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Abstract  

Background: Aging can induce oxidative stress, inflammation and mucosal impairment, and few works have 
been conducted to investigate the protective effects of WP on the natural intestinal aging process.
Objective: The present work aimed to examine the protective effect of wheat oligopeptides (WP) on intestine 
mucosal impairment in aged mice, and investigate the potential antioxidation, anti-inflammatory effects of WP.
Design: Seventy-two aged mice (24 months old) were randomly divided into six groups, 12 for each group. Twelve 
young mice (6 months old) were regarded as the young control group. WP (25, 50, 100, 200, or 400 mg/kg) or 
distilled water were administered daily by gavage for 30 days.
Results: Histological observations showed that intestinal mucosal degeneration was attenuated by WP pre-
treatment. WP exhibited remarkable antioxidant activity via increasing superoxide dismutase, glutathione 
peroxidase, total antioxidant capacity and catalase activities, and decreasing the malondialdehyde levels in 
small intestine mucosa. WP pretreatment significantly suppressed intestinal mucosa inflammation through 
the reduction of TNF-α, TGF-β, IFN-γ IL-1β and IL-6. WP markedly protect the intestinal mucosal barrier by 
decreasing the ICAM-1 level, and increasing ZO-1 and JAMA-A levels. WP significantly down-regulated pro-
tein expression levels of TLR4, Myd88, and MAPK, suggesting that WP have a potential effect on inhibiting 
aging-induced inflammatory responses by blocking TLR4/Myd88/MAPK signal transduction.
Conclusion: WP administration effectively alleviated intestinal mucosal impairment in aged mice. The poten-
tial mechanism was associated with enhancement of antioxidation and anti-inflammatory action and protec-
tion of the intestinal mucosal barrier.
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Popular scientific summary
•  Wheat oligopeptides (WP) exhibit diverse biological activities, including anti-oxidative and anti-in-

flammatory activity.
•  WP treatment caused significant reduction of TNF-α, IL-1β, IL-6, and IFN-γ levels in intestinal 

mucosa.
•  WP markedly protect the intestinal mucosal barrier by decreasing the ICAM-1 level, and increasing 

ZO-1 and JAMA-A levels.
•  WP have a potential effect on inhibiting aging-induced inflammatory responses by blocking TLR4/

Myd88/MAPK signal transduction.

Aging is a process of progressive decline in the met-
abolic and physiological function of tissues and 
organs within the body with age and involves var-

ious diseases (1, 2). Aging organisms release inflammatory 

cytokines, reactive oxygen species, and growth factors 
which contribute to monolithic aging (3). The main char-
acteristics of biological aging are oxidative stress, inflam-
mation, and decreased physiological function (4), which 
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provide the potentially mechanistic understanding of why 
the elderly people have an enhanced risk for chronic dis-
ease (5, 6). With the aged population expanding around 
the world, aging has become one of the most topical issue 
in the world (7). Therefore, it is extremely important to 
research and solve the problem of aging (8).

The function of the mucosal immune system is impaired 
in elderly people (9). Therefore, the incidence of gastro-
intestinal disease in older people is relatively high, which 
is an important cause of mortality. Weakened intestinal 
barrier and tissue inflammation are also major character-
istics of the elderly (10). Therefore, it is extremely import-
ant to improve the fragile intestinal barrier and systemic 
inflammation. Currently, nutrition and exercise are con-
sidered as the probable non-genetic strategies to combat 
the harmful effects of gradual aging. Nutrition has been 
considered as the extremely reasonable and feasible way 
to alleviate the progression and severity of age and associ-
ated diseases and ‘nutrigerontology’ has recently been ad-
vocated (11). Some antioxidants have been verified to help 
in delaying senescence and preventing age-related diseases 
through mitigating oxidation (12, 13).

Wheat oligopeptides (WP) are a kind of bioactive oligo-
peptides obtained from wheat protein hydrolysate, which 
have many kinds of biological functions, including anti-
oxidant (14, 15), anti-inflammation (16), antimicrobial 
(17, 18), and anticancer activities (19). A large number of 
researches have been conducted to identify and character-
ize these bioactive oligopeptides.

