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Abstract

In vivo cardiac diffusion tensor imaging (cDTI) data were acquired in swine subjects six to 

ten weeks post-myocardial infarction (MI) to identify microstructural-based biomarkers of MI. 

Diffusion tensor invariants, diffusion tensor eigenvalues, and radial diffusivity (RD) are evaluated 

in the infarct, border, and remote myocardium, and compared with extracellular volume fraction 

(ECV) and native T1 values. Additionally, to aid the interpretation of the experimental results, the 

diffusion of water molecules was numerically simulated as a function of ECV. Finally, findings 

based on in vivo measures were confirmed using higher-resolution and higher signal-to-noise data 

acquired ex vivo in the same subjects. Mean diffusivity, diffusion tensor eigenvalues, and RD 

increased in the infarct and border regions compared to remote myocardium, while fractional 

anisotropy decreased. Secondary (e2) and tertiary (e3) eigenvalues increased more significantly 

than the primary eigenvalue in the infarct and border regions. These findings were confirmed 

by the diffusion simulations. Although ECV presented the largest increase in infarct and border 

regions, e2, e3, and RD increased the most among non-contrast-based biomarkers. RD is of special 

interest as it summarizes the changes occurring in the radial direction and may be more robust than 

e2 or e3 alone.
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1. Introduction

Cardiac function in health and disease depends on cardiac microstructure, which governs 

the preferential directions of contraction/relaxation and the mechanical/electrical properties 

[1,2] of the myocardium. Cardiac microstructure can be inferred from cardiac diffusion 

tensor imaging (cDTI), a magnetic resonance imaging (MRI) technique that allows the 

mapping of tissue microstructure in vivo without the use of contrast agents. Indeed, cDTI 

measures the intracellular and extracellular anisotropic diffusion of water molecules, from 

which the preferential orientation of cardiomyocytes and sheetlets is estimated [3,4].

As cDTI probes cardiac microstructure, it also provides information on microstructural 

changes occurring as a result of remodeling due to cardiac diseases, for example 

due to chronic myocardial infarction [5,6]. Remodeling due to scar formation post-

myocardial infarction may lead to increased wall stress, reduced ejection fraction, and wall 

thinning, affecting the overall cardiac function [7]. Understanding the changes in cardiac 

microstructure due to myocardial infarction (MI) could provide valuable insight into the 

post-MI remodeling process.

MRI sequences such as T1-mapping and late gadolinium enhancement (LGE) are commonly 

used to identify the location and extent of the infarcted myocardium. These imaging 

sequences require the use of gadolinium-based contrast agents, which can have adverse 

effects on patients with pre-existing renal conditions [8].

Diffusion tensor invariants, such as mean diffusivity (MD) and fractional anisotropy (FA), 

can be used to detect and quantify the extent of MI with the additional benefit of providing 

insight into cardiac microstructure. In chronic infarcted tissue, previous studies [9–11] 

have reported an increase in MD and a decrease in FA, indicating overall microstructural 

changes post-MI. However, these overall microstructural changes have not carried over to 

specific changes in the preferential direction of the cardiomyocytes and along the sheetlets/

cross-myofiber directions. Information regarding changes in these microstructural directions 

can be extracted from the diffusion tensor eigenvalues. Indeed, the primary eigenvalue (e1) 

corresponds to the diffusivity along the preferential direction of the cardiomyocytes [12], 

while the secondary (e2) and tertiary (e3) eigenvalues correspond to the diffusivity along the 

sheetlet and cross-myofiber directions [13].

The main goal of this study is to refine the analysis of cardiac microstructural changes 

by studying the individual diffusion tensor eigenvalues and by computing radial diffusivity, 

a marker of both sheetlet and cross-myofiber diffusivity, using in vivo cDTI data (radial 

diffusivity is defined as the average of the secondary and tertiary eigenvalues). These 

quantities are then compared against diffusion tensor invariants (e.g., MD, FA), native-T1, 

and extracellular volume fraction (ECV) to establish their sensitivity in identifying the 

infarcted tissue and its microstructural changes.

In the infarcted region, the extracellular volume fraction increases due to the death of 

cardiomyocytes. We hypothesize that this increased extracellular space will mainly occur in 

the radial direction of the remaining cardiomyocytes and replacement fibrosis, and will be 

reflected by a higher increase in e2, e3, and radial diffusivity compared to the increase in 
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e1 and MD. This hypothesis is also motivated by our previous work [14] based on ex vivo, 

high-resolution, and high signal-to-noise ratio (SNR) data. Moreover, to further understand 

the results computed from experimental data, we simulate numerically the diffusion of 

water molecules. The computed diffusion quantities are then compared with experimental 

results as a function of ECV. We conclude our study by discussing the most effective 

diffusion quantities to detect and characterize the remote, border, and infarct regions and 

their microstructural interpretation.

