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The gold-standard of preclinical micro-computed tomography (μCT) data processing is still manual
delineation of complete organs or regions by specialists. However, this method is time-consuming, error-
prone, has limited reproducibility, and therefore is not suitable for large-scale data analysis. Unfortunately,
robust and accurate automated whole body segmentation algorithms are still missing. In this publication,
we introduce a database containing 225 murine 3D whole body μCT scans along with manual organ
segmentation of most important organs including heart, liver, lung, trachea, spleen, kidneys, stomach,
intestine, bladder, thigh muscle, bone, as well as subcutaneous tumors. The database includes native and
contrast-enhanced, regarding spleen and liver, μCT data. All scans along with organ segmentation are freely
accessible at the online repository Figshare. We encourage researchers to reuse the provided data to
evaluate and improve methods and algorithms for accurate automated organ segmentation which may
reduce manual segmentation effort, increase reproducibility, and even reduce the number of required
laboratory animals by reducing a source of variability and having access to a reliable reference group.
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Background & Summary
Micro-computed tomography (μCT) is one of the most commonly used imaging technologies in
preclinical research. It provides detailed information about the volume, textures, and abnormal
alterations of internal structures in high-resolution1–4. Because of its high reliability and reproducibility,
μCT is often used as a single imaging modality. It offers many advantages including homogenous
resolution, fast acquisition, and well-calibrated voxel intensities5–9. In addition, other imaging modalities
such as nuclear or optical imaging technologies are often combined with μCT due to the need of an
anatomical reference7,10–12. Thus, μCT provides accurate anatomical information on the basis of its good
contrast recognition especially of dense tissues such as bones or calcified structures13–18. The main
drawback of μCT imaging is a low soft tissue contrast, which can be improved by the utilization of
radiopaque contrast agents19,20. Nowadays, a wide range of clinical and preclinical CT contrast-
enhancing agents are available. Preclinical contrast agents often show a longer blood half-life time or a
more specific uptake than their clinical counterparts. Examples of them are contrast-producing lipids,
iodine-containing aqueous colloids, or alkaline earth metal-based nanoparticulate contrast agents21,22.

When μCT scans are acquired at a low dose of X-ray, longitudinal measurements in the same animal
can be performed10,23,24. Hence, more information per animal can be acquired and disease or treatment
progression within the same animal can be determined. This leads to a reduction in the required animal
number, which is in accordance with the 3 R aims (Refinement, Replacement, Reduction)25 for animal
protection.

Nevertheless, most preclinical μCT imaging studies result in a huge amount of data that needs to be
processed. Currently, the gold-standard of μCT image processing is still manual delineation of regions of
interest or complete organs, although this method is laborious and limited in its reproducibility due to
high user-dependence9,26–28. Especially in preclinical imaging studies5,26,29–31, the sophisticated analysis
of the immense amount of μCT data is more time-consuming than the scanning procedure alone, because
of the high manual effort to generate whole body organ segmentations32. Consequently, there is a
significant need for automated segmentation tools for preclinical imaging studies.

Automated segmentation (AS) or machine-learning algorithms could address the aforementioned
problems by introducing consistency, reliability, and reproducibility to the process9,26,33–37. Although the
development of AS algorithms has gained much interest among researchers, no universal algorithm has
been established yet. Multi-atlas segmentation (MAS) is one promising candidate for a new gold-standard
in image annotation26. MAS has been successful used in both multi- and single-organ segmentations,
despite the general shortcomings of abdominal imaging, i.e. shifting of organs inside the abdominal
cavity. Wang et al. presented a MAS atlas dedicated to preclinical image analysis including multiple
training subjects29. This atlas consists of 103 μCT whole body mouse images and reflects more
realistically the deformation of internal organs following the changes of pose and weight due to
interspecies variations and within one individual along longitudinal studies.

