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Abstract. We have used cryoelectron microscopy to 
try to understand the structural basis for the role of 
GTP hydrolysis in destabilizing the microtubule lat- 
tice. We have measured a structural difference intro- 
duced into microtubules by replacing GTP with gua- 
nylyl-(o~,/3)-methylene-diphosphonate (GMPCPP). In 

a stable GMPCPP microtubule lattice, the moir~ pat- 
terns change and the tubulin subunits increase in size 
by 1.5/~. This information provides a clue to the role 
of hydrolysis in inducing the structural change at the 
end of a microtubule during the transition from a 
growing to a shrinking phase. 

M 
ICROTUBULES are polymers of the tubulin hetero- 
dimer involved in such diverse functions as the 
regulation of membrane traffic and chromosome 

separation during mitosis. They consist of protofdaments, 
head to tail alignments of the tubulin or-/3 heterodimer 
(Amos and Klug, 1974; Kirschner, 1978; Purieh and Kris- 
toffersen, 1984) that run lengthwise along the microtubule 
axis and interact through lateral contacts to form the micro- 
tubule wall. Microtubules exist in dynamic equilibrium with 
tubulin subunits, growing and shrinking by addition or loss 
of tubulin dimers from the ends of the protofilaments. 
Growth is governed by the concentration-dependent on-rate 
of tubulin subunits, but the shrinking rate is extremely rapid 
and independent of the tubulin concentration. Individual mi- 
crotubules switch stochastically between phases of slow 
growth and fast shrinkage so that in a microtubule popula- 
tion, some will be growing and some shrinking, a property 
known as dynamic instability (Cassimeris et al., 1988; Gel- 
land and Bershadsky, 1991; Mitchison and Kirschner, 1984; 
Walker et al., 1988). 

Dynamic instability is a highly nonequilibrium behavior, 
and the energy source that drives the nonequilibrium state 
is GTP hydrolysis. The tubulin dimer has one exchangeable 
GTP site (E site) on the/~ subunit that must be occupied by 
GTP to allow the dimer to participate in microtubule assem- 
bly. The polymerization rate is controlled by the binding 
constant of GTP tubulin for the microtubule ends but, during 
or after polymerization, GTP is hydrolyzed to GDP that is 
trapped in the lattice in the form of tubulin-GDP (Carlier, 
1989; Kirschner, 1978; Purich and Kristoffersen, 1984). Ex- 
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periments using GTP analogues have shown that GTP hy- 
drolysis is not required for microtubule growth, but is neces- 
sary for microtubules to be able to shrink (Hyman et al., 
1992; MejiUano et al., 1990; Penningroth and Kirschner, 
1978; Seclder et al., 1990). The most common model to ex- 
plain the role of GTP hydrolysis suggests that the end of the 
microtubule is capped by subunits with unhydrolyzed GTP 
so as to stabilize the microtubule against depolymerization. 
Loss of this cap stimulates shrinkage (Cartier, 1989; Chert 
and Hill, 1985; Kirschner and Mitchison, 1986; Mitchison 
and Kirschaer, 1984). To date, however, it has not been pos- 
sible to detect any unhydrolyzed GTP in microtubules, sug- 
gesting that the cap must be either very small or nonexistent 
(Erickson and O'Brien, 1992; O'Brien et al., 1987; Stewart 
et al., 1990). 

Structural analysis of microtubules suggests that interac- 
tions between protofilaments are an essential feature regulat- 
ing the transitions between growing and shrinking phases. 
Microtubules appear to grow as a sheet of interacting 
protofilaments that later close into a tube (Erickson, 1974; 
Simon and Salmon, 1990; Chr6tien, D., S. Fuller, and E. 
Karsenti, manuscript submitted for publication). When 
microtubules shrink, the protofilaments loose their contacts, 
curl out from the microtubule ends, and then they appear to 
break off as tubulin oligomers (Mandelkow et al., 1991; Si- 
mon and Salmon, 1990). We wished to find out whether 
GTP hydrolysis changed the stability of microtubules by 
modulating microtubule structure. To investigate this prob- 
lem, we took advantage of guanylyl-(a,/3)-methylene-diphos- 
phonate (GMPCPP) ~, a nonhydrolyzable analogue of GTP. 