2. Methods

2.1. Animal Model and Infarct Induction

Animal care during infarct induction, imaging, and all experimental procedures followed 

protocol #2015–124 approved by the Institutional Animal Care and Use Committee of the 

University of California, Los Angeles.

These experiments were part of a larger study, whose scope is to characterize myocardial 

structure and function [15], and to identify the material behavior of the passive myocardium 

[16]. As part of this study, an infarct model was created using female Yorkshire swine 

subjects. In vivo and/or ex vivo MRI data necessary for the current study was successfully 

acquired in seven (N = 7) subjects. All subjects (N = 7) were included in the ex vivo 

analysis. Two subjects were excluded from the in vivo analysis since: (1) one subject died 

during MRI acquisition before in vivo cDTI data could be acquired; and (2) one subject 

presented a right ventricle infarct that was not visible on in vivo cDTI data due to the poor in 

vivo cDTI quality in the right ventricle. The remaining five (N = 5) subjects were considered 

for in vivo analyses.

Before the beginning of the experimental procedures, the animal subjects had time to 

acclimate for at least one week. At the time of the MRI exam, the subjects’ body weight 

was 59.5 kg ± 6.6 kg (mean ± standard deviation). Myocardial infarction was induced under 

general anesthesia using microspheres. Ketamine (12.5 mg/kg) and midazolam (1 mg/kg) 

were injected intramuscularly to induce anesthesia. After induction, carprofen (4 mg/kg) 

and buprenorphine (0.02 mg/kg) were administered intramuscularly to provide pre-emptive 

analgesia. During MRI, anesthesia was maintained using isoflurane (1.5–2%) and Lactated 

Ringer’s solution was administered (2–5 mL/kg/h).

After accessing the femoral artery using a Seldinger technique, a balloon wedge pressure 

catheter (7 French) was inserted and guided to the aortic sinus using a metal guidewire 

under X-ray fluoroscopy. Subsequently, a micro guidewire (0.014 inches) was used to 

select a branch of the left circumflex (LCx) or left anterior descending (LAD) artery and 

a balloon catheter (1.5 mm diameter) was inserted and inflated prior of injecting a volume 

of microspheres (90 μm Polystyrene microspheres) equal to 2.5–3.0 mL. After one minute 

to avoid microsphere backflow, the balloon catheter was deflated and extracted. In vivo 

imaging was conducted six to ten weeks after infarct induction to allow for the formation of 

scar tissue. Additional details regarding the experimental procedure may be found in [17].
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A 3T MRI scanner (Prisma, Siemens Healthineers, Erlangen, Germany) was used for in 

vivo and ex vivo imaging. In vivo imaging protocols included: late gadolinium enhancement 

(phase-sensitive inversion recovery sequence, TE/TR = 1.6 ms/876 ms; flip angle = 20°; 

spatial resolution = 1.33 × 1.33 × 8.0 mm3, Navg = 1), T1-mapping (modified look-locker 

inversion recovery sequence with motion correction, TE/TR = 1.04 ms/280.69 ms; flip angle 

= 30°; spatial resolution = 1.77 × 1.77 × 8.0 mm3, Navg = 1), and cDTI (M1M2-nulled 

motion-compensated waveform sequence [18], TE/TR = 59 ms/5000 ms; flip angle = 90°; 

spatial resolution = 2.0 × 2.0 × 8.0 mm3; b-values = 0 s/mm2 and 350 s/mm2; Ndir = 12; 

Navg = 30).

At the end of the in vivo MRI exam and before euthanasia, subjects were injected with 

a double dose of gadolinium-based contrast agent (0.6 mL/kg gadopentetate dimeglumine 

and 10 mL of saline solution). Euthanasia solution (0.1 mL/lb, Euthasol®, Virbac, Carros, 

France) was administered after 10 minutes to allow the circulation of the contrast agent. 

Hearts were then extracted, rinsed, and prepared for ex vivo imaging. To preserve ventricular 

geometry, the hearts were inserted into 3D-printed molds based on images acquired 

at mid-diastasis [19]. Subsequently, the hearts and molds were submersed in Fomblin 

perfluoropolyether (PFPE), and ex vivo imaging was conducted with a knee coil. On an 

average, ex vivo imaging began 2.5 h after euthanasia. A simplified flowchart summarizing 

the experimental procedure is shown in Figure 1.

Ex vivo imaging protocols included: T1-weighted GRE (TE/TR = 3.15 ms/12 ms; flip angle 

= 25°; acquisition matrix = 160 × 160; spatial resolution = 1.0 × 1.0 × 1.0 mm3, Navg = 6), 

T2-weighted SE (TE/TR = 89 ms/15,460 ms; flip angle = 180°; acquisition matrix = 192 

× 190; spatial resolution = 1.0 × 1.0 × 1.0 mm3, Navg = 8), and cDTI (readout segmented 

sequence [20] with a twice-refocused spin-echo encoding [21], TE/TR = 62 ms/15,560 ms; 

acquisition matrix = 150 × 150; spatial resolution = 1.0 × 1.0 × 1.0 mm3; b-values = 0 

s/mm2 and 1000 s/mm2; Ndir = 30; Navg = 5).

