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Rheumatoid arthritis (RA) is a common autoimmune disorder influenced by both genetic
and environmental factors. To investigate possible contributions of DNA methylation to
the etiology of RA with minimum confounding genetic heterogeneity, we investigated
genome-wide DNA methylation in disease-discordant monozygotic twin pairs. This
study hypothesized that methylomic biomarkers might facilitate accurate RA detection.
A comprehensive series of biomarker detection algorithms were utilized to find the
best methylomic biomarkers for detecting RA patients using the methylomic data of
the peripheral blood samples. The best model achieved 100.00% in accuracy (Acc)
with 81 methylomic biomarkers and a 10-fold cross-validation (10FCV) strategy. Some
of the methylomic biomarkers were experimentally confirmed to be associated with
the onset or development of RA. It is also interesting to observe that many of the
detected biomarkers were from chromosome Y, supporting the knowledge that RA has
a significant gender discrepancy.

Keywords: feature selection, rheumatoid arthritis, methylation biomarker, methylome, chromosome Y

INTRODUCTION

The chronic autoimmune disease rheumatoid arthritis (RA) demonstrates significant changes to
joints, with major symptoms like joint pain and swollenness (Triantafyllias et al., 2016). RA is
strongly associated with the inflammation around major organs like lungs (Chatzidionisyou and
Catrina, 2016; Farquhar et al., 2019) and heart (Crowson et al., 2013; Lazzerini et al., 2017). RA
may be developed in about 1% of the population in the developed countries (Smolen et al., 2016).
Moreover, females have a 2.5 times high risk than males to develop RA (Alam et al., 2011).

The cause of RA remained unclear and was hypothesized to be under the orchestrated regulation
of both genetic and epigenetic factors (Villanueva-Romero et al., 2018; Khan et al., 2019). Various
genetic biomarkers were detected through genome-wide association studies (Massey et al., 2018;
Shadrina et al., 2018; Lopez-Mejias et al., 2019). Multiple genetic mutations were detected to be
statistically associated with the susceptibility for RA, including the SNPs in the genes interferon
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regulatory factor 4 (IRF-4) (Lopez-Isac et al., 2016) and
Solute Carrier family 8 (SLC8A3) (Julia et al., 2016). Genetic
factors were also observed to be associated with the treatment
responses of the tumor necrosis factor alpha inhibitors (TNFi)
(Massey et al., 2018) and the methotrexate (MTX) monotherapy
(Taylor et al., 2018).

Recent studies also demonstrated that the differential status of
the epigenomic loci was also statistically significantly associated
with RA even in a small population (Julia et al., 2017; Carnero-
Montoro and Alarcon-Riquelme, 2018). The RA pathogenesis
was observed to be actively regulated by the epigenetic
modifications of the immune machineries in the joint tissues
(Ibanez-Cabellos et al., 2019). Various environmental factors like
cigarette smoking and certain oral pathogens may induce RA
through epigenetic modifications (Brandt et al., 2019). Novel
treatment plans were proposed to use epigenetic modulators
to reverse the differentially methylated regions (Petralia et al.,
2019). So the detection of RA methylation biomarkers may both
facilitate the understanding of RA pathogenesis and propose
more epigenetic drug targets.

There were two main types of computer algorithms to detect
biomarkers, i.e., filters and wrappers (Xie et al., 2013; Singh
et al., 2018; Verde and De Pietro, 2019). A filter tries to rank
the features by each feature’s statistical association significance
with the phenotype, assuming the features are independent of
each other (Lyu et al., 2017). The filter algorithm has a linear
time complexity and runs fast enough for many large datasets (Xu
et al., 2018). A wrapper utilizes a few heuristic rules to generate a
feature subset with a performance evaluation iteratively, and the
final feature subset is output if the stop criterion is met (Tekin
Erguzel et al., 2015). The strategies of both filters and wrappers
may be integrated to generate a hybrid feature selection algorithm
(Kumar and Nirmalkumar, 2019; Wu et al., 2019).

This study hypothesized that methylomic features might
reflect both the genetic and epigenetic status of RA. So a
comprehensive biomarker detection procedure was carried out to
find a biomarker set with the satisfying RA prediction accuracy
(Acc). The best RA prediction model was also compared with
the two sets of methylomic biomarkers from the previous
studies. Our model demonstrated a better RA prediction Acc and
interesting biological observations.

MATERIALS AND METHODS

Summary of the Dataset
This study screened 485,577 methylomic features detected from
79 RA children and their 79 healthy monozygotic twin siblings
(Webster et al., 2018). The twin pairs were identified from the
TwinsUK register (Moayyeri et al., 2013) and the RA status was
detected in a questionnaire between 1997 and 2002. The twin
volunteers were recruited after an advertisement in the National
RA Society newsletter in 2013. The RA status was clinical
confirmed after these twins were recruited, and only those twins
with one healthy and the other RA status were kept for this study.
The blood samples were stored at−80◦C for DNA extraction.

The methylome was generated by the Illumina
HumanMethylation450 BeadChip 15017482 v1.1. The raw
data were available at the ArrayExpress database (Athar
et al., 2019) with the accession number E-MTAB-6988. This
methylomic dataset was formulated as a binary classification
problem between the pediatric RA patients and the controls.

The data were provided in the raw format of IDAT, and the
methylation level was calculated using the function getBeta() of
the R package minfi version 1.28.3 (Aryee et al., 2014).

Pre-screening the Methylomic Features
Many feature selection algorithms run slow on a large dataset,
and each methylome has almost half a million features. The
downstream feature selection algorithms may crash if they were
used directly on the methylomic datasets. So we carried out
a pre-screening step to reduce the number of features to be
within the capacity of the feature selection algorithms. So the
classifier LinearSVC was used to select features for further
feature screening. The Python package sklearn has a module
SelectFromModel() for this purpose. The model can select
features based on the indicators given by the LinearSVC trained
on the dataset and the user may determine the number of features
screened for further analysis.

Filter Algorithms
Four widely used filter algorithms were used to rank the features,
assuming the features were independent of each other. T-test
(Ttest) assumed that the data followed a normal distribution and
were widely used in bioOMIC data. Ttest evaluated the statistical
significance of a feature’s differential values between two groups
of samples (Kim, 2015; Gharbali et al., 2018; Jankowski et al.,
2018). This study focused on the differential methylated residues
between the RA patients and the siblings and assumed the
independences between the two groups of samples (Lotsch et al.,
2013; Kahl et al., 2018).

Chi-squared test (Chi2) can be used to select features
with the highest values of the chi-squared statistics from a
vector × relative to the classes. The chi-square test measures
dependence between stochastic variables. It also checked whether
a feature was statistically significantly associated with the
class label under the assumption of a chi-squared distribution
(Bangdiwala, 2016; Fernandez Rojas et al., 2019).

Mutual information (MI) measured the mutual dependency
between a feature and the class label (Wei and Stocker, 2016;
Meng et al., 2019). MI is equal to zero if and only if two random
variables are independent, and a higher value means a higher
dependency between the two random variables. The function
relies on non-parametric methods based on entropy estimation
from k-nearest-neighbor (KNN) distances.

Pearson correlation coefficient (PCC) evaluated the linear
correlation between a feature and the class label with the
assumption of sample independence (Liu et al., 2017). The PCC
measures the linear relationship between two variables. PCC
assumed that each variable be normally distributed, and do
not necessarily have a zero-mean. Like the other correlation
coefficients, PCC varies between −1 and +1 with 0 implying
no correlation between the two variables. Correlations of −1
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or +1 imply an exact negative or positive linear relationship.
Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases. The p-value
roughly indicates the probability of an uncorrelated system
producing variables that have a Pearson correlation at least as
extreme as the one computed from these variables.

Recursive Feature Elimination Strategy
Recursive feature elimination (RFE) was a strategy to iteratively
remove a feature with the least weight from the training of
a classification model. The following four classification models
were used to build the RFE feature selection procedure. Logistic
regression (LR) (rfeLR) was a popular binary classifier and may
be embedded in the RFE strategy (Pandey et al., 2018). LR is also
known in the literature as logit regression, maximum-entropy
classification (MaxEnt), or the log-linear classifier. In this model,
the probabilities describing the possible outcomes of a single trial
are modeled using a logistic function.