The technology of preparation and identification of 
WP has been well developed (15, 20, 21). The studies on 
WP mainly concentrated on the in vitro experiment, but 
in-depth researches on WP are rarely studied. Our pre-
vious studies indicated that WP can play a vital role in 
promoting growth on intestine epithelial cells (22), and 
exert protective effects against NSAID-triggered small 
intestinal injury in rats by reducing oxidative stress and 
modulating μ-opioid receptor (14).

The protective mechanisms underlying aging-mediated 
degeneration of intestine mainly include anti-oxidation 
and anti-inflammation. However, only few works have 
been conducted to investigate the protective effects of WP 
on the natural intestinal aging process and the potential 
mechanisms. The current study was applied to assess the 
effects of WP on oxidative and inflammatory pathways 
involved in naturally senile mice.

Materials and methods

Chemicals and reagents
WP were supplied by China National Research Institute 
of Food & Fermentation Industries (Beijing, China). The 
molecular weights of the WP were 140−1,000 Da and ac-
counted for 92% of the total prepared WP and included 

a 3−6 amino acid sequence, prepared by hydrolysis of pa-
pain method. WP consist of 98.3% protein, 0.05% lipid, 
4.56% ash content, and 4.21% water.

The TRIZOL Reagent Kit of superoxide dismutase 
(SOD), malondialdehyde (MDA), catalase (CAT), glu-
tathione peroxidase (GSH-PX), epidermal growth 
factor (EGF), interferon-γ (IFN-γ), total antioxidant ca-
pacity (TAOC), Aminopeptidase N (APN), interleukin 
1β  (IL-1β), transforming growth factor-β (TGF-β), tumor 
necrosis factor-alpha(TNF-α), interleukin-6 (IL-6), zonula 
occluden (ZO-1), junctional adhesion molecule (JAM-A), 
and intercellular cell adhesion molecule-1 (ICAM-1) were 
purchased from Kiel biological technology Co.(Shang-
hai, China). Primary antibodies against TLR4, Myd88, 
p38MAPK, phosphor-p38MAPK, p44/42, and phos-
phor-p44/42 were purchased from Cell Signaling ( Beverly, 
MA, USA). Horseradish peroxidase conjugated secondary 
antibodies and β-actin were purchased from Proteintech.

Animals
Eighty-four male C57BL/6 mice (12 six-month-old mice 
in the young group and 72 24-month-old mice in the old 
group) were obtained from Vital River (Beijing, China) 
and housed under controlled environmental conditions 
of temperature (22±2°C), an entirely automated 12h/12h 
light/dark cycle. Mice were fed food pellets and given free 
access to drinking water. All animal experimental proce-
dures were conducted in accordance with the guidelines 
of the Ethics Committee on the Care and Use of Labora-
tory Animals of Southeast University.

Experimental design
After 1-week acclimation, 72 aged mice were divided into six 
groups (12 mice for each group): (1) aged control group; (2) 
25 mg/kg WP; (3) 50 mg/kg WP; (4) 100 mg/kg WP; (5) 200 
mg/kg WP; (6) 400 mg/kg WP. Twelve young mice were used 
as the young control group. The mice of young and old con-
trol groups were given vehicle (saline) and treatment groups 
were administered wheat oligopeptide daily for 30 days.

On the final day of the animal test, all mice were fasted 
for 24 h but were allowed free access to water. All mice were 
sacrificed under anesthesia, blood samples were obtained 
without addition of anticoagulants and then centrifuged 
for 10 min at 3,000g to obtain clear sera, which would be 
stored at −80 °C before use. After the mice were euthanized, 
the intestine was exposed and perfused with 10% buffered 
formalin after pylorus ligation and then fixed in 20 min.

Histopathological observation
The small intestine samples removed from each mouse 
were fixed in 10% formalin solution for 24 h, dehydrated 
using graded alcohol and xylene, and embedded in par-
affin. Paraffin sections were then cut into a thickness of 
4 μm and stained with hematoxylin and eosin (H&E) 
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for histological assessment. Sections were assessed by a 
blinded pathologist and scored for degeneration or necro-
sis of mucosal epithelial cells, transmural inflammation, 
the integrity of intestinal villi, infiltration of inflamma-
tory cells in the lamina propria, and crypt abscessation on 
a scale from 0 (healthy) to 4 (most severe) (23). All tissue 
sections were evaluated under light microscope (Olympus 
BH2, Tokyo, Japan) at a magnification of 200×.