Nevertheless, to our knowledge no atlas or database of preclinical μCT data including organ
segmentations exists, because, so far, most CT databases only include reconstructed scans or segmented
bone structures17,38. Therefore, the aim of our study is to provide the first preclinical μCT database
including whole body mouse images and their organ segmentations. Our open-access database includes
225 native and contrast-enhanced whole-animal μCT volumes along with manual organ segmentations
acquired from mice scanned longitudinally in different positions. Organ parameters such as volume,
surface, and distances in one individual remain stable over time. Furthermore, we calculated the
Sørensen-DICE coefficient to compare the similarity between segmentations of two independent experts.
This coefficient may help to compare the achieved accuracy of automated methods with the inter-user
variability of manual segmentation. We highly encourage researchers to use these 3D datasets, e.g. for
further comparative analysis of organ morphology or to determine relevant μCT features such as
intensity or variations between voxels. Ideally, this introduced database will be used to validate
segmentation and machine-learning approaches and thus, facilitate the development of reliable,
simplified, and user-independent analysis tools for whole body organ segmentation. In addition, the
anatomical 3D data of the whole mouse body including the main organs will serve as a visual and
education resource to train researchers for segmentation of tumors and organs.

Methods
Datasets
For generating this database, two μCT datasets from other studies were reused: one native dataset without
using a contrast agent and one dataset with contrast-enhanced μCT scans, where the contrast agent
ExiTron™ nano 6000 (Viscover, Berlin, Germany) was injected, see Fig. 1. The native μCT dataset is part
of an already published study23. Publishing the contrast-enhanced μCT data is currently in progress. In
both studies, all animal experiments were approved by the Governmental Review Committee on Animal
Care. Thus, for generating this database no additional mice were required.

The native dataset includes 140 3D whole body scans acquired from 20 female BALB/c nu/nu mice
(Charles River Laboratory, Sulzfeld, Germany) measured at seven time points by a preclinical μCT
(Tomoscope Duo, CT Imaging GmbH, Erlangen, Germany), see Table 1. For the μCT scanning process,
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the mice were anesthetised using 2.5% isoflurane vaporised in 1.0 l/min of oxygen gas using a dedicated
vaporiser. Afterwards, they were placed in an animal cassette as described before10,39. While acquiring
μCT data, mice were constantly under anesthesia. For each time point; 0.25 h, 002 h, 004 h, 008 h, 024 h,
048 h, and 072 h; mice were newly anesthetised, positioned in the mouse bed, and scanned. A dual energy
μCT scan (HQD-6565-360-90) was used, where tubes were operated with a voltage of 65 kV and a
current of 1 mA acquiring 720 projections with 1032 × 1012 pixels during one full rotation, respectively
as it was described in detail before10,39,40. Per scan a time of 90 s was required, whereby two scans per
mouse were needed at each time point to entirely cover the mouse body. The acquired voxel sizes were
0.28 mm × 0.28 mm × 0.28 mm and the field of view was 40.32 mm × 28.84 mm × 55.44 mm. The
spatial resolution of the system is in the order of 80 μm with a fixed geometry.

The contrast-enhanced dataset consists of 85 3D whole body scans from ten female A431-tumor
bearing BALB/cAnNRj-Foxn1nu mice (Janvier, Le Genest-Saint-Isle, France), see Table 2. They were

Figure 1. 3D visualization of native and contrast-enhanced μCT data. Each μCT scan consists of a set of

isotropic voxels, whereby all voxel intensities are calibrated in Hounsfield units allowing a direct comparison

between native and contrast-enhanced μCT data. Using a gray scale, structures with high attenuation of X-rays

appear brighter, e.g. the bones, whereas structures with low attenuation appear dark such as lung and soft

tissue. (a) 3D rendering (upper panel) and 2D axial slice view (lower panel) for a native (#M01-0.25 h) and a

contrast-enhanced scan (#M03-008h) are depicted. (b) Spleen and liver appear brighter after the injection of