Lasso was a regression model and may be used to assign
weights to features after a model training (rfeLasso) (Wang
et al., 2019). The Lasso is a linear model that estimates sparse
coefficients. It is useful in some contexts due to its tendency to
prefer solutions with fewer non-zero coefficients, so Lasso can
effectively reduce the number of features upon which the given
solution is dependent. For this reason, Lasso and its variants
are fundamental to the field of compressed sensing (Angelosante
et al., 2009). Mathematically, it consists of a linear model with an
added regularization term. The objective function to minimize is:

min
w

1
2nsamples

||Xw−y||
2
2 + α||w||1.

The lasso estimate thus solves the minimization of the least-
squares penalty with αw1 added, where α is a constant and w1
is the l1-norm of the coefficient vector.

The Naïve Bayes method calculated the association probability
of each feature with the class label under the assumption of
inter-feature independence (rfeNBayes) (Youn and Jeong, 2009).
Naive Bayes methods are a set of supervised learning algorithms
based on applying Bayes’ theorem with the “naive” assumption
of conditional independence between every pair of features given
the value of the class variable. Naive Bayes learners and classifiers
can be extremely fast compared to more sophisticated methods.
The decoupling of the class conditional feature distributions
means that each distribution can be independently estimated as
a one-dimensional distribution. This in turn helps to alleviate
problems stemming from the curse of dimensionality.

The ridge regressor (rfeRidge) tried to assign minimized
weights to non-associated features to a model (Barker and Brown,
2001; Rottmann and Berbeco, 2014). Ridge regression addresses
some of the problems of ordinary least squares by imposing
a penalty on the size of the coefficients. The ridge coefficients
minimize a penalized residual sum of squares:

min
w
||Xw−y||

2
2 + α||w||22.

The complexity parameter α ≥ 0 controls the amount of
shrinkage: the larger the value of α, the greater the amount

of shrinkage and thus the coefficients become more robust
to collinearity.

Heuristic Feature Selection Strategies
Three heuristic feature selection strategies were used to generate
a feature subset. The ascending feature screening (AFS) strategy
started with an empty feature subset and selected the next feature
with the best rank or largest weight after a model training. Then
this chosen feature was removed from the remaining feature list.
While the descending feature screening (DFS) strategy started
with all the features and removed the next feature with the lowest
rank or the least weight after a model training. Cawley and Talbot
(2010) suggested that a classification model may be over-fitted if
the number of training samples was smaller than that of features.
We proposed a feature removal procedure BackFS to carry out an
iterative removal of a feature that contributed the least prediction
performance improvement. The feature subset with the best
prediction performance was kept for further analysis.

All the computational experiments were conducted in the
Python programming language version 3.6.5. Chi2 and MI
were provided in the python sklearn version 0.19.1. PCC
and Ttest were provided in the python scipy version 1.1.0.
The four RFE procedures were programmed using the python
sklearn version 0.19.1.

Classification Algorithms
Five widely used classifiers were utilized to measure the
prediction performance of a feature subset. The discriminative
power of a feature subset may be evaluated by a multivariate
LR (Inzaule et al., 2018). The support vector machine (SVM)
with the linear kernel function was another binary classifier that
had been widely used for biomedical datasets (Citak-Er et al.,
2018). SVMs are a set of supervised learning methods used for
classification, regression, and outlier detection which can analyze
data in classification and regression analysis. Given a set of
training instances, each training instance is marked as belonging
to one of the two categories, and the SVM training algorithm
creates a model that assigns new instances to one of the two
categories, making it a non-probability two Meta linear classifier.
The SVM model represents instances as points in space, so that
the mapping allows the instances of the individual categories to
be separated by as wide an apparent interval as possible. Then,
map new instances to the same space and predict which category
they belong to based on which side of the interval they fall on.
SVM may also be used to select biomarkers. After an SVM model
was trained on a dataset, each input feature was assigned with a
weight and the features with the default weight threshold 1e−5
may be chosen for further analysis.

The simple classifier KNN had demonstrated very good
prediction accuracies in some cases (Nejadgholi and Bolic, 2015;
Yang et al., 2017). Neighbors-based classification is a type of
instance-based learning or non-generalizing learning. It does not
attempt to construct a general internal model, but simply stores
instances of the training data. Classification is computed from
a simple majority vote of the nearest neighbors of each point:
a query point is assigned the data class which has the most
representatives within the nearest neighbors of the point.
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The ensembled classifier Random Forest (RF) integrated
the final decision based on the prediction results of multiple
random trees (Lu et al., 2017; Olsen et al., 2018; Rahman et al.,
2018). The RandomForest algorithm is perturb-and-combine
techniques specifically designed for trees. This means a diverse set
of classifiers is created by introducing randomness in the classifier
construction. The prediction of the ensemble is given as the
averaged prediction of the individual classifiers. In RFs, each tree
in the ensemble is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. The Gaussian
naïve Bayes classifier was used in this study as an evaluator of
a feature subset (Cao et al., 2017). GaussianNB implements the
Gaussian Naive Bayes algorithm for classification. The likelihood
of the features is assumed to be Gaussian:

P(xi|y) =
1√

2π σ2
y

exp

(
−

(xi − µy)
2

2σ2
y

)
.

The parameters σy and µy are estimated using
maximum likelihood.

The python sklearn version 0.19.1 provided the code of these
five classifiers.

Performance Measurements
Three classification performance measurements, i.e., accuracy
(Acc), sensitivity (Sn), and specificity (Sp), were used to evaluate
how well a feature subset performed (Ye et al., 2017; Xu et al.,
2018; Yokoi et al., 2018; Zhao et al., 2018). The RA children were
regarded as the positive samples (P) while the matched controls
were the negative samples (N). P and N were also denoted as
the numbers of positive and negative samples. Sensitivity (Sn)
was defined as the correctly predicted ratio of positive samples,
i.e., Sn = TP/(TP + FN) = TP/P, where TP and FN were the
numbers of correctly and incorrectly predicted positive samples,
respectively. Specificity (Sp) was the correct prediction ratio of
negative samples, i.e., Sp = TN/(TN + FP) = TN/N, where TN
and FP were the numbers of negative samples with correct and
incorrect predictions, respectively. The overall prediction Acc
was defined as Acc = (TP+ TN)/(P+ N).

These measurements were used in various prediction models
like the DNA and RNA functional elements (He et al., 2018;
Feng et al., 2019). And they were calculated using the 10-fold
cross-validation (10FCV) strategy as similar in Ye et al. (2017)
and Zhao et al. (2018).

Experimental Design
The experiments were carried out in three major steps, as
illustrated in Figure 1. The first step was to find 20,000 features
with the largest variations. A methylation residue with a large
variation was easier to be detected while a residue with a
stable methylation level required a high-resolution technology to
measure. And the downstream feature selection algorithms may
crash on a dataset with a large number of features. So we have
to reduce the feature dimensions to be within the capacity of
the eight feature selection algorithms. So LinearSVC was used to
select 147 features for further feature screening.

Then the two steps of feature selection and classification were
carried out iteratively to find the best classification model using
the selected features, as shown in Figure 1.

RESULTS AND DISCUSSION

Data Preprocessing
The raw data of this methylomic dataset was provided in the
format IDAT, and was processed using the function getBeta() of
the R package minfi version 1.28.3 (Aryee et al., 2014). There
were 485,577 methylation features for each sample, among which
65 probes designed to interrogate SNPs within the samples and
was ignored in the R package minfi. Some methylation residues
had many missing values, e.g., the feature cg01550828 has no
values in all the 158 samples. The feature cg01550828 was a
cysteine in the N termini of the gene Ring Finger Protein 168
(RNF168), which encoded an E3 ubiquitin ligase protein. After
the preprocessing, 485,511 methylomic features were detected for
the following analysis.

We hypothesized that methylated residues with larger beta-
value fluctuations may be easier to detect in the clinical practice.
Therefore, we calculated the standard deviation of the beta-
values of each methylated residue, and sorted the features in the
descendental order. The top-ranked 20,000 features of the 158
samples were kept for further analysis.

Limitations the Variation Threshold
20,000
We performed the 10FCV of the classifier LinearSVC on the
features with different variation thresholds, as shown in Figure 2.
Due to that the number of features were much larger than the
number of samples, only the features with the LinearSVC model
weight larger than the default weight threshold 1e−5 were kept
for model performance evaluation. Figure 2 demonstrated the
running time and 10FCV classification Acc of different numbers
of features, i.e., 1000, 2000, 3000, . . ., 22,000. As shown in the
figure, the variance threshold 20,000 achieved 0.9873 in Acc
while costed a very relatively small running time 17.6620 s. But
the procedure of feature selection and classification was not
optimized for the final classification Acc. So the other choice of
variance threshold may achieve a better final classification Acc.

