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ABSTRACT
Background. The gut microbiomes of mammals are closely related to the diets of their
hosts. The Sunda pangolin (Manis javanica) is a specialized myrmecophage, but its gut
microbiome has rarely been studied.
Methods. Using high-throughput Illumina barcoded 16S rRNA amplicons of nine fecal
samples from nine captive Sunda pangolins, we investigated their gut microbiomes.
Results. The detected bacteria were classified into 14 phyla, 24 classes, 48 orders, 97
families, and 271 genera. The main bacterial phyla were Firmicutes (73.71%), Pro-
teobacteria (18.42%), Actinobacteria (3.44%), and Bacteroidetes (0.51%). In the PCoA
and neighbor-net network (PERMANOVA: pangolins vs. other diets, weighted UniFrac
distance p < 0.01, unweighted UniFrac distance p < 0.001), the gut microbiomes of
the Sunda pangolins were distinct from those of mammals with different diets, but
were much closer to other myrmecophages, and to carnivores, while distant from
herbivores. We identified some gut microbiomes related to the digestion of chitin,
including Lactococcus, Bacteroides, Bacillus, and Staphylococcus species, which confirms
that the gut microbiome of pangolins may help them to digest chitin.
Significance. The results will aid studies of extreme dietary adaption and the mech-
anisms of diet differentiation in mammals, as well as metagenomic studies, captive
breeding, and ex situ conservation of pangolins.
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INTRODUCTION
The mammalian gut houses a complex community of microbes, which have maintained
symbiotic relationships with their hosts for millennia (Schmidt, Mykytczuk & Schulte-
Hostedde, 2019). Many studies have investigated the relationships between hosts and their
microbial communities, focusing on topics such as diet (Turnbaugh et al., 2009; Hale et
al., 2018), phylogenetics (Ley et al., 2008; Walker et al., 2014), health (Du Toit, 2019), the
environment (Xie et al., 2016), and the immune system (Tilg, Schmiderer & Djanani, 2018).
Diet appears to be amajor factor shapingmammalian gutmicrobiomes, which have evolved
convergently in mammals sharing the same feeding habits (Ley et al., 2008; Muegge et al.,
2011). In other words, myrmecophages, carnivores, herbivores, folivores, and omnivores
have their own specific gut microbial communities, especially specialized myrmecophages

How to cite this article Zhang F, Xu N, Wang W, Yu Y, Wu S. 2021. The gut microbiome of the Sunda pangolin (Manis javanica) reveals
its adaptation to specialized myrmecophagy. PeerJ 9:e11490 http://doi.org/10.7717/peerj.11490

https://peerj.com
mailto:20071099@m.scnu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11490


and hindgut fermenter herbivores (Delsuc et al., 2014). Many studies have used the 16S
rRNA gene to investigate the composition of mammalian gut microbiomes and to study
diets in an evolutionary context (Kau et al., 2011;Muegge et al., 2011; Zhu et al., 2011).

The Sunda pangolin (Manis javanica; Mammalia: Pholidota: Manidae) is listed as
critically endangered on the International Union for the Conservation of Nature’s Red
List of Threatened Species (Challender et al., 2019). It is a specialized myrmecophage.
More than 90% of the prey is ants and termites, and the exoskeletons of ants and
termites consist mainly of chitin, which has high nutritive value (Redford & Dorea, 1984).
Myrmecophagous mammals include anteaters, aardvarks, and aardwolves (Redford, 1987;
Reiss, 2001). Some studies have suggested that the gut microbiomes of myrmecophages
have evolved convergently (Delsuc et al., 2014). However, few studies have examined the
gut microbiomes of the Sunda pangolin; two recent studies have investigated host and
gut bacterial associations in Sunda pangolins. A study of the gut microbiomes of wild
Sunda pangolins from Laos revealed that Firmicutes (41%), Proteobacteria (24%), and
Bacteroidetes (18%) were the three main phyla (Yang, 2017), while Ma et al. (2018) found
that Bacteroidetes (49.9%), Proteobacteria (32.2%), and Firmicutes (12.6%) were the three
main phyla in captive Sunda pangolins, which is similar to the microbiomes of herbivores.
It is not clear why these two results differ; this will require further investigation.