Measurement of MDA level, CAT, GSH-PX and SOD activity
The levels of MDA and the activities of CAT, SOD and 
GSH-PX in intestinal mucosa were evaluated using com-
mercial kits that had been purchased from the Nanjing 
Jiancheng Bioengineering Institute (Nanjing, China), fol-
lowing the manufacturer’s instructions.

Measurement of  TAOC and APN in intestine mucosa
TAOC and APN in intestine mucosa were determined 
using commercial kits that had been purchased from the 
Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China), following the manufacturer’s instructions.

Determination of IFN-γ, IL-1β, and EGF in serum
The levels of IFN-γ, IL-1β, and EGF in the serum were 
measured using an enzyme-linked immunosorbent assay 
ELISA kits (Kiel, China) for mice according to the manu-
facturer’s instructions.

Determination of IL-6, ZO-1, JAM-A, TNF-α, TGF-β, and ICAM-1 
in intestinal mucosa
Small intestine tissue samples were homogenized in 1 mL 
of phosphate buffer, followed by centrifugation of sam-
ples. The concentrations of IL-6, ZO-1, JAM-A, TNF-
α, TGF-β, and ICAM-1 were detected using commercial 
enzyme-linked immunosorbent assay (ELISA) kits (Kiel, 
China) at a wavelength of 450 nm complying with the 
manufacturer’s instructions.

Western blot analysis
Intestinal tissue samples were lysed in a RIPA lysis buffer 
and the protein concentration was determined using the 
BCA protein assay kit. Equivalent extracts were separated 
by 12% SDS-polyacrylamide gel electrophoresis and blot-
ted onto a polyvinylidene difluoride membrane. The mem-
branes were incubated with specific primary antibodies at 
4°C overnight. Whereafter, the membranes were subjected 
to proper secondary antibodies incubation. The detection 
of the protein bands was carried out using enhanced che-
miluminescence detection reagent. The densities of bands 
were measured using the Image J software.

Statistical analysis
Data were represented as mean ± SEM of 12 mice per group. 
Differences between groups were analyzed statistically using 
one-way ANOVA followed by Dunnett’s test. SPSS statistical 

software version 22.0 was used to analyze the data according 
to the respective statistical techniques. Values were consid-
ered statistically significant when P < 0.05.

Results

WP Attenuated intestinal naturally aging in aged mice
As shown in Fig. 1a, in the young group, almost no intestine 
mucosal damage was detected. Villus height of the small 
intestine mucosa of the young control group is relatively 
consistent, and the structure of the villus is complete. The 
morphology of mucosal epithelial cells is normal and the 
nuclear membrane is clear. In the aged control group, the 
small intestinal mucosa villus (Fig. 1b) had local defects, 
became shorter and wider, and the villus density decreased. 
The mucosal epithelial cells became degenerated, necrotic, 
and exfoliated, and the infiltration of focal inflammatory 
cells in the lamina propria increased. Intervention of wheat 
oligopeptide can significantly improve the morphology of 
the small intestine, reduce the degeneration of epithelial 
cells, and decrease the infiltration of inflammatory cells 
and the density of villus (showed in Fig. 1c–h). The 25 and 
50 mg/kg WP showed better protective effects.

Changes of oxidative stress markers (MDA, CAT, GSH-PX, 
and SOD) in intestinal tissue
As shown in Fig. 2, the activities of SOD, GSH-PX, and 
CAT significantly decreased, and the MDA level in the old 
control group significantly increased compared to the young 
control group (all P < 0.05). Moreover, WP treatment obvi-
ously enhanced SOD, GSH-PX, and CAT activities of the 
intestine tissue, as compared with the old control group (all 
P < 0.05). WP consumption significantly decreased MDA 
levels in intestine tissue when compared with the levels in the 
old control group. Convincing epidemiological evidence in-
dicated that aging can significantly decrease the SOD, CAT, 
and GSH-PX activities and increase MDA levels.