the contrast agent.
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scanned with the InSyTe μCT scanner (BMIF TriFoil Imaging, Dijon, France). One hour before the first
scan, the preclinical μCT contrast agent ExiTron™ nano 6000 (100 μl, 640 mg iodine/kg body weight) was
intravenously injected. This non-toxic, commercially available, alkaline earth metal-based nanoparticu-
late contrast agent circulates in the blood stream and is taken up by the Kupffer cells. It significantly
enhances the CT-contrast in spleen and liver21,41 as clearly shown in Fig. 1. A single dose of ExiTron™
nano 6000 results in longstanding enhancement of liver and spleen tissue for longer than 3 weeks peaking
for the liver at approximately 4 h and for spleen contrast at 48 h post injection41. For scanning procedure,
the mice were anaesthetised in the same way and placed in the same animal cassette as described in the
case of the native dataset. A special adapter was designed and built for this μCT. Hence, the same mouse
bed from the previous study was used among the different μCT systems in order to increase the
consistency of μCT analysis. Similar to the protocol of the native μCT scans, the mice were repeatedly
anesthetised, positioned in the mouse bed, and scanned at the different time points; pre (−001h), 0.25 h,
002 h, 004 h, 006 h, 008 h, 024 h, 048 h, 072 h, 144 h, 168 h, 192 h, and 240 h. For a full-rotation μCT scan,
207 views with a frame rate of 1 frame per view, an X-ray tube voltage of 75 kV, and an exposure time of

Source Mouse ID Temporal range (bold: 2 organ segmentations are available)

native M01 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M02 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M03 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M04 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M05 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M06 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M07 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M08 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M09 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M10 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M11 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M12 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M13 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M14 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M15 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M16 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M17 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M18 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M19 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

native M20 0.25 h; 002 h; 004 h; 008 h; 024 h; 048 h; 072 h

Table 1. Characterization of the native dataset. The table shows the details of the native dataset, mouse
IDs, measured time points, and the time points where 2 organ segmentations are available.

Source Mouse ID Temporal range (bold: 2 organ segmentations are available)

Contrast-enhanced M01 −001h; 002 h; 004 h; 006 h; 024 h; 048 h; 072 h; 120 h; 168 h; 240 h

Contrast-enhanced M02 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h

Contrast-enhanced M03 −001h; 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h; 048 h; 072 h

Contrast-enhanced M04 −001h; 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h; 048 h; 072 h; 120 h; 144 h; 192 h; 240 h

Contrast-enhanced M05 −001h; 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h; 048 h; 072 h

Contrast-enhanced M06 −001h; 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h; 048 h; 072 h; 120 h; 144 h; 192 h; 240 h

Contrast-enhanced M07 −001h; 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h; 048 h; 072 h; 120 h

Contrast-enhanced M08 −001h; 0.25 h; 002 h; 004 h; 006 h; 008 h; 024 h; 048 h; 072 h; 120 h; 144 h; 168 h; 192 h

Contrast-enhanced M09 024 h

Contrast-enhanced M10 024 h

Table 2. Characterization of the contrast-enhanced dataset. The table shows the details of the contrast-
enhanced dataset, mouse IDs, measured time points, and the time points where 2 organ segmentations are
available.
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230 ms were acquired. The acquired voxel sizes were 0.28 mm × 0.28 mm × 0.28 mm and the field of
view was 43.12 mm × 33.88 mm × 67.76 mm.

Image reconstruction and analysis - 3D whole body organ segmentation
All acquired 3D μCT images were reconstructed at an isotropic voxel size of 28 μm using a Feldkamp
type algorithm and a smooth kernel as previously described10,23,39. 3D organ segmentations based on the
μCT data were performed for all mice at the different time points. The standardised segmentation
protocol, used for both datasets, was developed in our group and has been previously described42. Briefly,
bone structures and lung were semi-automatically segmented using threshold functions above a certain
value, for bone>1000 HU, or below a certain value, for lung o300 HU, and selecting a seed point for
region growing. Organs with defined and clearly visible boundaries such as the heart, bladder, and
kidneys were segmented by manual delineation. Scribbles were drawn around the organ boundaries, see
Fig. 2d. Other organs such as the stomach and intestine were segmented approximated by a few convex
regions and manual delineation of them. Liver segmentation was performed slab wise due to the complex
shape of the lobes. As an example of muscle, a part of the thigh was segmented. Despite their
polymorphic shape subcutaneous tumors displayed clearly distinguishable boundaries and were
segmented by manual delineation.