In this study, we used Illumina MiSeq analyses to sequence amplicons generated from
the V3 and V4 regions of the 16S rRNA gene to study the gut microbiomes of nine captive
Sunda pangolins and compared them with those of other myrmecophages, carnivores,
herbivores, folivores, insectivores, and omnivores to assess convergent evolution. This
study improves our understanding of the gut microbiomes associated with extreme dietary
adaptation and mechanisms of diet differentiation in mammals. This may have practical
value for captive breeding programs, including feed formulations, disease diagnosis, and
ex situ conservation.

MATERIALS & METHODS
Sample collection
Fecal samples were collected from nine Sunda pangolins kept in captivity at the Pangolin
Research Base for Artificial Rescue and Conservation Breeding of South China Normal
University (PRB-SCNU). The sample details are shown in Table 1. Their artificial diet
consists of mealworms (58.94%), silkworms (20%), dry ants (15%), yeast powder (2%),
vitamin complex (0.06%), crushed stone or coarse sand (4%), and vinegar (0.85 mL/100
g) (Zou, 2016). We performed comparative analyses of myrmecophages, carnivores,
herbivores, folivores, insectivores, and omnivores using 47 samples that were originally
sequenced byMuegge et al. (2011) andDelsuc et al. (2014) (Table S1). We first used a sterile
swab to obtain a small amount of fecal material and transferred it to a vial containing a
lysis and stabilization buffer that preserved the DNA for transport at ambient temperatures
(Almonacid et al., 2017). The samples were then frozen in liquid nitrogen and stored at
−80 ◦C until DNA extraction.
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Table 1 The detail information of samples.

ID Gender Weight (kg) Time in captivity (year) Physiological state

FS-02A Female 3.5 2 Health
FS-06A Female 4.8 4.5 Health
FS-06B Male 3.8 3.5 Health
FS-06BF Female 3.75 7 Health
FS-15M Male 3.9 3.5 Health
FS-16 Male 4.2 3 Health
FS-18 Male 4.5 5 Health
FS-18A Male 4.07 3 Health
FS-18B Female 3.6 2.5 Health

Data acquisition
Bacterial genomic DNAwas extracted from the feces samples using the QIAampDNA Stool
Mini Kit (Qiagen, Hilden, Germany). The concentration of each sample was tested with
a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). The hypervariable V3 and V4
regions of the 16S rRNA gene were amplified with target-specific primers (338F and 806R)
that specifically amplify bacterial and archaeal 16S genes (Caporaso et al., 2012; Allali et al.,
2017). Three replicate PCRs were performed for each DNA sample. After amplification, the
PCR products from the same sample were mixed, purified using the Agencourt AMPure
XP system (Beckman Coulter Genomics, Brea, CA, USA), and examined by 2% agarose gel
electrophoresis. DNAwas extracted from the gels using theAxyPrepDNAGel ExtractionKit
(Axygen, Tewksbury, MA, USA) and examined by 2% agarose gel electrophoresis. Illumina
sequencing adapters and dual-index barcodes [index 1(i7) and index 2(i5)] (Illumina, San
Diego, CA, USA) were added to each amplicon in a subsequent limited cycle PCR. The
final libraries were repurified using the Agencourt AMPure XP system, quantified with a
Quant-iTTM PicoGreen

R©
kit (Invitrogen/Life Technologies, Green Islands, NY, USA), and

normalized before pooling. The DNA library pool was denatured with NaOH and diluted
with hybridization buffer. The libraries were validated using an Agilent 2100 biological
analyzer (Agilent Technologies, Palo Alto, CA, USA) and quantified with a Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA). Finally, the libraries were multiplexed and
loaded on an Illumina MiSeq instrument according to the manufacturer’s instructions
(Illumina). Sequencing was performed using a 2×250 paired-end (PE) configuration and
MiSeq Control Software embedded in the MiSeq instrument did the image analysis and
base calling. Our data were submitted to the NCBI sequence read archive under accession
number PRJNA558047.