Changes of  T-AOC and APN in intestine mucosa
As shown in Fig. 3, the T-AOC levels reflect the non-enzy-
matic antioxidant activity of the defense system. Herein, the 
activity of T-AOC in intestinal mucosa of the old control 
group was markedly lower (P < 0.05) than that of the young 
control group. Moreover, compared with the old model 
group, the WP-treated groups showed an increase in the 
T-AOC levels in intestinal mucosa (P < 0.05, Fig. 3a). The 
activity of APN in intestinal mucosa of the old mice was ob-
viously lower (P < 0.05) than that of the young mice. More-
over, compared with the old model group, treatment of WP 
significantly increased the APN activity in intestinal mucosa.

Changes of IFN-γ, IL-1β, and EGF levels in serum
As shown in Fig. 4, the aged model group had higher 
 levels of IL-1β relative to the control group (P < 0.05), 
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Fig. 1. Histological evaluation of small intestine tissue. (a) young control group, (b) old control group, (c) 25 mg/kg WP, 
(d) 50 mg/kg WP, (e) 100 mg/kg WP, (f) 200 mg/kg WP, (g) 400 mg/kg WP, (h) histological score.
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Fig. 2. Effect of WP pretreatment on activities of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), 
and Glutathione peroxidase (GPx) and levels of malondialdehyde (MDA) of intestine mucosa in mice. All values are expressed 
as mean ± SD (n = 12), * P < 0.05 significant versus young group, # P < 0.05 significant versus aging group.
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and WP treatment significantly reduced the IL-1β level. 
Aging progress obviously augmented IFN-γ level, which 
could be suppressed by WP intervention. The level of 
EGF in serum decreased in the aging group in compar-
ison to normal group, and pretreatment with WP exhib-
ited an obvious increase of EGF level.

Changes of JAMA-A, IL-6, TGF-β, ICAM-1, ZO-1, and TNF-α 
levels in intestinal mucosa
As shown in Fig. 5, the intestinal mucosa’ TNF-α level was 
significantly enhanced in old mice and WP pretreatment 
suppressed the increased TNF-α level in comparison with 
the old mice (P < 0.05). The levels of  JAMA-A and ZO-1 
in the aged model group were obviously  decreased when 
compared with the young group. WP  consumption sig-
nificantly increased JAMA-A and ZO-1 levels in intestine 
mucosal. In addition, the intestine mucosal IL-6 level was 
significantly enhanced in the old group, and was signifi-
cantly suppressed by pretreatment with WP (P < 0.05).

The ICAM-1 levels in intestine tissue were markedly 
increased in the aging mice in comparison to the normal 
group (P < 0.05). WP administration indicated a consid-
erable decrease in the levels of TGF-β and ICAM-1 in 
 intestine tissue.

WP targets intestinal TLR4, Myd88, and MAPKs pathway
The signaling pathway of MAPKs in intestinal tissue was 
studied to further explore the inflammatory conditions. 
Western blot analysis of intestinal tissue showed that 
the aging progress significantly increased expression of 
TLR4 and Myd88 in comparison with the normal group 
(Fig.  6a–c). Treatment of mice with WP significantly 
prevented the expression of TLR4 and Myd88. Taken 
together, these results indicated that WP suppresses in-
flammatory response through downregulating the expres-
sion of TLR4 and Myd88.

According to previous research, MAPKs pathways 
may affect the release of proinflammatory cytokine and 
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Fig. 3. Effect of WP pretreatment on TAOC and APN of intestine mucosa in mice. All values are expressed as mean ± SD 
(n = 12), * P < 0.05 significant versus young group, # P < 0.05 significant versus aging group.

Fig. 4. Effect of WP pretreatment on IL-1β, EGF, and IFN-γ content in serum of mice. All values are expressed as mean ± SD 
(n = 12), * P < 0.05 significant versus young group, # P < 0.05 significant versus aging group.
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Fig. 5. Effect of  WP pretreatment on JAMA-A, IL-6, TGF-β, ICAM-1, ZO-1, and TNF-α levels in intestine mucosa of  mice. 
All values are expressed as mean ± SD (n = 10), * P < 0.05 significant versus young group, # P < 0.05 significant versus aging 
group.