2.2. Regional Subdivision and Registration

To quantitatively compare diffusion tensor quantities, Native T1, and ECV, the myocardium 

was subdivided into remote, border, and infarct regions. The regional subdivision process 

was based on late gadolinium enhanced (LGE) MR images.

Following the regional subdivision technique described by Schelbert et al. [22], regions 

of interest were drawn on the remote regions of each slice. Mean signal intensity 

(μremote) and standard deviation (σremote) were computed for each subject using regions 

of interest across all slices. Voxels with signal intensity (SI) less than the sum of mean 

signal intensity and two standard deviations were labeled as the remote zone (i.e., SI ≤ 

μremote + 2σremote). To determine mean signal intensity (μinfarct) and standard deviation 

(σinfarct) of the infarct zone, small regions of interest (ROIs) were outlined on the most 

hyper-enhanced region of the remaining unlabeled myocardium of each slice. The mean 

signal intensities of remote and infarct zones were averaged to compute an intermediate 

value. Voxels with signal intensity higher than the sum of mean signal intensity and two 

standard deviations of the remote zone, but below the computed intermediate value (i.e., 
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μremote + 2σremote < SI< 1
2 μremote + μinfarct ) were labeled as border zone. The remaining 

voxels (i.e., voxels with SI ≥ 1
2 μinfarct + μremote ) were labeled as infarct zone. Based on 

this approach, label maps marking remote, border, and infarct regions were created for each 

slice.

LGE data were acquired during diastole while cDTI, due to its motion-compensated 

approach, was acquired during systole. Moreover, the LGE and cDTI sequences had 

different resolutions and fields of view. Hence, both rigid and non-rigid registrations were 

necessary to superimpose the LGE-based remote, border, and infarct zones to the cDTI data. 

For this purpose, quaternions [23] computed from LGE and cDTI images were used to 

rigidly register LGE nodes (each node corresponded to a voxel in the image space) to the 

cDTI nodes in the cDTI image space. This step was carried out to ensure that the LGE and 

cDTI nodes were in the same image space (Figure 2a).

To reflect the left ventricle (LV) longitudinal shortening during systole, spacing along the 

z-axis between LGE-based label map slices was reduced uniformly on a subject-specific 

basis. This was accomplished by matching the z coordinates of the most basal and apical 

LGE slices with the corresponding most basal and apical cDTI slices (Figure 2b).

At this stage, even though the basal and apical slices were at the same longitudinal locations, 

the rest of the slices were not aligned along the z-axis. Hence, a weighted average was 

carried out to obtain cDTI slices at the z-axis location of the LGE slices. First, for each 

subject and for each cDTI slice, the endocardium and epicardium borders were detected 

using the Canny edge detection method [24]. Then, at each LGE z-axis location, cDTI slices 

were calculated by averaging the cDTI endocardium and epicardium immediately above and 

below that z-axis location. The distances along the z-axis between the LGE-based label map 

slice and the cDTI slices immediately above and below were used as weights for this process 

(Figure 2c).

After obtaining all the cDTI slices at the LGE z-axis locations using the method described 

above, the LGE-based label maps were non-rigidly registered [25] to the cDTI slices at the 

LGE longitudinal locations. (Figure 2d).

Finally, the resultant LGE-based label maps were applied to the original cDTI slices via 3D 

interpolation (Figure 2e).

At the end of this registration process, each voxel in the original cDTI slices was labeled as 

either remote, border, or infarct as a function of the LGE-based maps (Figure 2f). Diffusion 

tensor invariants, eigenvalues (e1, e2, and e3), and radial diffusivity (RD) were associated 

with the remote, border, and infarct zones based on these maps.

2.3. Data Analysis

Diffusion tensor invariants and eigenvalues were computed after reconstructing the diffusion 

tensors from the acquired cDTI data. Voxelwise diffusion tensors were calculated using the 
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freely available DiffusionRecon code [26] provided on GitHub and used in several previous 

studies (e.g., [4]).

ECV values at each voxel in the LV myocardium were computed from the subject 

Hematocrit, and from pre- and post-T1 mapping data according to [27].

To compare diffusion tensor invariants, eigenvalues, and ECV across remote, border, and 

infarct zones, all voxels in the LV myocardium were subdivided according to the registered 

LGE-based label maps. The ECV slices and cDTI slices were first rigidly and then non-

rigidly registered according to the process described in Section 2.2; in this case, however, 

ECV slices were used instead of LGE label maps. On average, 2% (maximum 5.61%, 

minimum 0.61%) diffusion data were rejected due to having a mean diffusivity voxel value 

above the free diffusion of water (3 × 10−3 mm2/s).