The evaluation procedure was carried out in a computer with
the Windows 7 operating system and Python 3.7 programming
language. The computer had a 3.30GHz CPU, 32 Gb memory,
and 1Tb hard disk.

Optimizing LinearSVC to Select Features
Firstly, the feature selection procedure SelectFromModel() was
used to find the initial feature subset with a reasonable prediction
accuracy, as shown in Figure 3. The screening procedure was
provided by the Python package scikit-learn version 0.21.2 and
Python version 3.6. The penalization was carried out by the
L1 penalty. In the Python package sklearn.svm.LinearSVC, the
parameter C was a float with default = 1.0. It was a regularization
parameter. The strength of the regularization was inversely
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FIGURE 1 | Experiment flowchart of this study. Three major steps were carried out to find the best classification model. The first step was to find the 20,000 features
with the largest variation. Then a subset of 147 features was detected using LinearSVC, and 10 feature selection algorithms were utilized to find a better feature
subset. The prediction performance was evaluated using five popular binary classifiers.
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FIGURE 2 | Classification accuracy and time cost of the classifier LinearSVC with different variance thresholds. The horizontal axis was the “variance threshold.” The
left and right vertical axises were the computational time cost (seconds) and the classification accuracy, respectively.

proportional to C and this parameter must be strictly positive.
The parameter C was screened by the values between [0.10, 5.00]
with the step size 0.10, as shown in Figure 3.

Figure 3 demonstrated that after C reached the value
1.8, the prediction accuracy remained stable. The classifier
LinearSVC achieved Acc = 0.9873 with C = 1.8 and 140
features. The best prediction accuracy 0.9937 was achieved
by C = 2.4, 3.2, 3.4, 3.5, 4.3, 4.4, 4.6, and 4.7. The data
demonstrated that the best Acc = 0.9937 was achieved by
many choices of the parameter C, but no better performance
was achieved. A smaller number of features suggested a
simpler model. So C = 2.4 may be the best choice based
on Figure 3. Its also interesting to observe that at least
155 features were chosen when C = 3.2, 3.4 and 3.5. So
the following sections tried to find a smaller feature subset

from this list of 147 features, which were listed in the
Supplementary Table S1.

Selecting Features by Filters
A filter algorithm assumed the inter-feature independence and
evaluated each feature separately for its association with the
phenotype. So the AFS strategy selected the k-feature subset
as the top-ranked k features. While the DFS strategy removed
the least-ranked feature from a (k + 1)-feature subset based
on the filter-calculated single-feature association with the class
label. That is to say, the k-feature subset generated by the DFS
strategy was also the top-ranked k features. The ascending and
DFS strategies of a filter algorithm selected the same features for
a given number of features. So this section only investigated the
AFS() strategy of the four filter algorithms. The details of the
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between [0.10, 5.00] with the step size 0.10. The vertical axis was for the classification accuracy and the horizontal axis was for the values of the parameter C. The
number of features selected was given on top of each point in the curve.

AFS strategy were described in the section “Heuristic Feature
Selection Strategies.”

Our data suggested that all the five classifiers performed
similarly well on a feature subset with a size <50, as shown
in Figure 4. However, the two classifiers LR and SVM kept
improving the classification accuracies by adding more features.
And SVM achieved the best classification accuracies on features
selected by all the four filter algorithms. The best model with
Acc = 1.0000 was achieved by the classifier SVM with 144 Chi2-
selected methylomic features. The other three classifiers (KNN,
RFC and NBayes) reached the plateau of about 0.7000 in Acc after
the number of features reached 50.

Selecting Features by the RFE Strategies
We firstly evaluated the two feature selection procedures
AFS(rfeLR) and DFS(rfeLR), as shown in Supplementary Figure
S1. Filter algorithms had the assumption of the inter-feature
independence. Although filters usually ran faster than the other
algorithms like wrappers and RFE strategies, filters usually
selected more features to achieve similar classification accuracies
as the other feature selection algorithms (Srivastava et al., 2014;
Suto et al., 2016).

When almost all the 147 features were kept, AFS(rfeLR)
and DFS(rfeLR) performed similarly well for each of the five
classifiers. The same pattern as in the previous section was
observed that the two classifiers LR and SVM outperformed
the other three with significantly improved accuracies, and the
classifier SVM performed the best. Supplementary Figure S1
illustrated a novel pattern that the descendent feature removal
strategy (DFS) performed much better than the ascendant feature
addition strategy (AFS). AFS(rfeLR) required at least 116 features
to achieve Acc > 0.9000. While DFS(rfeLR) only needed 41
features to achieve Acc = 0.9114.

DFS(rfeRidge) performed even better than AFS(rfeRidge), as
shown in Figure 5 and Supplementary Figure S4. AFS(rfeRidge)

selected 97 features to train an SVM model with Acc = 0.9051.
But only 37 methylomic features were selected by DFS(rfeRidge)
to train an SVM model with Acc = 0.9114. And the SVM
model performed very stably with more features selected by
DFS(rfeRidge), as shown in Figure 5. The strategy BackFS
required many more features to achieve a similar prediction
accuracy, as in Figure 5C. The classifier NBayes assumed
the inter-feature independence, which may not be the case in
the dataset used in this study. This might be the reason that the
classifier NBayes didn’t perform very well in this study, as shown
in Figure 5.

Also, DFS(rfeLasso) performed better than AFS(rfeLasso), as
shown in Supplementary Figure S2. AFS(rfeLasso) selected 144
features to train an SVM model with Acc = 0.9684. But 144
methylomic features were selected by DFS(rfeLasso) to train an
SVM model with Acc = 0.9810. And the SVM model performed
very stably with more features selected by DFS(rfeLasso).

DFS(rfeNBayes) performed similarly well for each of the
five classifiers as AFS(rfeNBayes), as shown in Supplementary
Figure S3. Both AFS(rfeNBayes) and DFS(rfeNBayes) achieved
Acc = 0.9177 when selecting 101 features to train an SVM
model. And the SVM model performed very stably with more
features selected.

Overall, the best model achieved in this study was the SVM
model (Acc = 1.0000) using the 81 features selected by the strategy
DFS(rfeRidge), as shown in Figure 5.

Another evaluation procedure was carried out for the above-
selected features. The stratified splitting strategy was used to split
the samples into one-third training, one-third validation, and
one-third test datasets. The SVM parameter C was evaluated for
its different values from 0.1 to 3.0 with the step size 0.1, as shown
in Figure 6. After the 81 methylomic features were selected by
the strategy DFS(rfeRidge), the binary classification SVM models
with different C values were trained on the training dataset
and evaluated for the classification accuracies on the validation
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FIGURE 4 | Ascending feature screening (AFS) of four filter algorithms. The classification performance of each filter algorithm was evaluated by five classifiers. The
four filter algorithms were (A) Ttest, (B) Chi2, (C) MI, and (D) PCC, and the five classifiers were LR, SVM, KNN, RFC, and NBayes.

dataset, as shown in Figure 6. When the parameter was 0.5,
the validation accuracy reached the best value 0.8868. A similar
classification accuracy 0.8679 was achieved on the test dataset.
This suggested the model stability for the classification algorithm.

Refining the 147 Features With Two
Other Regression Algorithms
This study evaluated how the regression-based feature selection
algorithms might be improved by two other regression
algorithms, i.e., sliced inverse regression (SIR) (Cook and
Weisberg, 1991; Li, 1991) and group lasso (GroupLasso) (Yuan
and Lin, 2006; Yuan et al., 2011). Figure 1 demonstrated
that the LinearSVC model selected 147 features and then the
filters and regression-based RFE algorithms were applied. So
SIR and GroupLasso were utilized to further refine the subset
of 147 features.

Sliced inverse regression doesn’t need to optimize the
parametric or non-parametric model training process and
demonstrates a significant capability to reduce the feature
dimensions (Cook and Weisberg, 1991; Li, 1991). This study
utilized the SIR in the Python package sliced version 0.1 (Li,
1991). Its interesting to observe that the classifier SVM from
the best model achieved again Acc = 1.0000 using only the first
feature engineered by SIR. Our experimental data demonstrated
that SIR and the proposed feature selection procedure achieved

the same classification performances on the investigated problem
in this study. But the best model used only 81 original methylated
residues while SIR used the one feature engineered from
the 147 features.