Statistics and calculation of the Sørensen–Dice coefficient
The quality of the whole body organ segmentations by manual delineation between two trained scientists
was compared by calculating the Sørensen–Dice coefficient (Sørensen index, Dice’s coefficient). This
similarity coefficient is widely used in image analysis, for example, to evaluate the reproducibility of
manual segmentations and the overlap accuracy of automated probabilistic fractional segmentation of
MR images28,43. Here in particular, it is used to investigate the similarity between the same organ

Figure 2. Interactive organ segmentation based on whole body μCT data. (a–d) A μCT-based 3D whole

body organ segmentation of a mouse is performed semi-automatically for bones (beige), lung (pink), and

spleen (dark green). Other organs are segmented by manual delineation: liver (brown), stomach (light tan),

kidneys (yellow), intestine (light green, only depicted in d), tumor (orange), part of the thigh muscle (blue), and

bladder (gold). For the segmentation process, organs need to be encircled in several slices such as (b) coronal

and (c) axial from which a program can interpolate the remaining slices. (d) Example of the manual delineation

procedure by drawing scribbles (green line) around the right kidney. Mouse #M03-004h of the contrast-

enhanced dataset was used in this example.
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analysed independently by two experts. The Sørensen-Dice similarity coefficient for image segmentation
is calculated using this formula:

sv ¼ 29X \ Y9
9X9þ 9Y9

For each particular organ, X and Y represent the set of segmented voxels of user 1 and 2, respectively. The
Sørensen–Dice coefficient computes the ratio of segmentation overlap to the segmentation size. A higher
Sørensen–Dice coefficient represents a higher degree of similarity. A score of 1.0 denotes a perfect overlap
and a score of 0.0 represents no overlap. Thus, the Sørensen–Dice coefficient can be used to determine
the accuracy of automated segmentation methods by comparison with manual segmentations.

The Sørensen–Dice coefficient was computed for both datasets and all segmented organs to assess
inter-user segmentation variability, see Table 3. For the native dataset, 35 whole body μCT-based organ
segmentations were performed by a second evaluator. All mice that received the fluorescent probe
OsteoSense 750 EX (PerkinElmer, USA) at all seven time points were chosen for this analysis23, see
Table 1. This probe has no decreasing or enhancing effect on CT-contrast. For the contrast-enhanced
μCT dataset, 39 organ segmentations were used for calculating the Sørensen-Dice coefficient. All eight
mice, but only the time points 0.25 h, 002 h, 004 h, 006 h, and 008 h were chosen for this analysis, see
Table 2. Time point 008 h of #M01 is missing due to some technical problems during the scanning
process. Statistical analysis was performed using GraphPad Prism version 7.0. For the comparison
between organs, a multi-comparison one-way ANOVA was performed in combination with a Tukey
posttest. A p-value below 0.05 was considered to represent statistical significance. Statistical significances
are shown as pair-wise significance matrices (P &lt; 0.05 in green) in Fig. 3, detailed explanation has been
previously described23.

Data Records
The μCT database published in this article consists of native and contrast-enhanced μCT scans. The
native dataset comprises 140 murine 3D whole body scans and organ segmentations, where 35 scans
include organ segmentations from two different evaluators. The contrast-enhanced dataset includes 85
murine 3D whole body scans with enhanced contrast in spleen, liver, and other organs, where 39 scans
include two organ segmentations. Both datasets have been deposited in an online Figshare repository
(Data Citation 1). For each scan, there is a subfolder labeled with mouse ID (M01, M02, etc.) and time
point of measurement (0.25 h, 002 h, etc.) which contains a pyramid of μCT data with different
resolutions (CT140, CT280) in the Analyze file format (consisting of pairs of .HDR and .IMG files).
CT280 is generated by averaging eight neighboring voxels of CT140 to one average voxel, which results in
a lower resolution. For the organ segmentations of the native data, the CT280 scan was used. The CT140
scans were initially used for the segmentations of the contrast-enhanced data, but, additionally, the organ
segmentations were saved using CT280, clearly marked in the file names (Organ_140 or Organ_280). All
3D organ segmentations are saved as Analyze files with 8-bit voxels containing different indices for each
segmented organ. Every voxel belongs exactly to one class index, either to an organ class or to class 0