Sequence processing and analysis
Clean reads were obtained after paired-end reads assembly and quality control from raw
data. Initially, the PE reads were merged using FLASH (Magoc & Salzberg, 2011) and
quality filtering was performed using Trimmomatic (ver. 0.39) (Bolger, Lohse & Usadel,
2014). Potential chimeras were moved using the UCHIME algorithm (Rognes et al., 2016).
Then, the clean reads were aligned and clustered into operational taxonomic units (OTUs)

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.11490 3/16

https://peerj.com
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA558047
http://dx.doi.org/10.7717/peerj.11490


with a sequence similarity threshold of 97% using Usearch (ver. 10) (Edgar et al., 2011).
Chimeras and singletons were removed in the clustering process. The Ribosomal Database
Project (RDP) (ver. 2.2) classifier was used to assign taxonomic categories to all OTUs
at a confidence threshold of 0.7 (Wang et al., 2007). The RDP classifier uses the Silva 119
database, which has taxonomic categories predicted to the species level (Quast et al., 2013).

Sequences were rarefied before calculating the alpha and beta diversity statistics. We
calculated the OTU abundance and Ace, Chao1, Simpson, and Shannon indices using the
Mothur software package (ver. 1.30.1) to measure alpha diversity based on the number
of different data categories and their respective abundances in the dataset (Schloss, Gevers
& Westcott, 2011). All statistical analyses were conducted in R 3.5.1 (R Core Team, 2015).
We calculated Good’s coverage (Good, 1952) and plotted rarefaction and rank abundance
curves using Mothur to determine whether the sequencing effort was sufficient to describe
bacterial communities. We compared the beta diversity to identify differences in the
microbial communities between each sample. Principal coordinates analyses (PCoA) and
non-metric multidimensional scaling (NMDS) were performed using the Bray–Curtis
distance (Bray & Curtis, 1957). To explore whether pangolins underwent convergent
evolution with other groups, we performed PCoA on the UniFrac distance (Jiang et al.,
2013) and constructed a neighbor-net network based on the UniFrac distance (Huson
& Bryant, 2006). Permutational MANOVA (PERMANOVA) was performed to identify
significant differences between these groups (‘‘Adonis’’ in the R package ‘‘vegan’’).

RESULTS
Analysis of the sequencing data
Wegenerated 16S rRNAgene sequences fromnine fecal samples fromnine Sundapangolins.
All samples were sequenced. Initially, we generated 735,783 PE reads. After all quality
filtering steps, we had 704,251 clean reads with an average read length of 412.10 bp and
an average of 78,250 sequences per sample (Table S2). Figure 1 shows the distribution
of the lengths of the clean sequences. Using a minimum identity of 97% as the threshold
for any sequence pair, we identified 536 OTUs (Table S3). The rarefaction curve for the
OTUs flattened gradually, almost plateauing, indicating that the number of OTUs for each
sample was sufficient and reasonable (Fig. 2A). The rank abundance curves indicated the
evenness and abundance of species in fecal samples horizontally and vertically (Fig. 2B).
Good’s coverage was nearly 99.9% for all samples, showing that most bacterial species in
the samples were detected (Table 2). We generated a gene clustering heatmap using the 50
most abundant OTUs (Fig. 3).