GroupLasso is another widely used feature selection algorithm
that assigns non-zero weights to groups of features instead
of the individual ones like the regular lasso (Yuan and Lin,
2006; Yuan et al., 2011). This study utilized GroupLasso in
the Python package group-lasso version 1.1.1 (Yuan and Lin,
2006; Yuan et al., 2011). Unfortunately no features were selected
by GroupLasso.

Refining Differentially Methylated and
Variable Biomarkers
Twenty differentially methylated residues were detected in the
previous study, but all of them were not statistically significantly
associated with RA by the adjusted p-values (Webster et al., 2018).
This study further refined this subset of 20 methylation residues
with the classification accuracy as the optimization goal.

The AFS strategy of the four filter algorithms was applied
to the 20 differentially methylated residues, as shown in
Supplementary Figure S5. The classifier NBayes achieved the
best Acc = 0.7532 on the original subset of 20 features. This
model may be further improved to Acc = 0.7658 using only
10 features, which was selected by the algorithm AFS(MI).
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FIGURE 5 | Comparison of the three feature screening strategies of the feature selection algorithm rfeRidge. The classification performance was evaluated by five
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FIGURE 6 | Parameter tuning for the SVM parameter C. The horizontal axis was the value of the parameter C, and the vertical axis was the classification accuracy.
Each model was trained on the training dataset and evaluated on the validation dataset.

Another algorithm AFS(Ttest) achieved the same prediction
Acc = 0.7532 using only 4 and 10 features for the classifiers KNN
and NBayes, respectively.

An even better improvement may be achieved by both
AFS(rfeLasso) and DFS(rfeLasso), as shown in Supplementary
Figure S6. Firstly, the original list of 20 differentially methylated
residues may be reduced to 11 features to achieve Acc = 0.7658.

Secondly, the best model achieved Acc = 0.8038 using
only 18 features.

Webster et al. (2018) also evaluated a list of two differentially
variable residues, which were refined in the same way in this
study, as shown in Supplementary Figures S7, S8. The similar
patterns were observed, and the best improved SVM model
achieved Acc = 0.7722 with 12 features selected by AFS(Chi2).
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Refining the Previous Biomarkers by
BackFS
The two lists of RA biomarkers were further refined by a simple
iterative feature elimination procedure BackFS, as shown in
Figure 7. BackFS exhaustively removed the redundant features,
so only the subset of features achieving the best prediction
accuracy was kept for further analysis. The original list of 20
differentially methylated features may be further selected to
achieve a better prediction Acc = 0.7658 using only 18 features
for the classifier NBayes, as shown in Figure 7A. While the list
of 20 differentially variable features may be reduced to 15 with a
better prediction Acc = 0.7595 for the same classifier NBayes, as
shown in Figure 7B.

Independent Effectiveness Evaluation of
the Proposed Biomarker Detection
Procedure
We further evaluated the effectiveness of the proposed biomarker
detection procedure on an independent dataset. There is no
simulation tool for the array-based methylomes. So another
independent dataset TCGA-BRCA (Berger et al., 2018) was
chosen to evaluate our biomarker detection procedure, as shown
in Figure 8. There were 982 samples and each sample had 485,577
methylated residues. Multiple samples were extracted from some
patients and only sample was randomly chosen to represent
this patient. 763 samples were collected to have the clinical
annotation “tumor_stage” (I/II/III/IV). The binary classification
problem was formulated between the class Positive (555 samples
from the stages I and II) and Negative (208 samples from the
stages III and IV).

The same biomarker detection procedure was carried out on
the methylomic dataset TCGA-BRCA, as shown in Figure 6.
The initial 20,000 top-ranked features with the largest standard-
deviations were screened to find the best value of the parameter
C, as shown in Figure 6. The binary classification problem
for the dataset TCGA-BRCA seemed to reach the classification
accuracy 1.0000 with the parameter C = 0.3. There were 499
features selected in this step. Then the four filter algorithms were
evaluated using the AFS strategy and the four RFE algorithms
were evaluated by both AFS and DFS strategies, in the same
procedure as the above. The features screened by DFS(rfeLR)
achieved the best classification accuracy 1.0000 using only
240 features. Among the five classifiers, SVM achieved the
best performance, as the same in the RA biomarker detection
problem. The best feature selection algorithm DFS(rfeRidge)
for the RA biomarker detection problem achieved a similar
classification accuracy (0.9882) for the dataset TCGA-BRCA.

So overall the biomarker detection procedure in this study
effectively detected methylated residues for the methylome-based
classification problems.

Biological Observations of Methylomic
Biomarkers
This study selected 81 methylated residues as biomarkers to
separate the RA patients from their controls, as shown in
Supplementary Table S1. Its interesting to observe that 38 of

these 81 methylated residues were from the chromosome Y
and many of them were within the transcriptional start sites
(TSS) of non-coding RNA gene family Testis-Specific Transcript,
Y-Linked (TTTY). This supported the observations in the
literature about the gender discrepancy on autoimmune diseases
like RA (Jansson and Holmdahl, 1994). Many of these methylated
residues were in the TSS regions of these non-coding RNAs,
suggesting that methylation may have played a regulatory role in
the onset and development of RA (Relle et al., 2015; Houtman
et al., 2018). Such reversible epigenetic modifications may serve
as therapeutic candidates (Cribbs et al., 2015; Doody et al., 2017).

Another RA-associated gene HLA-DRB1 (Major
Histocompatibility Complex, Class II, DR Beta 1) was also
a methylation biomarker (cg27107292) detected in this study
(Conigliaro et al., 2019; Okada et al., 2019). HLA-DRB1 was one
of the first few RA biomarkers discovered four decades ago and
harbored more than 100 RA-associated loci (Okada et al., 2019).
Recently, HLA-DRB1 was also observed to be differentially
methylated in RA (Liu et al., 2013) and had significant
associations with the mortality and prognosis of RA (Ruyssen-
Witrand et al., 2012; Viatte et al., 2015) and other autoimmune
diseases (Bettencourt et al., 2012; Okayama et al., 2018).
Furthermore, the pathway analysis through the KEGG Database
(Kanehisa et al., 2017) demonstrated that various immune
pathways were associated with HLA-DRB1 such as hsa04612
(Antigen processing and presentation pathway), hsa04659 (Th17
cell differentiation pathway), and hsa05323 (RA pathway). This
suggested that the detected biomarker HLA-DRB1 was strongly
connected to the autoimmune disease RA.

Furthermore, C5orf30 (a methylation biomarker cg17605604)
was reported as a damaging regulator of tissue in RA, which
is highly expressed in RA synovial fibroblast (RASF) involving
joint destruction (Muthana et al., 2015). The clinical data
analysis also demonstrated that the variant rs26232 in C5orf30
locus was testified to be associated with RA susceptibility
and radiologic damage severity. These observations from the
literature supported that C5orf30 may play a significant role in
the progression of arthrosis damage (Teare et al., 2013).

Two gender-specific methylation biomarker genes DDX3Y
and UTY which have been reported as sex-affected differentially
expressed genes for inflammatory arthritis through the Wnt
signaling (Kudryavtseva et al., 2012). This situation exactly
matched to the gender-biased disease condition for RA. Besides
DDX3Y was suggested to be differentially expressed in cartilage
tissues of RA patients versus control groups with potential
association with miRNA (Toraih et al., 2016). Many other genes
like RPS4Y2, KDM5D, EIF1AY, and CYorf15A have also been
shown as important biomarker genes in RA via the Monte Carlo
cross-validation (Song et al., 2017).

Supplementary Table S1 also illustrated that the methylated
biomarkers were from various genic sites, i.e., TSS, 5′-
untranslated region (UTR), 3′-UTR, first exon, and genic
body. This suggested that these RA methylation biomarkers
contributed their regulatory roles through different biological
mechanisms. Those frequently appeared genes, and non-coding
RNA genes may need further wet-lab investigations of their
potential biological mechanisms.
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FIGURE 7 | Refine the two lists of previous methylation biomarkers of RA. The classification performance was evaluated by five classifiers. The five classifiers were
LR, SVM, KNN, RFC, and NBayes. Refining procedures of (A) the 20 differentially methylated positions (DMP) and (B) the 20 differentially variable positions (DVP).