Native μCT data Contrast-enhanced μCT data

Organ Dice Std dev Minimum Maximum Dice Std dev Minimum Maximum

Bone 0.793 0.005 0.782 0.803 0.923 0.050 0.789 0.999

Bladder 0.854 0.039 0.694 0.900 0.822 0.057 0.710 0.915

Heart 0.879 0.021 0.812 0.910 0.851 0.047 0.687 0.913

Intestine 0.722 0.029 0.654 0.768 0.686 0.149 0.308 0.886

Kidneys 0.819 0.040 0.689 0.878 0.809 0.051 0.662 0.888

Liver 0.808 0.044 0.677 0.883 0.818 0.068 0.555 0.903

Lung 0.859 0.021 0.784 0.888 0.907 0.048 0.797 0.980

Spleen *0.373 0.137 0.115 0.642 *0.820 0.046 0.710 0.888

Muscle 0.528 0.179 0 0.839 0.369 0.162 0.031 0.618

Stomach 0.736 0.138 0.348 0.947 0.682 0.070 0.466 0.809

Tumor - 0.562 0.187 0.087 0.810

Table 3. Comparison of the Sørensen–Dice coefficient. The coefficients for all organs of the native and the
contrast-enhanced datasets are depicted to assess the quality of two organ segmentations by manual
delineation. Furthermore, the calculated standard deviation (Std dev) and the minimum and maximum values
of the Sørensen–Dice coefficient are shown. The main difference between the native and the contrast-enhanced
μCT data is the increase in Sørensen–Dice coefficient showing the higher similarity in segmentation of the
spleen (increase from 0.373 to 0.820, as highlighted with *). The data are also graphically depicted in Fig. 3.
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(unclassified). The folder also includes a text file ending with .CLS, describing the assignment of the class
indices to the respective organ and class color, for example: ClassColors = 0 0 0 255|201 238 255 255|255
170 255 255, ClassIndices = 0|1|2, ClassNames = unclassified|Bone|Lung. Additionally, a segmentation
file named *Bed including the mouse bed, the whole body of the mouse, and fiducial markers, is included
in every folder.

Technical Validation
The intensity values of μCT images are usually provided in Hounsfield units, which are calibrated in such
a way that air generates intensities of −1000 and water 0. Therefore all CT images acquired by different
scanners can be compared with each other due to the general calibration. Both preclinical μCT scanners
were regularly maintained including calibration and quality control under the responsibility of qualified
service personnel from the respective companies. However, occurring image artifacts, ring or beam-
hardening artifacts, or motion artifacts due to breathing or cardiac movements can result in discrepancies
between reconstructed values and true attenuation coefficients. In our study, these artifacts are negligible,
because the manual segmentation is not influenced by any kind of artifacts, because when organ
segmentation by manual delineation is performed, most organ boundaries can be seen by eye even if they
are blurred. Nevertheless, the artifacts might interfere with some automated organ segmentation
algorithms under certain conditions and should be considered in detail. Furthermore, the used
multimodal mouse bed places the animal in a fixed position which leads to a reduction of breathing and
motion artefacts. This mouse cassette is routinely used in many research institutes and companies, for
several applications such as FMT-CT, PET-CT.

Usage Notes
Researchers are highly encouraged to download the 3D μCT scans of the native and/or contrast-enhanced
μCT datasets from Figshare (Data Citation 1). The μCT data including organ segmentations could be
used for the development of automated organ segmentation algorithms. By computing the Sørensen-
DICE coefficient, the accuracy of existing or newly developed approaches can be compared. Usage of the
well-known Analyze file format ensures that the μCT data can be loaded by many 3D analysis software
packages. For all analysis, we used the software “Imalytics Preclinical”42, which was developed
in our group.
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