Data are visualized using diffusion tensor quantities, ECV, and native T1 maps overlaid on 

five short-axis slices for one representative subject, and for all subjects using raincloud plots 

[28] and box plots across the remote, border, and infarct regions.

Remote, border, and infarct data for all subjects were initially examined for normality using 

the Anderson–Darling normality test. Since the data did not pass the normality test, the 

pairwise non-parametric Kruskal–Wallis test with Bonferroni post hoc adjustment was used 

to assess differences between remote, border, and infarct data across all subjects. The same 

pairwise test was also run for subject-wise remote, border, and infarct data. p < 0.01 was 

considered to be significant.

2.4. Numerical Modeling

Numerical simulations were carried out to investigate the relationship between ECV and 

diffusion tensor quantities. Tensor invariants and eigenvalues were computed from the 

simulated diffusion of particles, and ECV was computed based on the generated synthetic 

cell structures. Individual cardiomyocytes were represented by cylinders with 9 to 20 μm 

diameter and 100 μm length. Cells were then connected along the axial direction to form a 

cellular tree with branching added between trees. Cells were added in a 0.5 × 0.5 × 0.5 mm3 

voxel until a target ECV was reached. Therefore, different ECVs corresponded to different 

cell densities and cell-to-cell distances. The displacements due to the diffusion of 20,000 

water molecules were simulated in each voxel using a random walk approach [29] with a 

time step Δt of 10 μs for a total duration of 51 ms, which corresponds to the duration of the 

diffusion encoding in vivo [30]. The native diffusion coefficient D0 of the water molecules 

was 3 × 10−3 mm2/s and 2.2 × 10−3 mm2/s in the extra- and intracellular compartments, 

respectively [31]. The intracellular and extracellular compartments were kept impermeable.

The diffusion of water molecules resulted in an intra-voxel displacement distribution that 

was projected in 12 directions to mimic a diffusion tensor acquisition. Subsequently, the 

diffusion tensor corresponding to the simulated signal was reconstructed and its mean 

diffusivity, fractional anisotropy, eigenvalues, and radial diffusivity were calculated.

Five cell structures were generated per each target ECV. Nine target ECVs ranging from 

20% to 100% were simulated, resulting in 45 different cell structures. For a given ECV and 

Rahman et al. Page 6

Appl Sci (Basel). Author manuscript; available in PMC 2022 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell structure, each simulation was repeated five times, resulting in 225 diffusion simulations 

across ECVs and cell structures. To best approximate the simulated diffusion signal to 

the one acquired in the MRI experiment used in this work, only the extracellular water 

displacements were considered.

The code to perform the diffusion simulations described above is freely available on GitHub 

at [32].

3. Results

Figure 3 illustrates five short-axis representative slices of late gadolinium enhancement PSIR 

(LGE-PSIR), native T1, and the corresponding ECV maps along with b = 0 s/mm2 and b = 

350 s/mm2 images of an infarcted swine heart.

LGE-PSIR images, along with their corresponding cDTI label maps and diffusion tensor 

quantities maps for the same five representative short-axis slices, are reported in Figure 

4. As described in the Method section, the label maps were used to subdivide the 

corresponding FA, MD, e1, e2, e3, and RD maps in remote, border, and infarct regions. 

The border and infarct zones are distinguishable from the remote myocardium due to their 

markedly hyper-enhanced nature in the LGE-PSIR images. In the following tensor invariants 

and eigenvalue maps, the infarct and border zones exhibit a higher MD, e1, e2, e3, RD and a 

lower FA compared to the remote myocardium.

In Figure 5, raincloud and box plots illustrate the distributions and quantitative differences 

of tensor invariants, eigenvalues, radial diffusivity, ECV, and native T1 across infarct, border, 

and remote regions. The 1st quartile (25th percentile) and the 3rd quartile (75th percentile) 

are marked by the lower and upper edges of the boxplot, respectively. The bottom and 

top whiskers mark the smallest and largest values within 1.5 times the interquartile range 

measured from the 25th and 75th percentiles, respectively. A summary of the mean, median, 

1st, and 3rd quartiles over all subjects for all measured quantities are listed in Table 1.

Among native T1, diffusion tensor invariants, eigenvalues, and RD, the largest percent 

differences are observed for e2 (e2 increases by 19.2% and 31.9% from remote to border and 

infarct zones, respectively), e3 (e3 increases by 16.1% and 33.4% from remote to border and 

infarct zones, respectively), and RD (RD increases by 18% and 32.3% from remote to border 

and infarct zones, respectively). Overall percentage changes in median values for native T1, 

ECV, diffusion tensor invariants, eigenvalues, and RD between infarct, border, and remote 

regions are detailed in Table 2.