FIGURE 8 | Evaluating the proposed biomarker detection procedure with a new dataset TCGA-BRCA. The classification performance was evaluated by five
classifiers. The five classifiers were LR, SVM, KNN, RFC, and NBayes. (A) The classification accuracies (vertical axis) of the classifier LinearSVC with different values
of the parameter C between [0.10, 4.00] with the step size 0.10. (B) The classification accuracy plots of the feature selection strategy DFS(rfeLR) using the five
classifiers, i.e., LR, SVM, KNN, RFC, and NBayes.

CONCLUSION

This study comprehensively utilized the widely used modeling
algorithms to find the set of methylomic features with
the best RA prediction accuracy. The best model used
the features selected by the DFS(rfeRidge) strategy and the
classifier SVM. The best accuracy 100.00% was achieved with
the 81 detected methylomic biomarkers using the 10FCV
strategy. The 81 methylomic biomarkers may accurately
separate the RA patients from their matched controls. These
biomarkers also demonstrated that chromosome Y contributed
38 methylated residues to the final model, supporting the
literature about the gender-specific discrepancy. These 81
methylated biomarkers came from both regulatory regions
and the gene body. So the biological mechanisms of how
these 81 methylated residues were involved in RA’s onset and
development may vary from the transcriptional regulation to the
epigenetic modifications.

The number of biomarker features was still too large for
the clinical practice. Clinical data other than the methylomic
features may be integrated to improve the proposed RA detection

model. A weakened model may also be considered using fewer
features. For example, if only 37 methylomic features selected by
DFS(rfeRidge) were used to train the SVM model, the detection
accuracy reached Acc = 0.9114, an acceptable accuracy in some
cases. RA was a complex human disease and the subtypes may
be described by fewer biomarkers. So the detection models for
the RA subtypes may also use fewer biomarkers to achieve
satisfying accuracies.

The samples were 70 pairs of monozygotic twins. Each
twin shared the same genetic background that might reduce
the noise information induced by the methylation status of
genetic variations. This sample setting suggested that the detected
methylomic biomarkers mainly reflected the epigenetic status
of RA. Independent validation datasets might also further
improve our models.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: E-MTAB-6988 at the ArrayExpress database.

Frontiers in Genetics | www.frontiersin.org 10 March 2020 | Volume 11 | Article 238

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00238 March 27, 2020 Time: 11:19 # 11

Feng et al. Methylomic Biomarkers of Rheumatoid Arthritis

AUTHOR CONTRIBUTIONS

FZ and XF conceived the project and designed the experiments.
XF, XH, RS, ZX, LH, and QY wrote the codes and
conducted the experiments. XF, XH, RS, and ZX generated
the experimental results and drafted the discussions. FZ
and XF discussed the experimental design and polished the
manuscript. FZ and XF drafted and polished the manuscript.
FZ, QY, and XF designed and carried out the additional
experiments according to the reviewers’ comments. FZ, QY,
and XF also revised and polished the revised version of
the manuscript.

FUNDING

This work was supported by the Jilin Provincial Key Laboratory
of Big Data Intelligent Computing (20180622002JC), Jilin
Science and Technology Bureau (20190104130), the Education

Department of Jilin Province (JJKH20180145KJ), and the startup
grant of the Jilin University. This work was also partially
supported by the Bioknow MedAI Institute (BMCPP-2018-001),
the High Performance Computing Center of Jilin University,
and by the Fundamental Research Funds for the Central
Universities, JLU.

ACKNOWLEDGMENTS

Constructive comments from the two reviewers were
much appreciated.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00238/full#supplementary-material

REFERENCES
Alam, S. M., Kidwai, A. A., Jafri, S. R., Qureshi, B. M., Sami, A., Qureshi, H. H., et al.

(2011). Epidemiology of rheumatoid arthritis in a tertiary care unit, Karachi,
Pakistan. J. Pak. Med. Assoc. 61, 123–126.

Angelosante, D., Giannakis, G. B., and Grossi, E. (2009). “Compressed sensing of
time-varying signals,” in Proceedings of the 2009 16th International Conference
on Digital Signal Processing (Santorini-Hellas: IEEE), 1–8.

Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P.,
Hansen, K. D., et al. (2014). Minfi: a flexible and comprehensive Bioconductor
package for the analysis of Infinium DNA methylation microarrays.
Bioinformatics 30, 1363–1369. doi: 10.1093/bioinformatics/btu049

Athar, A., Fullgrabe, A., George, N., Iqbal, H., Huerta, L., Ali, A., et al. (2019).
ArrayExpress update – from bulk to single-cell expression data. Nucleic Acids
Res. 47, D711–D715. doi: 10.1093/nar/gky964

Bangdiwala, S. I. (2016). Chi-squared statistics of association and homogeneity. Int.
J. Inj. Contr. Saf. Promot. 23, 444–446. doi: 10.1080/17457300.2016.1228144

Barker, L., and Brown, C. (2001). Logistic regression when binary predictor
variables are highly correlated. Stat. Med. 20, 1431–1442. doi: 10.1002/sim.680

Berger, A. C., Korkut, A., Kanchi, R. S., Hegde, A. M., Lenoir, W., Liu, W., et al.
(2018). A comprehensive pan-cancer molecular study of gynecologic and breast
cancers. Cancer Cell 33, 690–705e699. doi: 10.1016/j.ccell.2018.03.014

Bettencourt, A., da Silva, A., Pinho, E. C. P., and Martins Silva, B. (2012). Molecular
genetic studies of multiple sclerosis in the portuguese population. Acta Med.
Port. 25, 224–230.

Brandt, B., Rashidiani, S., Ban, A., and Rauch, T. A. (2019). DNA methylation-
governed gene expression in autoimmune arthritis. Int. J. Mol. Sci. 20:5646.
doi: 10.3390/ijms20225646

Cao, J., Wu, Z., Ye, W., and Wang, H. (2017). “Learning functional embedding
of genes governed by pair-wised labels,” in Proceedings of the 2017 2nd
IEEE International Conference on Computational Intelligence and Applications
(Beijing: IEEE), 397–401.

Carnero-Montoro, E., and Alarcon-Riquelme, M. E. (2018). Epigenome-wide
association studies for systemic autoimmune diseases: the road behind and the
road ahead. Clin. Immunol. 196, 21–33. doi: 10.1016/j.clim.2018.03.014

Cawley, G. C., and Talbot, N. L. (2010). On over-fitting in model selection and
subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11,
2079–2107.

Chatzidionisyou, A., and Catrina, A. I. (2016). The lung in rheumatoid arthritis,
cause or consequence? Curr. Opin. Rheumatol. 28, 76–82. doi: 10.1097/BOR.
0000000000000238

Citak-Er, F., Firat, Z., Kovanlikaya, I., Ture, U., and Ozturk-Isik, E. (2018).
Machine-learning in grading of gliomas based on multi-parametric magnetic

resonance imaging at 3T. Comput. Biol. Med. 99, 154–160. doi: 10.1016/j.
compbiomed.2018.06.009

Conigliaro, P., Triggianese, P., De Martino, E., Fonti, G. L., Chimenti, M. S.,
Sunzini, F., et al. (2019). Challenges in the treatment of rheumatoid
arthritis. Autoimmun. Rev. 18, 706–713. doi: 10.1016/j.autrev.2019.
05.007

Cook, R. D., and Weisberg, S. (1991). Sliced inverse regression for dimension
reduction: comment. J. Am. Stat. Assoc. 86, 328–332.