Composition of Sunda pangolin gut microbiota
The detected bacteria were classified into 14 phyla, 24 classes, 48 orders, 97 families, and
271 genera. The gut microbiomes were dominated by bacteria in the phylum Firmicutes
(73.71%), followed by Proteobacteria (18.42%), Actinobacteria (3.44%), and Bacteroidetes
(0.51%) (Fig. 4A). It was rich in the families Clostridiaceae (31.97%), Peptostreptococcaceae
(21.68%), Enterobacteriaceae (15.34%), Lachnospiraceae (7.58%), Streptococcaceae
(4.96%), Planococcaceae (1.47%), Ruminococcaceae (1.43%), Lactobacillaceae (1.39%),
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Figure 1 Length distribution of the clean sequences. The x-axis indicates the sequence lengths and the
y-axis represents the sequence numbers.

Full-size DOI: 10.7717/peerj.11490/fig-1

Figure 2 Rarefaction curves and rank abundance curves for the nine samples.Different colored lines
are different samples. (A) Rarefaction curves reflect the rationality of the sequencing data size and abun-
dance. (B) Rank abundance curves reflect the evenness and abundance horizontally and vertically.

Full-size DOI: 10.7717/peerj.11490/fig-2

and Nocardiaceae (1.2%), followed by Erysipelotrichaceae, Enterococcaceae, Bacillaceae,
Xanthomonadaceae, Rhodobacteraceae, Corynebacteriaceae, and Brucellaceae. The
principal genera were Clostridium_sensu_stricto_1 (29.42%), Escherichia-Shigella
(13.57%), Terrisporobacter (10.39%), Lactococcus (4.92%), Epulopiscium (4.41%),
Clostridium_sensu_stricto_13 (1.78%), and Morganella (1.73%), followed by Lactobacillus,
Sporosarcina, Cellulosilyticum, Staphylococcus, Bacteroides, and Bacillus (Fig. 4B). We also

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.11490 5/16

https://peerj.com
https://doi.org/10.7717/peerj.11490/fig-1
https://doi.org/10.7717/peerj.11490/fig-2
http://dx.doi.org/10.7717/peerj.11490


Table 2 Alpha diversity indices for nine samples.

Sample Ace Chao1 Shannon Simpson coverage

FS-02A 219 218 2.72 0.1509 0.999394
FS-06A 176 186 2.92 0.1023 0.999605
FS-06B 194 194 3.61 0.0455 0.999942
FS-06BF 180 180 2.49 0.1313 0.999706
FS-15M 135 135 3.09 0.0709 0.999915
FS-16 279 279 3.33 0.0869 0.999879
FS-18 153 150 2.21 0.2365 0.999624
FS-18A 268 263 3.07 0.0882 0.999811
FS-18B 71 68 2.06 0.1817 0.999866

identified several genera that are likely involved in chitin digestion. Lactococcus (Vaaje-
Kolstad et al., 2009) and Bacteroides (Borrelli et al., 2017) were abundant (Fig. 5), followed
by Bacillus (Gooday, 1990) and Staphylococcus (Wadström, 1971).

Table 2 shows the alpha-diversity indices (including Chao1, Ace, Shannon, and
Simpson). These indices reflected the number of OTUs and the diversity in the nine
samples was high. Two-dimensional PCoA and NMDS based on the Bray–Curtis distance
suggested that seven of the nine Sunda pangolin gut microbiomes cluster, which means
that the results are reliable and have statistical significance (Fig. 6).

Comparison of the Sunda pangolin with mammals with different diets
To explore whether pangolins underwent convergent evolution with other groups, we
compared them to mammals with various diets, including myrmecophages, carnivores,
herbivores, folivores, insectivores, and omnivores. Using PCoA and the neighbor-
net network of weight UniFrac distance, these data confirmed that Sunda pangolins
form a group (PERMANOVA: pangolins vs. other diets, p <0.01), which was close to
myrmecophages (aardvarks, anteaters, aardwolves, and armadillos), and distant from
carnivores and herbivores (Figs. 7A, 8A). In addition, beta diversity analysis of 56 samples
by PCoA of unweighted UniFrac distance revealed that the gut microbiomes of Sunda
pangolins formed a distinct cluster clearly separated from other diets (PERMANOVA:
pangolins vs. other diets, p <0.001) (Fig. 7B). Moreover, the network reconstructed from
the unweighted UniFrac distances also showed that Sunda pangolins differed from other
diets (Fig. 8B). These findings all demonstrate that Sunda pangolin gut microbiomes are
close to those of myrmecophages and carnivores, and distant from herbivores.

