times
in protein lysis buffer (8 M urea, 50 mM NH4HCO3, and 10% Protease Inhibitor) and
centrifuged (12,000× g at 4 ◦C for 20 min) to remove the debris. The supernatant was
collected and the protein concentration was determined (Table S1) using the BCA protein
Assay Kit (Beyotime, Shanghai, China).

4.3. Acetone Precipitation and Trypsin Digestion

For each biological repeat, 100 µg testis protein (from around 60 1 d male flies) was
precipitated in 600 µL cold acetone for 2 h at −20 ◦C. The precipitated protein was obtained
by centrifuging at 14,000× g at 4 ◦C for 10 min. Then, the protein solution was reduced
with 10 mM dithiothreitol for 30 min at 37 ◦C and alkylated with iodoacetamide (11 mM)
for 30 min at 37 ◦C in the dark. The sample was then diluted by adding 50 mM NH4HCO3
to urea concentration less than 2 M. Finally, the sample was digested by trypsin (Promega,
Chilworth, UK) at 37 ◦C overnight with an enzyme to substrate ratio of 1:50. The digestion
was stopped by adding 2 µL formic acid. After trypsin digestion, proteins were desalted
by the stage-tip method [60] and analyzed by LC-MS/MS, respectively. As the initial total
amounts of proteins in each group were consistent, the peak area of protein was used to
represent the relative expression level of protein.

4.4. Affinity Enrichment of the Ubiquitinated Protein (IP)

To enrich ubiquitinated peptides, 100 µL of Protein A MagBeads (GenScript, Nanjing,
China) were rinsed with 1 mL wash buffer (20 mM Na2HPO4, 0.15 M NaCl, pH = 7.0) twice.
Next, the beads were fully suspended in 1 mL binding buffer (20 mM Na2HPO4, 0.15 M
NaCl, pH 7.0). Two microliters of ubiquitin antibody (rabbit anti-ubiquitin polyclonal
antibody, Bioss, MA, USA, catalog: bs-1549R) were added to the suspension and gently
mixed for 40 min at room temperature (RT) to obtain the anti-ubiquitin beads. Then, 2 mg
of testes protein (from around 1200 1 d male flies) were incubated with anti-ubiquitin
beads at RT for 1 h with gentle shaking. The beads were washed 3 times with 1 mL
PBS. The bounded protein was eluted from the beads with 100 µL elution buffer (0.1 M
glycine, pH 2.5) twice. Finally, the eluted fractions were combined and increased pH to
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about 8 using 20 µL of Neutralization buffer (1 M Tris, pH 8.5). The subsequent acetone
precipitation and trypsin digestion were performed as described above.

4.5. LC-MS/MS Analysis

The Exactive™ Plus Orbitrap high-resolution mass spectrometry and the EASY-nLC™
1200 system (Thermo Fisher Scientific, Waltham, MA, USA) were used for analyzing protein
samples. A Homemade C18 column (3 µm, 100 Å pores, 15 cm length, 75 µm diameter)
was made for separating the sample by a flow rate of 0.5 µL/min. The linear gradient of
5–80% flow phase B for 120 min was used for peptide segment separation (flow phase
A: 100% of water and 0.1% formic acid; flow phase B: 100% acetonitrile, 0.1% formic
acid). Data-dependent acquisition (DDA) was used for mass spectrometry with a m/z
scan range of 350–2000 m/z (resolution 70,000), automatic gain control (AGC) was set
at 3 × 106, peptides were detected at a resolution of 70,000, HCD fragmentation with a
spectral resolution of 7500, normalized collision energy was 27%, dynamic exclusion time
was 40 s.

4.6. Database Search and Bioinformatics Analysis

The resulting data from mass spectrometry were processed by using Proteome Dis-
coverer 2.1. The UniProt protein database subset of D. melanogaster was used for searching
as the following settings: Cleavage enzyme was trypsin, missing cleavage up to 2, fixed
modification was carbamidomethylation of cysteines, GG[K] was variable modification,
maximum mass deviation for parent ions was 10 ppm, maximum mass deviation for
fragments was 0.02 Da, and false detection rate (FDR) was <1%.