1. Abbreviation used in this paper: GMPCPP, guanylyl-(tx,/3)-methylene- 
diphosphonate. 
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Microtubules polymerized in the presence of GMPCPP are 
stable, presumably because this analogue mimics the un- 
hydrolyzed form of GTP in the microtubule surface lattice 
(Hyman et al., 1992). It might, therefore, be that analysis of 
the structure of a GMPCPP lattice would give a clue about 
the structure of a GTP lattice, for instance, structural motifs 
that reveal a cap of GTP subunits at the end of the microtu- 
bule. The advantage of GMPCPP compared to other GTP 
analogues is that it competes well with GTP for the tubulin 
nucleotide-binding site, and it mimics the growth rate of 
microtubules from GTP tubulin, but it completely stabilizes 
microtubules against depolymerization (Hyman et al., 
1992). Using electron cryomicroscopy, we have compared 
the structure of microtubules assembled from GTP-tubulin, 
which we will carl GDP microtubules, with those assembled 
from GMPCPP tubulin, which we will call GMPCPP micro- 
tubules. We have found differences between the two types of 
microtubules, suggesting that there could be a structural ba- 
sis for the role of GTP hydrolysis in dynamic instability. 

Materials and Methods 

Tubulin was purified by the method of Weingarten et al. (1975) with 
modifications by Mitchison and Kirsclmer 0984). After the phosphocellu- 
lose column, it was purified by a further polymerization/depolymerization 
cycle, frozen in liquid nitrogen, and stored as 50-/~1 aliquots at -80°C. (Hy- 
man et al., 1991). Rhodamine tubulin was prepared as in Hyman et al. 
(1991). Before use, tubulin v~s thawed and spun at 13,000 g for 15 rain. 
GMPCPP was synthesized as described in Hyman et al. (1992). All other 
chemicals were from Sigma Immunochemicals (St. Louis, MO). 

Assembly 
To assemble microtubules, tubulin was thawed and spun for 15 rain at 
15,000 g at 40C. To examine microtubules by fluorescence microscopy, 1 
part of rhodamine tubulin was added to 10 parts of underivatized tubulin 
and assembly monitored using a fluorescence microscope (Howard and Hy- 
man, 1993). To examine GDP microtubules polymerized by self assembly, 
tubulin was diluted to 5 mg/ml in BRBS0 + I mM GTP on ice and warmed 
to 37°C. TO polymerize GMPCPP microtubules, tubulin was diluted to 0.4 
mg/ml in BRB80 + 1 mM GMPCPP on ice and polymerized for 1 h at 
37°C. To construct mixed microtubules, GMPCPP micmtubules were as- 
sembled at 0.3 mg/mi + 100 t~M GMPCPP with no rhodamine tubulin for 
15 rain. These GMPCPP microtubules were diluted 1:1 in the presence of 
5 mg/ml tubulin supplemented with 0.5 mg/ml rhodamine tubulin + 1 mM 
GTP to give a final GTP tubulin concentration of ~ 3 mg/mi. Growth con- 
tinued for 3 rain before examination. The two fluorescent GTP ends were 
separated by a nortfluorescent GMPCPP segment, but the two fluorescent 
segments could easily be seen to belong to the same microtubule by their 
movement characteristics in solution. The total length of these segmented 
microtubules was •10 ~m. Under these conditions, GMPCPP microtubules 
had a site occupancy of 0.65 (Hyman et al., 1992). 

Electron Cryomicroscopy 
Microtubtdes were assembled at 37°C as described in the previous section, 
except that no rhodmmlne mbulin was added. After varying times of assem- 
bly, a 4-/d sample was applied to a copper electron microscope grid covered 
with a holey carbon film. The grid was lightly glow discharged in air before 
use. Humid air at 35°C was gently blown onto the grid to prevent evapora- 
tion and self-cooling of the sample droplet that can lead to microtubule de- 
polymerization (Chr~en and Wade, 1992). The grid was blotted and rap- 
idly plunged into liquid ethane cooled in liquid nitrogen using a guillotine 
device. Specimens were either stored in liquid nitrogen or were loaded 
directly into a cryotransfer stage (model 626; Gatan Inc., Pleasanton, CA) 
and observed in an electron microscope (EM 400; Philips Technologies, 
Cheshire, CT) equipped with an anticontamination device built in-house. 
Images were recorded at a nominal magnification of 19,500 under low dose 
conditions at an under focus of 1-2 #m. The magnification was found to 
be 18,100 when calibrated under the working conditions by mixing tobacco 

mosaic virus with some specimens of separate GDP and GMPCPP microtu- 
bules. 