Cribbs, A., Feldmann, M., and Oppermann, U. (2015). Towards an understanding
of the role of DNA methylation in rheumatoid arthritis: therapeutic and
diagnostic implications. Ther. Adv. Musculoskelet. Dis. 7, 206–219. doi: 10.1177/
1759720X15598307

Crowson, C. S., Liao, K. P., Davis, J. M. III, Solomon, D. H., Matteson, E. L.,
Knutson, K. L., et al. (2013). Rheumatoid arthritis and cardiovascular
disease. Am. Heart J. 166, 622.e1–628.e1. doi: 10.1016/j.ahj.2013.
07.010

Doody, K. M., Bottini, N., and Firestein, G. S. (2017). Epigenetic alterations in
rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 9, 479–492. doi:
10.2217/epi-2016-0151

Farquhar, H., Vassallo, R., Edwards, A. L., and Matteson, E. L. (2019). Pulmonary
complications of rheumatoid arthritis. Semin. Respir. Crit. Care Med. 40,
194–207. doi: 10.1055/s-0039-1683995

Feng, X., Zhang, R., Liu, M., Liu, Q., Li, F., Yan, Z., et al. (2019). An
accurate regression of developmental stages for breast cancer based on
transcriptomic biomarkers. Biomark. Med. 13, 5–15. doi: 10.2217/bmm-2018-
0305

Fernandez Rojas, R., Huang, X., and Ou, K. L. (2019). A machine learning approach
for the identification of a biomarker of human pain using fNIRS. Sci. Rep.
9:5645. doi: 10.1038/s41598-019-42098-w

Gharbali, A. A., Najdi, S., and Fonseca, J. M. (2018). Investigating the contribution
of distance-based features to automatic sleep stage classification. Comput. Biol.
Med. 96, 8–23. doi: 10.1016/j.compbiomed.2018.03.001

He, J., Fang, T., Zhang, Z., Huang, B., Zhu, X., and Xiong, Y. (2018). PseUI:
pseudouridine sites identification based on RNA sequence information. BMC
Bioinformatics 19:306. doi: 10.1186/s12859-018-2321-0

Houtman, M., Shchetynsky, K., Chemin, K., Hensvold, A. H., Ramskold, D.,
Tandre, K., et al. (2018). T cells are influenced by a long non-coding RNA
in the autoimmune associated PTPN2 locus. J. Autoimmun. 90, 28–38. doi:
10.1016/j.jaut.2018.01.003

Ibanez-Cabellos, J. S., Seco-Cervera, M., Osca-Verdegal, R., Pallardo, F. V., and
Garcia-Gimenez, J. L. (2019). Epigenetic regulation in the pathogenesis of
sjogren syndrome and rheumatoid arthritis. Front. Genet. 10:1104. doi: 10.3389/
fgene.2019.01104

Frontiers in Genetics | www.frontiersin.org 11 March 2020 | Volume 11 | Article 238

https://www.frontiersin.org/articles/10.3389/fgene.2020.00238/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.00238/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1093/nar/gky964
https://doi.org/10.1080/17457300.2016.1228144
https://doi.org/10.1002/sim.680
https://doi.org/10.1016/j.ccell.2018.03.014
https://doi.org/10.3390/ijms20225646
https://doi.org/10.1016/j.clim.2018.03.014
https://doi.org/10.1097/BOR.0000000000000238
https://doi.org/10.1097/BOR.0000000000000238
https://doi.org/10.1016/j.compbiomed.2018.06.009
https://doi.org/10.1016/j.compbiomed.2018.06.009
https://doi.org/10.1016/j.autrev.2019.05.007
https://doi.org/10.1016/j.autrev.2019.05.007
https://doi.org/10.1177/1759720X15598307
https://doi.org/10.1177/1759720X15598307
https://doi.org/10.1016/j.ahj.2013.07.010
https://doi.org/10.1016/j.ahj.2013.07.010
https://doi.org/10.2217/epi-2016-0151
https://doi.org/10.2217/epi-2016-0151
https://doi.org/10.1055/s-0039-1683995
https://doi.org/10.2217/bmm-2018-0305
https://doi.org/10.2217/bmm-2018-0305
https://doi.org/10.1038/s41598-019-42098-w
https://doi.org/10.1016/j.compbiomed.2018.03.001
https://doi.org/10.1186/s12859-018-2321-0
https://doi.org/10.1016/j.jaut.2018.01.003
https://doi.org/10.1016/j.jaut.2018.01.003
https://doi.org/10.3389/fgene.2019.01104
https://doi.org/10.3389/fgene.2019.01104
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00238 March 27, 2020 Time: 11:19 # 12

Feng et al. Methylomic Biomarkers of Rheumatoid Arthritis

Inzaule, S. C., Kityo, C. M., Siwale, M., Akanmu, A. S., Wellington, M., de Jager,
M., et al. (2018). Previous antiretroviral drug use compromises standard first-
line HIV therapy and is mediated through drug-resistance. Sci. Rep. 8:15751.
doi: 10.1038/s41598-018-33538-0

Jankowski, K. R. B., Flannelly, K. J., and Flannelly, L. T. (2018). The t-test: an
influential inferential tool in chaplaincy and other healthcare research. J. Health
Care Chaplain. 24, 30–39. doi: 10.1080/08854726.2017.1335050

Jansson, L., and Holmdahl, R. (1994). The Y chromosome-linked “autoimmune
accelerating” yaa gene suppresses collagen-induced arthritis. Eur. J. Immunol.
24, 1213–1217. doi: 10.1002/eji.1830240531

Julia, A., Absher, D., Lopez-Lasanta, M., Palau, N., Pluma, A., Waite Jones, L., et al.
(2017). Epigenome-wide association study of rheumatoid arthritis identifies
differentially methylated loci in B cells. Hum. Mol. Genet. 26, 2803–2811. doi:
10.1093/hmg/ddx177

Julia, A., Gonzalez, I., Fernandez-Nebro, A., Blanco, F., Rodriguez, L., Gonzalez,
A., et al. (2016). A genome-wide association study identifies SLC8A3 as
a susceptibility locus for ACPA-positive rheumatoid arthritis. Rheumatology
(Oxford) 55, 1106–1111. doi: 10.1093/rheumatology/kew035

Kahl, V. F. S., Dhillon, V. S., Simon, D., da Silva, F. R., Salvador, M., Branco, C. D. S.,
et al. (2018). Chronic occupational exposure endured by tobacco farmers from
Brazil and association with DNA damage. Mutagenesis 33, 119–128. doi: 10.
1093/mutage/gex045

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res. 45, D353–D361. doi: 10.1093/nar/gkw1092

Khan, H., Sureda, A., Belwal, T., Cetinkaya, S., Suntar, I., Tejada, S., et al. (2019).
Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev. 18,
647–657. doi: 10.1016/j.autrev.2019.05.001

Kim, T. K. (2015). T test as a parametric statistic.Korean J. Anesthesiol. 68, 540–546.
doi: 10.4097/kjae.2015.68.6.540

Kudryavtseva, E., Forde, T. S., Pucker, A. D., and Adarichev, V. A. (2012). Wnt
signaling genes of murine chromosome 15 are involved in sex-affected pathways
of inflammatory arthritis. Arthritis Rheum. 64, 1057–1068. doi: 10.1002/art.
33414

Kumar, N. S., and Nirmalkumar, P. (2019). A robust decision support system for
wireless healthcare based on hybrid prediction algorithm. J. Med. Syst. 43:170.
doi: 10.1007/s10916-019-1304-7

Lazzerini, P. E., Capecchi, P. L., and Laghi-Pasini, F. (2017). Systemic inflammation
and arrhythmic risk: lessons from rheumatoid arthritis. Eur. Heart J. 38,
1717–1727. doi: 10.1093/eurheartj/ehw208

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Am. Stat.
Assoc. 86, 316–327.

Liu, A. N., Wang, L. L., Li, H. P., Gong, J., and Liu, X. H. (2017). Correlation
between posttraumatic growth and posttraumatic stress disorder symptoms
based on pearson correlation coefficient: a meta-analysis. J. Nerv. Ment. Dis.
205, 380–389. doi: 10.1097/NMD.0000000000000605

Liu, Y., Aryee, M. J., Padyukov, L., Fallin, M. D., Hesselberg, E., Runarsson, A.,
et al. (2013). Epigenome-wide association data implicate DNA methylation as
an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31,
142–147. doi: 10.1038/nbt.2487

Lopez-Isac, E., Martin, J. E., Assassi, S., Simeon, C. P., Carreira, P., Ortego-
Centeno, N., et al. (2016). Brief report: IRF4 newly identified as a common
susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-
disease meta-analysis of genome-wide association studies. Arthritis Rheumatol.
68, 2338–2344. doi: 10.1002/art.39730

Lopez-Mejias, R., Carmona, F. D., Genre, F., Remuzgo-Martinez, S., Gonzalez-
Juanatey, C., Corrales, A., et al. (2019). Identification of a 3’-untranslated
genetic variant of RARB associated with carotid intima-media thickness in
rheumatoid arthritis: a genome-wide association study. Arthritis Rheumatol. 71,
351–360. doi: 10.1002/art.40734

Lotsch, D., Ghanim, B., Laaber, M., Wurm, G., Weis, S., Lenz, S., et al. (2013).
Prognostic significance of telomerase-associated parameters in glioblastoma:
effect of patient age. Neuro Oncol. 15, 423–432. doi: 10.1093/neuonc/
nos329