Fig. 6. Effect of WP pretreatment on expressions of the inflammatory marker TLR4, Myd88, and MAPKs in intestinal tissue. 
Intestine homogenates were used for the analysis of protein expression of TLR4, Myd88, and MAPKs.
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transduce TLR4 signals. The present study investigated 
the effect of WP consumption on aging mediated acti-
vation of p38 and p42/44. As shown in Fig. 6, p38 and 
p42/44 phosphorylation in the intestine tissues of aged 
mice were markedly induced. WP pretreatment obviously 
suppressed aging-mediated phosphorylation of p38 and 
p42/44.

Discussion
WP exhibit diverse biological activities, including anti-
oxidative and anti-inflammatory activity. The current 
study highlights the protective effect of  WP against nat-
ural degeneration of  the small intestine in aging mice at 
five doses (25, 50, 100, 200, and 400 mg/kg). The results 
indicate that aging can lead to oxidative stress, inflam-
mation, and degradation of  intestinal morphology and 
function, which is similar to previous studies (9, 24). The 
results also suggest that WP confer considerable protec-
tion to the mice intestinal mucosa degeneration via anti- 
inflammatory and anti-oxidative mechanisms.

Five doses of WP were used in the naturally aging mice 
model to assess an optimal dose. In our present study, the 
25 and 50 mg/kg WP intervention exerted optimal protec-
tive effect by maintaining oxidative stress, inflammatory 
response, and intestinal barrier near young control. The 
higher doses of WP tested also exert dramatic protection 
from intestinal degeneration, but to a lesser degree. This 
negative dosage–effect relationship has been reported 
previously (14), however, more researches need to be con-
ducted to confirm whether the lower dosage is the opti-
mal dosage, and the lowest effective dose. This research 
displays that WP is effective in protecting aging-mediated 
intestinal impairment.

Aging can induce oxidative stress and impair antiox-
idant defense in experimental animals. Oxidative stress 
may lead to physiological dysfunction through the imbal-
ance of the antioxidant/prooxidant ratio. The pathogen-
esis of aging may include production of oxygen derived 
free radicals, mainly hydroxyl radicals, superoxide anions, 
and lipid peroxides (25). Lipid peroxidation and free 
radical-induced antioxidizing enzymes inhibition may 
be conducive to intestinal mucosal degeneration (26). 
 Antioxidant enzymes such as SOD, CAT, and GSH-Px 
play an important role in arresting the formation of reac-
tive oxygen species and protecting the cells from the im-
pairments induced by free radicals (27). As a secondary 
product of lipid peroxidation, accumulation of MDA is 
often used as an indicator to quantify and identify lipid 
peroxidation (28). As shown in Fig. 2, the highest con-
tents of MDA but lowest activities of SOD, GSH-Px, as 
well as T-AOC were found in the aging group.

Our results support the fact that oxidative stress plays 
a vital role in the pathogenesis of aging intestine. Never-
theless, pretreatment with WP led to marked increases in 

the activities of SOD, GSH-Px, CAT, and T-AOC as well 
as a reduction in MDA formation, demonstrating its an-
tioxidant activity. The present results suggested that WP 
potentially exhibited protective effect on aging intestine 
through antioxidant mechanism.

Aminopeptidase plays a vital role in the process of 
protein digestion and is widely distributed on the brush 
border of  small intestinal mucosal epithelial cells (29). 
Most oligopeptides can only be absorbed after being 
hydrolyzed or transported into the cells by cytoplasmic 
peptidase in the brush border of  the epithelial cells of 
the small intestine (30). The results showed that the activ-
ity of  APN in the small intestinal mucosa of  the elderly 
group was significantly reduced, when compared with the 
young group. WP treatment markedly increased the APN 
activity.

Epidermal growth factor (EGF) could accelerate pro-
tection and restoration of intestinal mucosa, primarily 
through activating Na+/H+ exchange of epithelial cells 
(31). Enhancement of EGF in intestinal mucosa can stim-
ulate proliferation and migration of epithelial cells and 
accelerate epithelial regeneration and repair process (32). 
The treatment with WP caused a marked increase in EGF 
levels in serum. The present study revealed that the pro-
tective effects of WP on intestinal mucosa occurred by 
promoting the secretion of EGF.