Image Analysis 
M k r o t u b u l e  Populations and  Moird Patterns. A selection was made of 
micrographs showing microtubule images with clearly visible moir~ fringe 
patterns. These patterns are related to small rotations of the surface lattice 
that enable different numbers of protofilaments to fit into the microtubule 
wall. Based on their fringe patterns, individual microtubules can be 
classified according to the number of protofilaments (Chrcttien and Wade, 
1991; Wade et al., 1990). The periodicity of the moir~ patterns (LN) is 
related to the number of protofilaments (N), the distance between protofila- 
merits (xp), the rise between monomers in adjacent protofilaments (r), and 
to the S start helix pitch (Sa), where a is the monomer separation along 
the protofilaments (Fig. 1): 

LN = Nxp/(rN - Sa) (1) 

A selection was made of micrographs showing microtubule images with 
clearly visible moir~ fringe patterns. The whole area of each micrograph 
was printed at three times magnification. Microtubules were classed accord- 
ing to their protofilament numbers as identified by their characteristic image 
contrasts. The total lengths of each type were measured direct ly on the 
prints using a map me,~urer, and the percentages of the complete population 
were calculated (Table I). Total lengths of 450 and 290 ~m were measured, 
respectively, for GDP and GMPCPP microtubtdes. The moir~ pattern 
periodicities were measured, using a ruler, on the same prints. By far, the 
largest number of measurements were made on the majority populations of 
14 protodlament microtubules for which more than 350 values were ob- 
tained for both assembly conditions. 

Computer Analysis. Micrographs were digitized using a CCD camera 
controlled by IMSTAR software installed on a PC. A 0.1-mm spacing 
graticule (Graticules Ltd., Tonbridge, England) engraved on glass was over- 
laid on the micrographs to give a magnification calibration for each digi- 
tized image. Image files were transferred to a Silicon Graphics 4D/310 GTX 
workstation, and all the image manipulations were carried out using 
SUPRRd software. Subimaoes of individual microtubule segments were ex- 
tracted, and where necessary, the microtubule image was set horizontal, 
straightened, and its background was corrected. Each subimnge was floated 
up to pixel dimensions of x -- 1024 (horizontal) and y ffi 512 (vertical) be- 
fore computation of the diffraction intensity (power spectrum). The position 
of the three-start helix peak on the nominal "40-~I - layer line was measured 
directly from the displayed power spectrum using a mouse-controlled cur- 
sor. The spacing (d) corresponding to the measured layer-line separation 
(Xm) was obtained for each image by calibration using the separation of the 
maxima (Xc) arising from the 0.l-ram spacing in the power spectrum of the 
graticule. For an electron optical magnification (M): 

d = 0.01 Xc/MXm (2) 

The measured values of d are expected to depend somewhat on the rota- 
tion angle of the surface lattice so they should change slightly depending 
on the moir6 period LN. We have checked that this effect is very small com- 
pared to the differences in d values that we have found between the GDP 
and the GMPCPP microtubules. Al l  other thin~s being equal, the d value 
for the GMPCPP microtubules (LN ~, 6400 ~)  should be 0.03 ~, smaller 
than for GDP microtubuls (LN ,,o 4600 A). This is within the experimental 
error of the measured d values (see Results). 

Results 

GMPCPP and GDP Microtubules Have Different 
Protofilament SRew Angles 
Specimens of microtubules polymerized with GTP or the 
nonhydrolyzable analogue GMPCPP were prepared for elec- 
tron cryomicroscopy. Micmtubules were polymerized in the 
presence of either of the two nucleotides at 37°C. After vary- 
ing times of polymerization, a small drop was applied to an 
electron microscope grid, excess liquid was blotted off, and 
the grid was rapidly cooled in liquid ethane. The micro- 
tubules were observed in vitreous ice by electron cryomi- 
croscopy. Fig. 2 shows microtubules polymerized with GTP 
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Figure I. Representation of features of the microtubule surface lattice that follow the surface of a tube. Protofilaments are head-to-tail 
alignments of the tubulin dimer. These are considered as identical here, and the monomer spacing along the protofllament is a. Protofila- 
merits are separated by a distance xp, and only one protofilarnent is shown. Each protofilament is shifted upwards (rise) with respect to 
its neighbor so that adjacent monomers follow the left-handed helical path shown. (a) N = 13. In the canonical 13-protofilament structure, 
the protofilaments are parallel to axis of the tube, and after one turn, the helix matches onto the reference protofilament at a distance 3 a 
above its starting position; this is the imposed pitch. (b) N -- 14. The helical path now has a total rise that does not match onto the reference 
protofilament, and the surface lattice has a mismatch; D~ = total rise - imposed pitch. This will occur for any number of protofilaments 
(N) different to 13. (c) The mismatch can be removed by a global rotation of the surface lattice so that the protofilaments are tilted by 
an angle 0 with respect to the micrombule axis. 