Lu, S., Xia, Y., Cai, W., Fulham, M., Feng, D. D., and Neuroimaging Initiative,
(2017). Early identification of mild cognitive impairment using incomplete
random forest-robust support vector machine and FDG-PET imaging. Comput.
Med. Imaging Graph 60, 35–41. doi: 10.1016/j.compmedimag.2017.01.001

Lyu, H., Wan, M., Han, J., Liu, R., and Wang, C. (2017). A filter feature selection
method based on the maximal information coefficient and gram-schmidt
orthogonalization for biomedical data mining. Comput. Biol. Med. 89, 264–274.
doi: 10.1016/j.compbiomed.2017.08.021

Massey, J., Plant, D., Hyrich, K., Morgan, A. W., Wilson, A. G., Spiliopoulou, A.,
et al. (2018). Genome-wide association study of response to tumour necrosis
factor inhibitor therapy in rheumatoid arthritis. Pharmacogenomics J. 18, 657–
664. doi: 10.1038/s41397-018-0040-6

Meng, C., Wang, Q., Guan, S., Sun, K., and Liu, B. J. I. A. (2019). 2D-3D registration
with weighted local mutual information in vascular interventions. IEEE Access
7, 162629–162638. doi: 10.1109/access.2019.2905345

Moayyeri, A., Hammond, C. J., Valdes, A. M., and Spector, T. D. (2013). Cohort
profile: twinsuk and healthy ageing twin study. Int. J. Epidemiol. 42, 76–85.
doi: 10.1093/ije/dyr207

Muthana, M., Hawtree, S., Wilshaw, A., Linehan, E., Roberts, H., Khetan, S., et al.
(2015). C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis.
Proc. Natl. Acad. Sci. U.S.A. 112, 11618–11623. doi: 10.1073/pnas.1501947112

Nejadgholi, I., and Bolic, M. (2015). A comparative study of PCA, SIMCA and Cole
model for classification of bioimpedance spectroscopy measurements. Comput.
Biol. Med. 63, 42–51. doi: 10.1016/j.compbiomed.2015.05.004

Okada, Y., Eyre, S., Suzuki, A., Kochi, Y., and Yamamoto, K. (2019). Genetics of
rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 78, 446–453. doi: 10.1136/
annrheumdis-2018-213678

Okayama, T., Hashiguchi, Y., Kikuyama, H., Yoneda, H., and Kanazawa, T.
(2018). Next-generation sequencing analysis of multiplex families with atypical
psychosis. Transl. Psychiatry 8:221. doi: 10.1038/s41398-018-0272-x

Olsen, R. M., Aasvang, E. K., Meyhoff, C. S., and Dissing Sorensen, H. B. (2018).
Towards an automated multimodal clinical decision support system at the
post anesthesia care unit. Comput. Biol. Med. 101, 15–21. doi: 10.1016/j.
compbiomed.2018.07.018

Pandey, G., Pandey, O. P., Rogers, A. J., Ahsen, M. E., Hoffman, G. E., Raby, B. A.,
et al. (2018). A nasal brush-based classifier of asthma identified by machine
learning analysis of nasal RNA sequence data. Sci. Rep. 8:8826.

Petralia, M. C., Mazzon, E., Basile, M. S., Cutuli, M., Di Marco, R., Scandurra,
F., et al. (2019). Effects of treatment with the hypomethylating agent 5-aza-
2’-deoxycytidine in murine type II collagen-induced arthritis. Pharmaceuticals
(Basel) 12:174. doi: 10.3390/ph12040174

Rahman, M. M., Bhuiyan, M. I. H., and Hassan, A. R. (2018). Sleep stage
classification using single-channel EOG. Comput. Biol. Med. 102, 211–220.
doi: 10.1016/j.compbiomed.2018.08.022

Relle, M., Foehr, B., and Schwarting, A. (2015). Epigenetic aspects of systemic lupus
erythematosus. Rheumatol. Ther. 2, 33–46. doi: 10.1007/s40744-015-0014-y

Rottmann, J., and Berbeco, R. (2014). Using an external surrogate for predictor
model training in real-time motion management of lung tumors. Med. Phys.
41:121706. doi: 10.1118/1.4901252

Ruyssen-Witrand, A., Constantin, A., Cambon-Thomsen, A., and Thomsen, M.
(2012). New insights into the genetics of immune responses in rheumatoid
arthritis. Tissue Antigens 80, 105–118. doi: 10.1111/j.1399-0039.2012.01939.x

Shadrina, A., Tsepilov, Y., Sokolova, E., Smetanina, M., Voronina, E., Pakhomov,
E., et al. (2018). Genome-wide association study in ethnic Russians
suggests an association of the MHC class III genomic region with the
risk of primary varicose veins. Gene 659, 93–99. doi: 10.1016/j.gene.2018.
03.039

Singh, N. P., Bapi, R. S., and Vinod, P. K. (2018). Machine learning models
to predict the progression from early to late stages of papillary renal cell
carcinoma. Comput. Biol. Med. 100, 92–99. doi: 10.1016/j.compbiomed.2018.
06.030

Smolen, J. S., Aletaha, D., and McInnes, I. B. (2016). Rheumatoid arthritis. Lancet
388, 2023–2038. doi: 10.1016/S0140-6736(16)30173-8

Song, W., Zhang, Y. M., Ma, T., Wang, J., and Wang, K. Z. (2017). Identification
of significant pathway cross-talk in rheumatoid arthritis by the Monte Carlo
cross-validation method. Genet. Mol. Res. 16:gmr16029142. doi: 10.4238/
gmr16029142

Srivastava, B., Srivastava, R., and Jangid, M. (2014). “Filter vs. wrapper approach
for optimum gene selection of high dimensional gene expression dataset:
an analysis with cancer datasets,” in Proceedings of the 2014 International
Conference on High Performance Computing and Applications (Bhubaneswar:
IEEE), 1–6.

Frontiers in Genetics | www.frontiersin.org 12 March 2020 | Volume 11 | Article 238

https://doi.org/10.1038/s41598-018-33538-0
https://doi.org/10.1080/08854726.2017.1335050
https://doi.org/10.1002/eji.1830240531
https://doi.org/10.1093/hmg/ddx177
https://doi.org/10.1093/hmg/ddx177
https://doi.org/10.1093/rheumatology/kew035
https://doi.org/10.1093/mutage/gex045
https://doi.org/10.1093/mutage/gex045
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1016/j.autrev.2019.05.001
https://doi.org/10.4097/kjae.2015.68.6.540
https://doi.org/10.1002/art.33414
https://doi.org/10.1002/art.33414
https://doi.org/10.1007/s10916-019-1304-7
https://doi.org/10.1093/eurheartj/ehw208
https://doi.org/10.1097/NMD.0000000000000605
https://doi.org/10.1038/nbt.2487
https://doi.org/10.1002/art.39730
https://doi.org/10.1002/art.40734
https://doi.org/10.1093/neuonc/nos329
https://doi.org/10.1093/neuonc/nos329
https://doi.org/10.1016/j.compmedimag.2017.01.001
https://doi.org/10.1016/j.compbiomed.2017.08.021
https://doi.org/10.1038/s41397-018-0040-6
https://doi.org/10.1109/access.2019.2905345
https://doi.org/10.1093/ije/dyr207
https://doi.org/10.1073/pnas.1501947112
https://doi.org/10.1016/j.compbiomed.2015.05.004
https://doi.org/10.1136/annrheumdis-2018-213678
https://doi.org/10.1136/annrheumdis-2018-213678
https://doi.org/10.1038/s41398-018-0272-x
https://doi.org/10.1016/j.compbiomed.2018.07.018
https://doi.org/10.1016/j.compbiomed.2018.07.018
https://doi.org/10.3390/ph12040174
https://doi.org/10.1016/j.compbiomed.2018.08.022
https://doi.org/10.1007/s40744-015-0014-y
https://doi.org/10.1118/1.4901252
https://doi.org/10.1111/j.1399-0039.2012.01939.x
https://doi.org/10.1016/j.gene.2018.03.039
https://doi.org/10.1016/j.gene.2018.03.039
https://doi.org/10.1016/j.compbiomed.2018.06.030
https://doi.org/10.1016/j.compbiomed.2018.06.030
https://doi.org/10.1016/S0140-6736(16)30173-8
https://doi.org/10.4238/gmr16029142
https://doi.org/10.4238/gmr16029142
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00238 March 27, 2020 Time: 11:19 # 13

Feng et al. Methylomic Biomarkers of Rheumatoid Arthritis

Suto, J., Oniga, S., and Sitar, P. P. (2016). “Comparison of wrapper and filter
feature selection algorithms on human activity recognition,” in Proceedings
of the 2016 6th International Conference on Computers Communications and
Control (Oradea: IEEE), 124–129.