The computed p values were less than 0.01 for the statistical analyses carried out by 

grouping together the data across all subjects (Table 2), therefore showing that the 

observations in remote, border, and infarct regions did not originate from the same 

distribution. However, when the same statistical analyses were performed subject-wise, 

the resultant p values were greater than 0.01 in a few cases, especially in the native T1 

distributions between infarct and border regions. All p values resulting from the pairwise 

non-parametric Kruskal–Wallis test for each subject are listed in Table 3.
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The results of the diffusion simulations with 20,000 water molecules and a timestep Δt of 

10 μs are illustrated in Figure 6. The change in MD, FA, primary eigenvalue (e1), and RD 

simulated as a function of ECV show that MD, e1, and RD increase with respect to ECV, 

while FA decreases. Furthermore, as ECV increases, the simulated percentage increase in 

RD is larger than the increase in e1.

Figure 7 compares in vivo and ex vivo FA, MD, e1, e2, e3, and RD values. Mappings are 

reported for a representative slice and boxplots were used to quantitatively compare the 

diffusion quantities computed using in vivo and ex vivo data across all subjects. The in vivo 

versus ex vivo boxplot comparisons are based on the subject-wise median values for FA, 

MD, e1, e2, e3, and RD.

4. Discussion

In this work, MRI data acquired in vivo in swine subjects with chronic MI were used 

to quantitatively analyze and compare ECV, native T1, diffusion tensor invariants, radial 

diffusivity, and eigenvalues across the remote, border, and infarcted myocardium. Among 

all analyzed quantities, RD, e2, e3, and ECV showed the highest percentage increase in the 

border and infarct regions with respect to the remote myocardium.

ECV has been identified as a potential biomarker to characterize affected myocardial tissue 

due to various cardiac diseases such as myocardial infarction [27] and hypertension [33]. 

After administration, Gadolinium-based contrast agents diffuse into the extracellular space. 

This causes the T1-relaxation time of the myocardium to depend on local gadolinium 

concentration [34]. The increased extracellular space in infarcted myocardium allows 

retention of a higher amount of gadolinium-based contrast. Hence, myocardial regions 

such as the border and infarct zones, where the extracellular space is higher due to the 

presence of replacement fibrosis, are expected to exhibit higher ECV compared to the 

remote myocardium [27]. The increased median ECV of the infarct (0.47) and border 

(0.38) regions compared to the remote (0.31) region observed in this work agrees with this 

mechanism.

Although widely used, ECV maps require the use of contrast agents, which are not indicated 

for patients suffering from pre-existing renal conditions. Among the existing non-contrast-

based imaging techniques, native T1 has been considered to be an alternative biomarker for 

myocardial infarction detection [35], as well as for detecting myocardial edema and diffuse 

fibrosis [36–38]. In the current study, native T1 values in the infarct and border regions were 

21.2% and 8.4% higher than the remote myocardium, respectively.

As with the case for native T1, diffusion tensor invariants and eigenvalues can also be 

computed without the use of contrast agents, and convey additional information regarding 

microstructural changes (e.g., myocardium anisotropy and inter-cellular spacing) occurring 

in the infarcted tissue. Among these quantities, FA decreased whereas MD, eigenvalues, and 

RD increased in the border and infarct regions when compared to the remote myocardium. 

Across all subjects, the percent increase or decrease of these parameters was higher in the 
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infarct region compared to the border region. These trends concur with previous findings 

[9–11].

Chen et al. [39] validated histologically that after chronic myocardial infarction, the infarct 

region is largely comprised of replacement fibrosis, and the border region is a mixture 

of viable myocardium and replacement fibrosis. The presence of replacement fibrosis is 

reflected by an increased ECV. Due to the increase in extracellular space [40], the diffusion 

of water molecules increases. This is reflected by the increased MD values in the infarct 

and border regions computed in this study from experimental in vivo cDTI data. However, 

the observed increase in diffusion is not isotropic; instead, the increase in e2 and e3 is 

more significant than the increase in e1. This unequal increase in diffusion agrees with 

previous studies, suggesting that replacement fibrosis maintains the preferential direction of 

the replaced cardiomyocytes [41], and larger extracellular space is now present [40]. This 

corresponds to a larger diffusion increase in the e2 and e3 directions with respect to the 

increase in the e1 direction. The larger increase in the e2 and e3 directions concurs with a 

decrease in FA and agrees with histological findings [40].

As expected, due to a smaller amount of replacement fibrosis in the border zone, the 

increase in e2, e3, MD, and ECV and decrease in FA are less significant in the border region 

with respect to the infarct region.

To present diffusion values in the radial direction in a concise manner, radial diffusivity 

(RD) was used. RD is the average of e2 and e3 and represents the changes occurring in 

the radial direction due to the increase or decrease of ECV. In this study, we showed that 

RD increases significantly from the remote to the border (18% increase) and infarct (32.3% 

increase) regions.