and with GMPCPP. Each microtubule has two dark edges 
that enclose a number of lighter striations. These fringes re- 
suit from the superposition in projection of the protofila- 
merits running along the top and bottom surfaces of the mi- 
crotubule. The protofilament lattice follows a rotating path 
around the microtubule (Fig. 1) and therefore forms a moird 
pattern in which the fringes are either clear or blurred as the 
protofilaments on the top and bottom surfaces are periodi- 
cally superimposed or intercalated (Mandelkow and Man- 
delkow, 1985; Wade et al., 1990). 

We first examined the moir~ patterns for microtubules 
polymerized in the presence of GTP. The patterns fall into 
clearly defined classes that allow the number of protofila- 
ments in each microtubule to be determined. (Chrdtien and 
Wade, 1991; Wade et al., 1990). The simplest pattern is that 
of a 13-protofilament microtubule shown in Fig. 2 a. It con- 
sists of a set of two fringes running along the microtubule 
for the entire visible length showing that the protofilaments 
are parallel to the microtubule axis. All the other microtu- 
bules show typical moird patterns in which the fringes ap- 
pear and disappear at regular intervals because of the rotated 
protofilaments. We can use the fringe patterns to assign 
protofilament numbers to the different micrombules: Fig. 2 
b shows a 14-protofilamcnt microtubule with a repeating pat- 
tern of two and then three centered fringes, and Fig. 2 c 
shows a 15-protofilament with a repeating pattern of three 
off-center fringes. The moird patterns show that, for the as- 
sembly conditions used, a population of 12-, 13-, 14-, and 
15-protofilament microtubules is obtained with the 13- and 
14-protofilament categories, accounting for 87 % of the total 
(Table D. 

We examined the moir~ patterns for microtubules poly- 
merized with GMPCPP. Fig. 2 a shows a GMPCPP microtu- 
bule with two central striations characteristic of a 13- 
protofilament microtubule. Unlike a 13-protofilament GTP 
microtubule, the lattice has a twist with a moir~ period of 
11,370 ~ We examined microtubules with pattern of stria- 
tions corresponding to 13- (Fig. 2 a), 14- (Fig. 2 b), and 
15- (Fig. 2 c) protofilament numbers. We measured the 
moir~ pattern repeat lengths for microtubules with different 
protofilament numbers. In all cases, these microtubules had 
a defined moir~ pattern that was different from that of 
micrombule polymerized in the presence of GTP (Table I). 
Under these conditions, 96% of GMPCPP microtubules had 
14 protoftlaments (Table I). To confirm that each fringe pat- 
tern corresponded to the same number of protofilaments as 
in GDP microtubules, we measured microtubule width of 
GMPCPP and GDP microtubules. The width of a microtu- 
bule is directly related to the number of protofilaments in the 
lattice. In all cases, the width measured was that expected 
for the number of protofilaments (data not shown). 

The clearly defined differences in the moird pattern perio- 
dicities of stable GMPCPP and unstable GDP microtubules 
indicate that the angle of rotation of the protofilament lattice 
in the two microtubule types is different. 