Inflammation has been increasingly regarded as an 
important pathophysiological phenomenon in ageing 
(33). The present results indicated that aging significantly 
augmented inflammatory mediators, including TNF-α, 
IL-1β, IL-6, and IFN-γ, which is similar with previous 
studies (34, 35). Because chronic inflammation is a risk for 
impairment of the intestine mucosal immune system and 
morphology, agents that downregulate inflammatory re-
action may have therapeutic benefits for mitigating intes-
tinal mucosal damage (9). The treatment with WP caused 
significant reduction in TNF-α, IL-1β, IL-6, and IFN-γ 
levels, implying that the WP was capable of relieving in-
testinal mucosal inflammation.

The authors further evaluated the protein expres-
sion levels of TLR4, Myd88, and MAPK signal trans-
duction pathway. Recently, some studies demonstrated 
TLR4 were significantly increased in the healthy aging 
tissues (36), and involved in the downstream activation 
of MAPK (37, 38). TLR4 are found to be potential in-
ducers of MAPK transcriptional activities (39). The 
disorders of the MAPKs pathway have been formerly 
described in intestinal pathologies, and present findings 
revealed that aging triggered an increased phosphoryla-
tion of p-p38MAPK, p-ERK1/2 levels. These findings are 
consistent with previous reports. These results indicated 
that WP pretreatment could mitigate intestinal impair-
ment triggered by aging through the MAPK pathway. 
Furthermore, activation of ERK1/2 signal transduction 
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is associated with the increase of epithelial proliferation 
and mucosal repair in naturally aging models.

Aging also affects properties of the intestinal barrier, 
possibly impacting on age-related local and systemic dis-
turbances (40). Some pro-inflammatory cytokines such as 
IL-1β, IL-6, IFN-γ, and TNF-α may also influence muco-
sal barrier integrity and tight junction status (24). Inflam-
mation stimulation can trigger up-regulation of ICAM-1, 
which enhanced intestinal epithelial permeability via trig-
gering downregulation of myosin light-chain kinase and 
accelerating ligation of other apically localized proteins 
(41, 42). The present study indicated that the progress of 
aging induces upregulation of ICAM-1 in intestinal mu-
cosa, whereas WP treatment significantly suppressed the 
ICAM-1 level.

JAM-A plays a direct role in the regulation of epithe-
lial permeability and the mucosal inflammatory response 
(43). JAM-A can affect several cellular processes, includ-
ing polarity, adhesion, and migration of cell (44). JAM-A 
deficiency results in increased colonic inflammation and 
paracellular permeability. Aging markedly decreased the 
JAM-A level in intestinal mucosa, and pretreatment of 
WP significantly increased the level of JAM-A when com-
pared with aged mice. ZO-1 can also influence endothelial 
and epithelial permeability, and conserve barrier function 
(45). The lower level of ZO-1 in intestinal mucosa was ob-
served in aged mice, and WP administration significantly 
increased the ZO-1 level in comparison to the aged group.

The present results indicated that wheat oligopeptide 
can markedly protect the intestinal mucosal barrier of 
aging mice by decreasing the intestinal mucosal permea-
bility and preventing the intestinal bacteria from translo-
cating (Fig. 7).

Conclusions
Pre-treatment with WP displays an effective protection 
against aging-mediated intestinal mucosal oxidative stress 
and inflammation. WP can further promote repair of 
intestinal mucosa and maintain the intestinal mucosal 

barrier. These finding show a new perspective on natural 
aging and provide nutritional strategies to curb the pro-
gression as well as deleterious aspects of aging. There-
fore, WP will be worthy of research to further confirm 
anti-aging effects and alleviation of age-related diseases, 
due to its ability to alleviate oxidative stress, inflamma-
tion response, and cellular senescence. In particular, the 
results suggested that wheat oligopeptide is likely to be a 
promising functional to curb the progression and cause an 
impairment of aging.
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