DISCUSSION
This work investigated the composition of the gut microbiomes of nine captive Sunda
pangolins. Their microbial communities were dominated by Firmicutes (73.71%),
Proteobacteria (18.42%), Actinobacteria (3.44%), and Bacteroidetes (0.51%), which
is similar to the three wild Sunda pangolins gut microbiomes [Firmicutes (41%),
Proteobacteria (24%), and Bacteroidetes (18%)] (Yang, 2017). The wild Sunda pangolins
gut microbiomes were enriched in Lactobacillaceae (20%), Bacteroidaceae (17%),
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Figure 3 Clustering heatmap showing the 50 most abundant operational taxonomic units (OTUs).
The x-axis indicates the nine samples and the y-axis represents the 50 most abundant OTUs. Each color
in the middle heatmap represents the relative abundance of the OTU in that row after normalization. The
redder the color, the greater the abundance of the OTU in the sample.

Full-size DOI: 10.7717/peerj.11490/fig-3

Enterobacteriaceae (14%), and Clostridiaceae (12%), followed by Streptococcaceae,
Ruminococcaceae, and Lachnospiraceae, which is similar to our results (Yang, 2017). At the

Zhang et al. (2021), PeerJ, DOI 10.7717/peerj.11490 7/16

https://peerj.com
https://doi.org/10.7717/peerj.11490/fig-3
http://dx.doi.org/10.7717/peerj.11490


Figure 4 Sunda pangolin gut microbial composition. (A) The phylum levels. (B) The genus levels. The
x-axis indicates the nine samples and the y-axis represents the relative abundance.

Full-size DOI: 10.7717/peerj.11490/fig-4

genus level, wild Sunda pangolin gut microbiomes were enriched in Lactobacillus (20%),
Bacteroides (17%), Clostridium (12%), and Escherichia (6%), followed by Streptococcus,
Faecalibacterium, and Prevotella (Yang, 2017), which is also similar to our results. However,
Ma et al. (2018) suggested that the gut microbiomes of captive Sunda pangolins, which
consisted of Bacteroidetes (49.9%), Proteobacteria (32.2%), and Firmicutes (12.6%), were
similar to the microbiomes of herbivores, which differed from our results and those of Yang
(2017). Captive Sunda pangolin gut microbiomes in genus level had high proportions of
Bacteroides, Clostridium, Bacillus, Streptococcus, Lactobacillus, Prevotella, and Enterococcus
(Ma et al., 2018). We postulate that this discrepancy was related to the captive environment
of the animals because animals living in captivity experience many changes that may
influence gut bacteria, including changes in diet, feeding method, captive lifestyle, and the
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Figure 5 The microbial community with the greatest abundance of all samples at the genus level. The
corresponding phylum level classification of the microbiomes is also shown. The same color represents
the same phylum. The x-axis indicates the genus level and the y-axis represents relative abundance.

Full-size DOI: 10.7717/peerj.11490/fig-5

Figure 6 Principal coordinates analysis plot (A) and nonmetric multidimensional scaling (B) of the
nine samples based on Bray–Curtis distances. The distances between the sample points represent the
similarity of the microbiota in the samples. A closer distance represents greater similarity and samples that
cluster together have a similar microbiota.

Full-size DOI: 10.7717/peerj.11490/fig-6

environment (Hyde et al., 2016; Li et al., 2017; McKenzie et al., 2017; Schmidt, Mykytczuk
& Schulte-Hostedde, 2019). Compared to wild Sunda pangolins, that captive environment
(especially diet) of our Sunda pangolins may be more similar to that in the wild. Our
artificial diet appears to be better for Sunda pangolins, and provides good nutrition.