The results computed from experimental data concur with the findings of particle diffusion 

simulations. From the diffusion simulations, as ECV increases, e1, e2, e3, and MD increase, 

and FA decreases. These trends agree with previous studies [42] and remain consistent 

regardless of the number of simulated water molecules (from four to thirty thousand water 

molecules per representative volume), length of adopted time step (from 10−5 s to 10−7 s), 

and cell structures (10 to 45 cell structures have been simulated). Additionally, as ECV 

increases, simulated e2 and e3 values increase at a higher rate with respect to e1.

Among T1-mapping, ECV and diffusion quantities, ECV demonstrated the highest change 

in the infarct (51.6% increase) and border (22.6% increase) regions compared to the remote 

myocardium. However, among the non-contrast-based methods, e2, e3, and RD exhibited 

the largest change. Moreover, the increases in e2 (31.9% and 19.2% increases from remote 

to infarct and border regions, respectively), e3 (33.4% and 16.1% increases from remote to 

infarct and border regions, respectively), and RD (32.3% and 18% increases from remote 

to infarct and border regions, respectively) were higher than native T1 (21.2% and 8.4% 

increases from remote to infarct and border regions, respectively).

In our previous study [14], ex vivo cDTI swine data acquired six to ten weeks post-infarction 

was used to compare diffusion tensor invariants, diffusion eigenvalues, and radial diffusivity 

across the remote, border, and infarct regions. In terms of the increase or decrease of 
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tensor invariants, eigenvalues, and radial diffusivity in the infarct and border regions, similar 

trends were observed as in the present study (cf. Figure 7). However, while the diffusion 

eigenvalues and mean diffusivity computed using in vivo cDTI were observed to be higher 

than the values obtained using ex vivo data across all regions, their percentage changes were 

lower than the percentage changes computed using ex vivo data.

The median e1, e2, e3, and RD values computed using ex vivo data (values computed using 

in vivo data in this study are in parenthesis) were, respectively: 1.16 (2.28) × 10−3 mm2/s for 

e1, 0.88 (1.83) × 10−3 mm2/s for e2, 0.72 (1.42) × 10−3 mm2/s for e3, and 0.79 (1.62) × 10−3 

mm2/s for RD, in the infarct region; 0.91 (2.14) × 10−3 mm2/s for e1, 0.55 (1.65) × 10−3 

mm2/s for e2, 0.39 (1.24) × 10−3 mm2/s for e3, and 0.47 (1.45) × 10−3 mm2/s for RD, in the 

border region; 0.70 (1.94) × 10−3 mm2/s for e1, 0.41 (1.38) × 10−3 mm2/s for e2, 0.28 (1.06) 

× 10−3 mm2/s for e3, and 0.35 (1.22) × 10−3 mm2/s for RD, in the remote region.

The observed discrepancy between results obtained using in vivo and ex vivo data could be 

due to several factors, among which the in vivo motion artifact and perfusion. Furthermore, 

the MRI sequence parameters were not identical in vivo and ex vivo. The ex vivo data were 

acquired at a higher resolution of 1.0 × 1.0 × 1.0 mm3, higher SNR of ≈ 41 and higher 

b-value of 1000 s/mm2 while the in vivo data were acquired at a resolution of 2.0 × 2.0 × 2.0 

mm3 with a SNR of ≈ 16 and b-value of 350 s/mm2. Higher resolution and SNR allow for a 

more accurate segmentation and subdivision of myocardium into remote, border, and infarct 

regions, therefore emphasizing the differences between regions.

Overall, the diffusion tensor invariants reported in this study are in good agreement with 

values reported in previous studies. Das et al. [43] conducted a study on 30 patients with 

myocardial infarction. The mean MD and FA values computed in vivo by Das et al., 

compared to the values computed in current study (reported in parenthesis), were: 1.83 × 

10−3 (1.81 × 10−3) mm2/s for MD and 0.22 (0.25) for FA in the infarct region; 1.53 × 10−3 

(1.69 × 10−3) mm2/s for MD and 0.33 (0.28) for FA in the border zone, and 1.45 × 10−3 

(1.46 × 10−3) mm2/s for MD and 0.35 (0.29) for FA in the remote myocardium.

The computed mean ECV in Das et al. [43] was 0.60, 0.29, and 0.29 in the infarct, border, 

and remote regions, respectively, compared to 0.49, 0.39, and 0.32 in the current study. 

The discrepancies in the reported ECV values could be due to the different methods used 

to subdivide the myocardium into remote, border, and infarct regions. Moreover, Das et al. 

used in vivo human data, whereas in vivo swine data were used in the current study. The 

much larger cohort size (N = 30 vs. N = 5) compared to the current study could also be a 

reason for the observed discrepancies.