GMPCPP and GDP Microtubules Have Different 
Subunit Spacing along the Protofilaments 

Previous work has suggested that the angle of rotation of the 
protofilaments lattice should be sensitive to small changes in 
the size of tubulin subunits in the microtubule or the way that 
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Figure 2. Individual microtubule images with the corresponding computer filtered image. The fringe patterns, more clearly visible in the 
filtered images, are characteristic of the indicated numbers of protofilaments. For each number of protofflaments, the left panel is the ex- 
perimental and filtered image of a GDP microtubule and the right panel is the same for a GMPCPP microtubule. Images of microtubules 
with (a) 13 protofilaments, (b) 14 protofilaments, and (c) 15 protofilaments. Magnification marker corresponds to 500/~. 

subunits in the microtubule interact together (Chr6tien and 
Wade, 1991; Wade et al., 1990). The spacing of tubulin 
monomers in the protofilament can be examined by looking 
at optical diffraction from laser light shining on a microtu- 
bule. Because the tubulin subunits in a microtubule polymer- 
ize head to tail with a repeating structure, the microtubule 
wall can be imagined as a very fine grating. Light shining 
on a microtubule will diffract as it passes through microtu- 
bule, with a pattern characteristic of the spacing of the tubu- 
lin monomers along the protofilament. For microtubules, 

this repeat can be seen every 40/~, corresponding to the 
length of 1 monomer (Erickson, 1974; Amos and Klug, 
1974). 

We examined a large set of micrographs by optical and 
computer "diffraction;' and we selected microtubule images 
that gave significant intensity on the nominally 40-~ layer- 
line. To unambiguously measure this spacing, we used TMV 
as an in situ calibration of the electron optical magnification 
(Finch, 1964). The diffraction pattern for microtubules 
polymerized in the presence of GTP showed a clear layer- 
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Table L Populations and Moir~ Repeat Distances for GDP and GMPCPP Microtubules 

Number of protofilaments 

12 13 14 15 

Theory 
Fringe pattern 

LN (moir6 repeat) 

GTP assembly 
Population 
LN 

GMPCPP assembly 
Population 
LN 

2/0/1 2 or 0 2/0/3 3/0/3 
Centered Offset Centered Offset 
3,448 A None 4023 1~ 2155 A 

2.8% 38.3% 49% 9.9% 
3,861 5:500/~ None 4,662 5:384 A 2,334 4- 172 kit 

0.2% 3.1% 96% 0.7% 
3,088 .~ 11,370 A 6,396 4- 970 A 2,720/~, 

(one value) (one value) 

line at 40.5 + 0.2 A, an average of 25 measurements. 
We then examined the diffraction pattern of microtubules 
polymerized with GMPCPP. Optical diffraction of the GMP- 
CPP microtubules showed a shift in the position of the layer- 
line to 43 + 0.2/~, an average of 20 measurements. Fig. 3 a 

J 

l o  

5 

a 
13 

assembly  

GMPCPP 

148 ) ' ' 141' ' ' ' 142 ' a ' A  

n b 
15 

10 

4 0  41 42  a /~ 

Figure 3. Histograms showing numbers of measurements (n) of 
layer-line spacings for micrographs of microtubules (a) assembled 
separately in the presence of GTP and GMPCPP. The magnifica- 
tion of the micrographs was calibrated using TMV in situ. (b) 
Micrographs of specimens containing both types of micmtubule. 
In this case, the magnification of the images was scaled against the 
calibrated measurements. 

shows the distribution of the layer-line distances measured 
on the computed diffraction patterns from these calibration 
grids for separate assembly in the presence of GTP and of 
GMPCPP. 

To be sure that the differences between the microtubules 
prepared with the two nucleotides were not caused by subtle 
differences in the preparation or observation conditions, we 
wished to carry out the electron microscopy with both types 
ofmicrotubule on the same grid. To make these mixed speci- 
mens, we decided to grow GDP microtubules from existing 
GMPCPP microtubules. We established the conditions for 
obtaining roughly equal lengths of GDP and GMPCPP 
microtubules using fluorescence light microscopy (Hyman et 
al., 1991). First, the GMPCPP microtubules were grown for 
1 h at a tubulin concentration of 0.3 mg/ml, and then these 
microtubules were mixed into a final concentration of 3 medml 
of rhodamine-GTP-tubulin. Under these conditions, the 
GTP-tubulin was found to grow only from the ends of the ex- 
isting GMPCPP microtubules. To ensure that the new micro- 
tubules were polymerized from GTP-tubulin, we arranged 
the nucleotide concentrations so that GTP was 10-fold more 
concentrated than GMPCPP. Since GMPCPP competes with 
GTP at ~25% efficiency (Hyman et ai., 1992), we assumed 
that there would be a 40:1 ratio of GTP/GMPCPP tubulin in 
the newly grown microtubules. At different time points, the 
lengths of the GDP segments was examined by fluorescence 
of the rhodamine probe. This allowed us to establish condi- 
tions giving roughly equal lengths of both types of microtu- 
bule. We prepared these segmented microtubules in the ab- 
sence of rhodamine mbulin for electron microscopy. 