Although the Sunda pangolin is a specialized myrmecophage, our results revealed
that their gut microbiomes didn’t converge with those of other myrmecophages,
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Figure 7 Principal coordinates analysis plot of 56 samples. (A) Based on weighted UniFrac distances.
(B) Based on unweighted UniFrac distances. These samples were divided into seven categories. Samples
in the same group are represented by the same color and shape. PC1_vs_PC2 is the PCoA plot obtained
from the first and second main coordinates; the x- and y-axis represent the first and second main coordi-
nates, respectively. The distances between the sample points represent the similarity of their microbiotas.
A closer distance represents greater similarity and samples that cluster together have a similar microbiota.

Full-size DOI: 10.7717/peerj.11490/fig-7

Figure 8 Neighbor-net network of 56 samples. (A) Based on weighted UniFrac distances. (B) Based on
unweighted UniFrac distances. These samples were divided into seven categories. Samples in the same
group are represented by the same color and shape.

Full-size DOI: 10.7717/peerj.11490/fig-8

which was similar to the results of Yang (2017), who found that wild Sunda pangolins
differed from giant anteaters (Myrmecophaga tridactyla) and the tamandua (Tamandua
tetradactyla). Although Sunda pangolins appear to form a distinct group, they were close to
myrmecophages and carnivores. This is because pangolins, anteaters, aardvarks, and giant
armadillos can be considered specialized myrmecophages with the same feeding habits
(Redford, 1987; Reiss, 2001). Moreover, they have similar morphological characteristics,
such as loss of teeth, an elongated, sticky tongue used to extract their prey, and powerful
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claws used to dig into ant and termite nests (Nowak, 1991). Finally, pangolins are the sister
group to carnivores and have a close genetic relationship (Miyamoto & Goodman, 1986;
Madsen et al., 2001; Murphy et al., 2001; Vanghan, Ryan & Czaplewski, 2015).

Pangolins eat mainly ants and termites that contain chitin in their exoskeletons
(Redford & Dorea, 1984). Bacteria are major mediators of chitin degradation in nature
(Beier & Bertilsson, 2013). We detected chitinolytic bacteria in Sunda pangolins, including
Lactococcus (Vaaje-Kolstad et al., 2009), Bacteroides (Borrelli et al., 2017), Bacillus (Gooday,
1990), and Staphylococcus (Wadström, 1971). Other studies of the gut microbiomes
of specialized myrmecophages have found chitinolytic bacteria. For example, the gut
microbiome of the wild Sunda pangolin was enriched with Bacteroides and Clostridium
(Gooday, 1990; Borrelli et al., 2017; Yang, 2017). Sunda pangolins also contain chitinolytic
bacteria such as Staphylococcus (Wadström, 1971), Lactococcus (Vaaje-Kolstad et al., 2009),
Enterobacter (Brzezinska, 2006), and Klebsiella (Anand et al., 2010) and so on (Ma et al.,
2018). Aardwolf gut microbiomes are enriched in Staphylococcus and Klebsiella (Wadström,
1971; Anand et al., 2010; Delsuc et al., 2014). Further research using shotgun metagenomic
approaches is required to elucidate the functional roles of these chitinolytic bacteria.

CONCLUSIONS
We studied the composition of the gut microbiomes of the myrmecophagous Sunda
pangolin. This revealed that it was distinct from those of mammals with different feeding
habits, but much closer to other myrmecophages (aardvarks, anteaters, aardwolves, and
armadillos), and distant from herbivores. We also found some chitinolytic bacteria,
including Lactococcus, Bacteroides, Bacillus, and Staphylococcus, which may help the
Sunda pangolin to digest chitin. Diet may drive the evolution of the Sunda pangolin
gut microbiome. The other seven pangolin species should be studied to understand their
extreme dietary adaptation better.
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