Stoeck et al. [9] conducted a study on five swine subjects with myocardial infarction. At 

nine weeks post-MI, reported mean MD and FA values in the infarct and remote zone were 

(values from the current study are reported in parenthesis): 1.66 × 10−3(1.81 × 10−3) mm2/s 

for MD and 0.28 (0.25) for FA in the infarct region; 1.34 × 10−3 (1.46 × 10−3) mm2/s 

for MD and 0.38 (0.29) for FA in the remote myocardium. Mean ECV values reported 

by Stoeck et al. were 0.83 and 0.31 in the infarct and remote regions, and in the current 

study, the mean ECV was 0.49 and 0.32, respectively. This discrepancy could be due to 
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the uncertainty associated with native T1 scans and the computed ECV [44]. Differences in 

imaging modalities and data processing could also play a role.

This study also presents several limitations. First, in vivo cDTI data for only five subjects 

was considered. Although key results agree with other studies in the literature and our 

own ex vivo study and simulations, a larger cohort size in future studies will allow a 

strengthening of the current findings. As infarct size varied significantly across the imaged 

subjects, a larger cohort with varying infarct size will allow a better understanding of the 

dependence of diffusion tensor quantities on infarct size. Second, myocardial segmentation 

to determine the ground truth infarct, border, and remote regions based on LGE-PSIR 

data was carried out following the thresholding method described by Schelbert et al. [22]. 

Although previously adopted, uncertainties remain regarding the choice of the threshold 

values, which could result in small variations of the determined myocardial regions. 

Histological validation of the segmented remote, border, and infarct regions was not possible 

due to lack of histological data. Third, the difference in resolution, field of view (FOV), 

and cardiac phase between in vivo cDTI and LGE required interpolation and a non-rigid 

registration step. This might have led to the mislabeling of a small number of voxels in 

the boundary of the adjacent myocardial regions. Further work is required to quantify the 

uncertainty associated with non-rigid registration [45] along with the uncertainty due to the 

noise in the MRI images and observer error. Finally, regarding the diffusion simulation, 

a simplified geometric model was used to generate cellular structures, and simulations 

were carried out without considering cell permeability and intracellular diffusion. Given the 

higher sensitivity to extracellular diffusion of the adopted MRI sequence, we expect that 

the computed trends will remain representative even if a more realistic model is adopted. 

However, further work is needed to account for cell permeability, intracellular diffusion, 

multi-compartment cellular structures, and more realistic cell structures.

5. Conclusions

In vivo cDTI data that were acquired in swine subjects six to ten weeks post-myocardial 

infarction showed a decrease in fractional anisotropy and an increase in mean diffusivity 

and diffusion tensor eigenvalues in the infarct and border regions with respect to the remote 

myocardium. Across all subjects, the second (e2) and third (e3) diffusion tensor eigenvalues 

together with radial diffusivity (RD) showed the largest increase in the infarct and border 

regions compared to remote myocardium. As RD averages the changes in e2 and e3, it can be 

a potential biomarker to identify infarct regions without the use of contrast agents, and can 

provide additional information about microstructural changes occurring post-MI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding:

This research was supported by NIH/NHLBI K25-HL135408 grant and the University of Central Florida startup 
funds to L.E.P. The content of this article is solely the responsibility of the authors and does not necessarily 
represent the official views of the Funders.

Rahman et al. Page 11

Appl Sci (Basel). Author manuscript; available in PMC 2022 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Availability Statement:

The code to reconstruct the voxelwise diffusion tensors from cDTI data is freely available 

on GitHub at https://github.com/KMoulin/DiffusionRecon (Last accessed on 24 March 

2022). The code to perform the diffusion simulations is also available on GitHub at https://

github.com/KMoulin/DiffusionSimulation (Last accessed on 24 March 2022). In vivo cDTI, 

native T1, post-contrast T1, and LGE data for the analyzed swine subjects are provided as 

supplementary material.
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Figure 1. 
Experimental procedure: infarct induction and MR imaging
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Figure 2. 
Diagram illustrating the registration process that was used to register LGE-based label maps 

to cDTI slices. (a) Quaternions were used to rigidly register LGE-based label maps to cDTI 

binary masks to ensure that both LGE and cDTI were in the same image space. (b) Since 

LGE was acquired during diastole and cDTI was acquired during systole, the longitudinal 

spacing between the LGE slices was reduced to reflect the contracted LV state during 

systole. This shortening was achieved by matching the basal and apical LGE and cDTI 

slices. (c) Although the basal and apical LGE and cDTI slices were aligned, the rest of the 

slices were not aligned. Hence, the cDTI slice masks at the z-axis location of the LGE slices 

were obtained via weighted average. (d) To obtain label maps at the cDTI location, aligned 

LGE-based label maps and weighted averaged cDTI slices were non-rigidly registered. (e) 

The cDTI label maps obtained in step (d) were at the z-axis location of the LGE slices. 