Fig. 4 a shows two 14-protofilament microtubules from a 
mixed GMPCPP and GDP grid, one with a moir6 pattern 
corresponding to a GDP microtubule (A) and the other with 
a pattern corresponding to a GMPCPP microtubule (B). The 
computed diffraction intensities are shown side by side in 
Fig. 4 b. We measured the diffraction peak positions for ran- 
dom selections of microtubule images in the micrographs 
obtained from the "mixed" grids. The population of the cor- 
responding spacing is shown in Fig. 3 b. As can be seen, the 
layer-line positions fall into two classes corresponding to 
the average 40.5- and 42-/~ spacing seen in Fig. 3 a for 
separately polymerized GDP or GMPCPP microtubules. 

We wondered how the GMPCPP and GDP lattices would 
affect each other at the transition between them. Fig. 5 shows 
a 14-protofilament microtubule with a transition from a 
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Figure 4. Mixed assembly to 
give GDP and GMPCPP 
microtubules on the same 
grids. (a) Two 14-protofila- 
ment microtubules showing 
moir~ pattern repeats typi- 
cal of (A) GDP microtubules 
and (B) of GMPCPP micro- 
tubules. Bar corresponds to 
1,000/~ (b) Arrows denote the 
computed diffraction intensi- 
ties of A and B with the layer- 
line intensities. The different 
level of the equivalent peaks 
indicates a difference in the 
spacing of the tubulin subunits 
along the protofilaments in (A) 
GDP microtubules, spacing 
= 40.5/~; and in (B) GMP- 
CPP microtubules, spacing -- 
42A. 

moir~ pattern corresponding to a GDP microtubule (.4) to 
one corresponding to a GMPCPP microtubule (B). The layer- 
line spacing, computed for short sections of microtubule seg- 
ments, is plotted as a function of position along the microtu- 
bule. An abrupt change in spacing is found at the transition 
between the moir~ patterns typical of GDP and GMPCPP 
microtubules. The computations were made for sections cor- 
responding to ,,020 dimers in length, so the change in the 
microtubule lattice clearly takes place over a shorter dis- 
tance than this. We have attempted to estimate the length of 
the transition by taking smaller and smaller windows. Our 
results so far suggest that the change occurs within <10 
dimer lengths, showing that we can detect the layer-line posi- 
tion accurately using diffraction from a total of'~,140 dimers. 

Finally, we checked the accumulated set of measurements 
of moir~ repeat distances (L) and diffraction patterns in 
micrographs of mixed grids and of separate calibrated grids 
to see whether the values of L are related to the measured 
layer-line spacing (Fig. 1, a). Fig. 6 b shows unequivocally 
that these two parameters are related, and the separate 
clouds indicate that the GDP and the GMPCPP microtubules 

form two distinct classes. The close agreement between the 
diffraction patterns obtained from the mixed and from the 
separate calibration grids show that we are measuring real 
differences in the position of the 40/~ layer-line. 

The GMPCPP Microtubule Lattice 
Accommodates the Difference in Monomer Spacing by 
a Change in the Skew Angle of the Protofilaments 
We used the lattice accommodation theory (Chr6tien and 
Wade, 1991; Wade et al., 1990) to give a quantitative esti- 
mate of how changes in the size of the tubulin monomer 
affect the moir~ pattern periodicity (see Fig. D. This model 
provides a geometric relationship between the parameters 
that determine the lattice structure, such as protofilament 
number and subunit size, as well as moir~ pattern length. We 
calculated how the moir6 period would be influenced by in- 
dependently modifying three parameters related to tubulin 
monomer spacing: (a) the protofilament separation, which 
depends on the monomer "width" (Xp; Fig. 1 a); (b) the 
monomer rise from prototilament to protofilament, related 
to the lateral contacts between monomers (rise; Fig. 1 a); 
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Figure 5. 14-Protofilament microtubule in a mixed assembly experiment; the blurred segments of the moir~ pattern are marked by the 
white spots. There is a transition from the moir~ pattern spacing typical of a GDP microtubule, region A, to that of a GMPCPP microtubule, 
region B. The graph above the image shows the monomer "length," a, i.e., the layer-line spacings measured on the computed diffraction 
patterns from segments 150 pixels long (i.e., ,,o20 dimers) for the indicated positions along the mierotubule. Intensity profiles shown for 
sections across the image at positions A and B indicate that the mierotubule has the same width on either side of the transition. Magnification 
marker, 1,000 ~. 