Drosophila proteome from UniProt (https://www.uniprot.org/, accessed on 30 March
2021) was set as the reference dataset. The ubiquitinated protein levels were normalized to
the corresponding protein amount in each sample. Two-sample t-test was done to compare
differences between DWT and DTT. Among the quantified proteins, DEPs and DEUPs were
selected with the criteria of a fold change of ≥1.5 and a p-value of <0.05.

Enrichment analysis of GO and pathway was performed respectively in WebGestalt
(http://www.webgestalt.org/, accessed on 2 May 2022) [61] and KOBAS online soft-
ware (http://kobas.cbi.pku.edu.cn/, accessed on 2 May 2022) [62], and visualized by R
4.2.0 (https://cran.r-project.org/, accessed on 2 May 2022). The PPI network among the
surveyed proteins was constructed using the STRING database (version 11.5), and Cy-
toscape (v3.9.0) was used for data visualization. Venn diagrams were drawn by online
software Bioinformatics (https://bioinformatics.psb.ugent.be/webtools/Venn/, accessed
on 9 May 2022).

4.7. qRT-PCR

DWT and DTT of 1 d flies were respectively dissected into TRIzol reagent (Invitro-
gen) for total RNA extraction. The cDNA was synthesized from 2.5 µg total RNA using
TransScript® One-Step gDNA Removal and a cDNA Synthesis SuperMix kit (TransGen
Biotech, Beijing, China). Specific primers for tested genes were designed based on se-
quences from the flybase database (Table 1). QPCR was performed on a CFX ConnectTM

Real-Time PCR Detection System (Bio-Rad) with ChamQ Universal SYBR qPCR Master
Mix (Vazyme, Nanjing, China). The qPCR program setting was as follows: 95 ◦C for
3 min, followed by 40 cycles of 95 ◦C for 10 s, 60 ◦C for 30 s, and a melting curve was
constructed from 65 ◦C to 95 ◦C with increment 0.5 ◦C for 5 s. rp49 was used as the
reference gene, and relative expression of the tested gene against rp49 was calculated
using 2−∆∆CT [∆∆CT = (CT,target − CT,rp49)experiment − (CT,target − CT,rp49)control] [63]. Three
biological replicates and 3 technical replicates for each biological replicate were performed
for this experiment.

https://www.uniprot.org/
http://www.webgestalt.org/
http://kobas.cbi.pku.edu.cn/
https://cran.r-project.org/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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4.8. Fertility Test

bamGal4 virgin females were used to cross with RNAi male flies to generate flies with
gene knockdown in early spermatogenesis. Flies from the cross of bamGal4 females and
w1118 males (bamGal4 > w-) were used as the control. Fifteen 1 d gene knockdown males
were arranged to cross with 10 females (3~5-day-old). After mating for around 12 h, all
males were removed. Eggs were then collected and incubated at 25 ◦C for 48 h. Hatch
rates were determined by counting the number of hatched eggs to total eggs. At least three
biological repeats per cross type were performed.

4.9. Immunofluorescent Staining

About 30 testes were dissected and fixed with 4% paraformaldehyde at RT for 30 min,
and washed with PBS 3 times (5 min each). After permeabilizing with PBST (PBS + 0.1%
Triton X-100) for 30 min, the testes were washed and blocked with 5% goat serum at RT for
1 h. Then, the testes were incubated with rat anti-Vasa (1:200, DSHB, Lowa, IA, USA, cat
No. AB760351) overnight at 4 ◦C. After washing, samples were incubated with Dylight 594,
goat anti-rat IgG (1:200, Abbkine, cat No. A23440) in darkness for 3 h. After three rinses
with PBST (10 min each), samples were mounted to slides using an antifading medium
containing 2 µg/mL 4′-6-diamidino-2-phenylindole (DAPI) (Solarbio, Beijing, China). The
slides were observed and photographed using a Leica SP8 Laser confocal microscopy (Leica,
Wetzlar, Germany) and images were processed with ImageJ.

4.10. Statistical Analysis

Results were expressed as mean± SE. Student t-test was used to analyze the difference
between mean values. p < 0.05 was considered as significant difference.
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