Taylor, J. C., Bongartz, T., Massey, J., Mifsud, B., Spiliopoulou, A., Scott, I. C., et al.
(2018). Genome-wide association study of response to methotrexate in early
rheumatoid arthritis patients. Pharmacogenomics J. 18, 528–538. doi: 10.1038/
s41397-018-0025-5

Teare, M. D., Knevel, R., Morgan, M. D., Kleszcz, A., Emery, P., Moore, D. J.,
et al. (2013). Allele-dose association of the C5orf30 rs26232 variant with joint
damage in rheumatoid arthritis. Arthritis Rheum. 65, 2555–2561. doi: 10.1002/
art.38064

Tekin Erguzel, T., Tas, C., and Cebi, M. (2015). A wrapper-based approach
for feature selection and classification of major depressive disorder-bipolar
disorders. Comput. Biol. Med. 64, 127–137. doi: 10.1016/j.compbiomed.2015.
06.021

Toraih, E. A., Ismail, N. M., Toraih, A. A., Hussein, M. H., and Fawzy, M. S.
(2016). Precursor miR-499a variant but not miR-196a2 is associated with
rheumatoid arthritis susceptibility in an Egyptian population. Mol. Diagn. Ther.
20, 279–295. doi: 10.1007/s40291-016-0194-3

Triantafyllias, K., De Blasi, M., Hoffmann, I., Thomaidis, T., Drees, P., and
Schwarting, A. (2016). The count of tender rather than swollen joints correlates
with aortic stiffness in patients with rheumatoid arthritis. Springerplus 5:428.
doi: 10.1186/s40064-016-2066-z

Verde, L., and De Pietro, G. (2019). A neural network approach to classify carotid
disorders from heart rate variability analysis. Comput. Biol. Med. 109, 226–234.
doi: 10.1016/j.compbiomed.2019.04.036

Viatte, S., Plant, D., Han, B., Fu, B., Yarwood, A., Thomson, W., et al. (2015).
Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity,
mortality, and treatment response. JAMA 313, 1645–1656. doi: 10.1001/jama.
2015.3435

Villanueva-Romero, R., Gutierrez-Canas, I., Carrion, M., Perez-Garcia, S., Seoane,
I. V., Martinez, C., et al. (2018). The anti-inflammatory mediator, vasoactive
intestinal peptide, modulates the differentiation and function of Th subsets
in rheumatoid arthritis. J. Immunol. Res. 2018:6043710. doi: 10.1155/2018/
6043710

Wang, Y., Deng, H., Xin, S., Zhang, K., Shi, R., and Bao, X. (2019). Prognostic and
predictive value of three DNA methylation signatures in lung adenocarcinoma.
Front. Genet. 10:349. doi: 10.3389/fgene.2019.00349

Webster, A. P., Plant, D., Ecker, S., Zufferey, F., Bell, J. T., Feber, A., et al.
(2018). Increased DNA methylation variability in rheumatoid arthritis-
discordant monozygotic twins. Genome Med. 10:64. doi: 10.1186/s13073-018-
0575-9

Wei, X. X., and Stocker, A. A. (2016). Mutual information, fisher information, and
efficient coding. Neural Comput. 28, 305–326. doi: 10.1162/NECO_a_00804

Wu, C., Chen, J., Liu, Y., and Hu, X. (2019). Improved prediction of
regulatory element using hybrid abelian complexity features with
DNA sequences. Int. J. Mol. Sci. 20:1704. doi: 10.3390/ijms2007
1704

Xie, J., Lei, J., Xie, W., Shi, Y., and Liu, X. (2013). Two-stage hybrid feature selection
algorithms for diagnosing erythemato-squamous diseases. Health Inf. Sci. Syst.
1:10. doi: 10.1186/2047-2501-1-10

Xu, C., Liu, J., Yang, W., Shu, Y., Wei, Z., Zheng, W., et al. (2018). An OMIC
biomarker detection algorithm TriVote and its application in methylomic
biomarker detection. Epigenomics 10, 335–347. doi: 10.2217/epi-2017-0097

Yang, C. H., Weng, Z. J., Chuang, L. Y., and Yang, C. S. (2017). Identification
of SNP-SNP interaction for chronic dialysis patients. Comput. Biol. Med. 83,
94–101. doi: 10.1016/j.compbiomed.2017.02.004

Ye, Y., Zhang, R., Zheng, W., Liu, S., and Zhou, F. (2017). RIFS: a randomly
restarted incremental feature selection algorithm. Sci. Rep. 7:13013. doi: 10.
1038/s41598-017-13259-6

Yokoi, A., Matsuzaki, J., Yamamoto, Y., Yoneoka, Y., Takahashi, K., Shimizu, H.,
et al. (2018). Integrated extracellular microRNA profiling for ovarian cancer
screening. Nat. Commun. 9:4319. doi: 10.1038/s41467-018-06434-4

Youn, E., and Jeong, M. K. (2009). Class dependent feature scaling method using
naive Bayes classifier for text datamining. Pattern Recognit. Lett. 30, 477–485.
doi: 10.1016/j.patrec.2008.11.013

Yuan, L., Liu, J., and Ye, J. (2011). Efficient methods for overlapping group lasso.
Adv. Neural Inf. Process. Syst. 35, 352–360.

Yuan, M., and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. J. R. Stat. Soc. Series B Stat. Methodol. 68, 49–67. doi:
10.1111/j.1467-9868.2005.00532.x

Zhao, R., Zhang, R., Tang, T., Feng, X., Li, J., Liu, Y., et al. (2018). TriZ-a rotation-
tolerant image feature and its application in endoscope-based disease diagnosis.
Comput. Biol. Med. 99, 182–190. doi: 10.1016/j.compbiomed.2018.06.006

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Feng, Hao, Shi, Xia, Huang, Yu and Zhou. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 13 March 2020 | Volume 11 | Article 238

https://doi.org/10.1038/s41397-018-0025-5
https://doi.org/10.1038/s41397-018-0025-5
https://doi.org/10.1002/art.38064
https://doi.org/10.1002/art.38064
https://doi.org/10.1016/j.compbiomed.2015.06.021
https://doi.org/10.1016/j.compbiomed.2015.06.021
https://doi.org/10.1007/s40291-016-0194-3
https://doi.org/10.1186/s40064-016-2066-z
https://doi.org/10.1016/j.compbiomed.2019.04.036
https://doi.org/10.1001/jama.2015.3435
https://doi.org/10.1001/jama.2015.3435
https://doi.org/10.1155/2018/6043710
https://doi.org/10.1155/2018/6043710
https://doi.org/10.3389/fgene.2019.00349
https://doi.org/10.1186/s13073-018-0575-9
https://doi.org/10.1186/s13073-018-0575-9
https://doi.org/10.1162/NECO_a_00804
https://doi.org/10.3390/ijms20071704
https://doi.org/10.3390/ijms20071704
https://doi.org/10.1186/2047-2501-1-10
https://doi.org/10.2217/epi-2017-0097
https://doi.org/10.1016/j.compbiomed.2017.02.004
https://doi.org/10.1038/s41598-017-13259-6
https://doi.org/10.1038/s41598-017-13259-6
https://doi.org/10.1038/s41467-018-06434-4
https://doi.org/10.1016/j.patrec.2008.11.013
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1016/j.compbiomed.2018.06.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Detection and Comparative Analysis of Methylomic Biomarkers of Rheumatoid Arthritis
	Introduction
	Materials and Methods
	Summary of the Dataset
	Pre-screening the Methylomic Features
	Filter Algorithms
	Recursive Feature Elimination Strategy
	Heuristic Feature Selection Strategies
	Classification Algorithms
	Performance Measurements
	Experimental Design

	Results and Discussion
	Data Preprocessing
	Limitations the Variation Threshold 20,000
	Optimizing LinearSVC to Select Features
	Selecting Features by Filters
	Selecting Features by the RFE Strategies
	Refining the 147 Features With Two Other Regression Algorithms
	Refining Differentially Methylated and Variable Biomarkers
	Refining the Previous Biomarkers by BackFS
	Independent Effectiveness Evaluation of the Proposed Biomarker Detection Procedure
	Biological Observations of Methylomic Biomarkers

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