and (c) the subunlt spacing along protofilaments, related to 
the monomer "length" (a; Fig. 1 b). Fig. 6 a shows the theo- 
retical relationships between changes in these parameters 
and the moir6 pattern length. Of these test calculations, only 
the situation (c), a change in subunit spacing along the 
microtubule, predicts the experimental data. In Fig. 6 b, the 
curve represents the theoretical relationship between the size 
of the monomer spacing along the protofilaments and the 
moir~ periodicity, which the symbols represent the observed 
subunit size for different moir~ periodicities. The position of 
this line with .respect to the experimental points indicates 
that the a 1.5-A change in subunit spacing will give the ob- 
served moir~ pattern changes in GMPCPP microtubules. 
This implies that the rotation of the protofilament lattice is 
most probably induced by modifications in the subunit spac- 
ing along the protofilaments. 

Discussion 

GMPCPP-Tubulin Subunits Have Different 
Conformation from GDP-Tubulin Subunits in the 
Microtubule Lattice 

Our results imply that tubulin subunits in microtubules poly- 
merized with a GMPCPP lattice have a different conforma- 

tion to tubulin subunits in microtubules with a GDP lattice. 
The 1.5-/~ difference, represents a ~,,4% change in the posi- 
tion of the 40-A layer line and corresponds to a lengthwise 
change in the spacing of the tubulin subunits along the 
protofilaments. Since we were able to record images of GDP 
and GMPCPP microtubules in the same micrographs, ar- 
tifacts such as slight magnification changes from grid to grid 
(or within the same specimen if the grid is distorted) can be 
discarded. 4 % is well within the measurement accuracy of 
the diffraction patterns, showing that we have measured a 
real change in the subunit spacing. The implied change in 
shape of the tubulin subunits cannot be interpreted in any de- 
tail from the diffraction data. However, we have also ob- 
served that incorporation of GMPCPP in the microtubule 
lattice changes the moir6 pattern in the micrombule images. 
Because moir~ patterns are long range patterns, they mag- 
nify small changes in protofilament skew angles. Interpreta- 
tion of the moir6 patterns using the lattice accommodation 
model suggests that the subunits increase in length while the 
lateral contacts between the subunits remain unchanged. The 
lateral contacts situated on the shallow three-start helix are 
probably the regions involved in lateral stabilization of the 
protofilaments in the microtubule lattice. Since GMPCPP 
microtubules are stable compared with GDP microtubules 
(Hyman et al., 1992), this suggests that the conformational 
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Figure 6. (a) Predicted change from the lattice accommodation the- 
ory of the repeat length of the moir6 pattern as a function of changes 
in the protofilament spacing (related to the width of the monomer), 
the rise between subunits of adjacent protofilaments and the length 
of the monomer. (b) Showing the relationship between the layer-line 
spacing, a, and the moir~ pattern repeat distances, L, for individual 
microtubules in the mixed specimens (open triangles), for the cali- 
bration grids with separate assembly of GDP (full circles), and 
GMPCPP micmtubules (open circles). The theoretical dependence 
of L on the separation a between the subunits along the protofila- 
merits was calculated using Eq. 1 with N = 14, xp = 51.5 ~ r = 
9.346 A, and S = 3. The value of r corresponds to the rise for the 
GDP microtubules. 

change is involved in the stabilization of microtubules 
against depolymerization. 

The Role o f  GTP Hydrolysis in 
Microtubule Destabilization 

The dynamic properties of microtubules polymerized with 
GMPCPP and other GTP analogues show clearly that GTP 
hydrolysis has evolved to destabilize the microtubule lattice 
(Arai and Kaziro, 1976; Hyman et al., 1992; Mejillano et 
al., 1990; Penningroth and Kirschner, 1977; Seckler et 
al., 1990; Weisenberg and Decry, 1976). Observations of 
microtubules during growing and shrinking phases have 
shown that protofilaments at the end of the microtubule 
change their morphology during the transition from growth 
to shrinkage. During growth, the end of the microtubule is 
probably a sheet of protofilaments, and the wall of the 
microtubule closes into a tube behind this growing sheet (Si- 
mon and Salmon, 1990; Chr~tien, D., S. Fuller, and E. Kar- 

senti, manuscript submitted for publication). The protofila- 
ments in the sheet have a gentle curve. By contrast, when 
microtubules shrink, the protofilaments loose contact with 
each other and roll up into oligomers (Mandelkow et al., 
1991). The chemical energy that allows this large structural 
change is released during GTP hydrolysis. However, the 
small difference in conformation seen between the GDP and 
the GMPCPP lattices, which we assume to correspond to the 
hydrolyzed and nonhydrolyzed forms, suggests that much of 
the energy released by GTP hydrolysis is stored in the lattice 
and is released during microtubule disassembly as part of the 
large conformational change that takes place as protofila- 
ments disconnect and roll up into circular forms. 

One possibility is that GTP hydrolysis weakens the inter- 
protofilament interactions. For instance, an unhydrolyzed 
cap of GTP subunits at the end of the microtubule could 
stabilize the end of the lattice by strong interprotofilament 
contacts, and protofilament contacts in the microtubule 
could weaken after GTP hydrolysis. Although we cannot 
rule out the weakening of interprotofilament interactions by 
GTP hydrolysis, our results suggest that it is unlikely. Rather, 
there is only a subtle difference between the structure of the 
microtubule before and after hydrolysis, and modeling sug- 
gests that this difference does not affect the interprotofila- 
ment contacts. 

How, then, does GTP hydrolysis destabilize the microtu- 
bule lattice? During depolymerization, protofilaments tend 
to unwind from the microtubule (Mandelkow et al., 1991; 
Simon and Salmon, 1990). Such a tendency to unwind would 
act in opposition to interprotofilament contacts that stabilize 
the microtubule. Any increase in protofilament curvature 
would, therefore, tend to destabilize microtubules. We pro- 
pose that increase in protofilament curvature is the change 
that takes place when the GTP is hydrolyzed, an idea previ- 
ously suggested on the basis of studies that examined the 
shape of the depolymerization products of microtubules 
(Melki et al., 1989). Our diffraction results suggest that upon 
GTP hydrolysis, the tubulin subunit spacing along the proto- 
filaments shortens. We speculate that the tubulin monomers 
could curl up slightly into a kidney bean-like shape and ap- 
pear shorter, Thus, the chemical energy is transmitted to me- 
chanical strain in the lattice that we have seen indirectly as 
the change in protofilament twist in the microtubule. This 
mechanical strain tends to unwind the protofilaments, since 
the string of aligned beans tends to bend outwards to follow 
the curvature of the individual beans. As the energy is 
released, protofilament unwinding will propagate from the 
microtubule ends inwards along the microtubule. 

The relative timing of the two reactions of microtubule as- 
sembly and GTP hydrolysis are still unknown when microtu- 
bules polymerize in the presence of GTP. All attempts to 
verify the GTP cap model by biochemical means have failed 
so far (e.g., O'Brien et al., 1987). Most of the problems 
come from detecting the signal of unhydrolyzed GTP in the 
microtubule lattice above the noise of unlaydrolyzed GTP 
free in solution. We have shown that as few as 140 dimers, 
and maybe less, are required to see the 40-/~, layer-line, and 
therefore should be able to detect GTP-tubulin in the 
microtubule lattice over lengths less than ~800 A. Since we 
have been able to detect very small changes (~1.5/~) in the 
subunit-subunit interactions that may be involved in the 
stabilization of the microtubule via GTP hydrolysis, we may 
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be able to visualize small regions of unhydrolyzed GTP in 
the microtubule lattice and thus probe the timing and posi- 
tion of GTP hydrolysis during microtubule polymerization. 

The authors would like to thank Linda Amos for the first observations on 
optical diffraction on GMPCPP mierotubules, as well as Erie Karsenti, 
Michael Glotzer, Steve Fuller, and Werner Kulbrandt for helpful com- 
ments during the course of these studies and critical reading of the manu- 
script. 
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