Hence, 3D interpolation was carried out to obtain label map values at the z-axis location 

of the original cDTI slices. (f) Based on the 3D interpolation, label maps for the remote 

(blue), border (yellow), and infarct (red) regions were obtained at the original cDTI slices’ 

locations.
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Figure 3. 
LGE-PSIR, native T1, ECV maps, b = 0 s/mm2, and b = 350 s/mm2 images for five 

representative short-axis slices of the same infarcted swine subject. LGE-PSIR is a contrast-

based imaging technique, and native T1 and diffusion images (NDWI and DWI) are non-

contrast-based techniques.
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Figure 4. 
LGE-PSIR and corresponding label maps registered to cDTI along with fractional 

anisotropy (FA), mean diffusivity (MD), primary eigenvalue (e1), secondary eigenvalue (e2), 

tertiary eigenvalue (e3), and radial diffusivity (RD) maps for five representative short-axis 

slices in an infarcted subject.
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Figure 5. 
Raincloud plots [28] overlaid to the corresponding box plots for FA, MD, eigenvalues e1, 

e2, and e3, radial diffusivity (RD), extracellular volume fraction (ECV), and native T1 in the 

infarct, border, and remote myocardial regions.
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Figure 6. 
MD, FA, e1, and RD as a function of simulated ECV for 45 cellular structures and 

5 diffusion distributions (225 cases in total). These results are obtained from diffusion 

simulations with 20,000 water molecules and a timestep Δt = 10 μs. Cellular structures with 

similar ECV (±0.05) are clustered together and median values of each cluster are connected 

to better visualize the overall trend of MD, FA, e1, and RD with increasing ECV.
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Figure 7. 
FA, MD, e1, e2, e3, and RD mappings for a representative slice from data acquired ex 

vivo (top) and in vivo (mid). Ex vivo and in vivo diffusion quantities across all subjects 

are compared using boxplots (bottom). These boxplots are constructed based on the subject-

wise medians of the diffusion quantities.

Rahman et al. Page 21

Appl Sci (Basel). Author manuscript; available in PMC 2022 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahman et al. Page 22

Table 1.

Overall mean, median, and Q1–Q3 computed across all subjects for native T1, ECV, FA, MD, diffusion tensor 

eigenvalues, and RD in the infarct, border, and remote regions.

Native T1 (ms) ECV

Infarct Border Remote Infarct Border Remote

Mean 1546 1434 1344 0.49 0.39 0.32

Median 1554 1389 1282 0.47 0.38 0.31

Q1, Q3 1363, 1700 1274, 1553 1210, 1442 0.36, 0.62 0.31, 0.46 0.27, 0.37

FA MD (1 × 10−3 mm2/s)

Infarct Border Remote Infarct Border Remote

Mean 0.25 0.28 0.29 1.81 1.69 1.46

Median 0.23 0.27 0.29 1.84 1.68 1.46

Q1, Q3 0.18, 0.30 0.21, 0.33 0.23, 0.35 1.52, 2.12 1.45, 1.92 1.32, 1.60

e1 (1 × 10−3 mm2/s) e2 (1 × 10−3 mm2/s)

Infarct Border Remote Infarct Border Remote

Mean 2.27 2.17 1.91 1.80 1.65 1.40

Median 2.28 2.14 1.94 1.83 1.65 1.38

Q1, Q3 1.98, 2.55 1.90, 2.39 1.74, 2.10 1.48, 2.11 1.37, 1.92 1.22, 1.58

e3 (1 × 10−3 mm2/s) RD (1 × 10−3 mm2/s)

Infarct Border Remote Infarct Border Remote

Mean 1.38 1.25 1.06 1.59 1.45 1.23

Median 1.42 1.24 1.06 1.62 1.45 1.22

Q1, Q3 1.09, 1.71 1.01, 1.48 0.91, 1.23 1.29, 1.90 1.20, 1.69 1.08, 1.39
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Table 2.

Overall percentage change in median values and resulting p-values from non-parametric pairwise Kruskal–

Wallis test for native T1, ECV, FA, MD, diffusion tensor eigenvalues, and RD between border–remote and 

infarct–remote regions across all subjects.

Native T1 ECV

Border-Remote Infarct-Remote Border-Remote Infarct-Remote

8.4%, p < 0.01 21.2%, p < 0.01 22.6%, p < 0.01 51.6%, p < 0.01

FA MD

Border-Remote Infarct-Remote Border-Remote Infarct-Remote

−7.6%, p < 0.01 −19.8%, p < 0.01 14.7%, p < 0.01 26.1%, p < 0.01

e1 e2

Border-Remote Infarct-Remote Border-Remote Infarct-Remote

10.4%, p < 0.01 17.5%, p < 0.01 19.2%, p < 0.01 31.9%, p < 0.01

e3 RD

Border-Remote Infarct-Remote Border-Remote Infarct-Remote

16.1%, p < 0.01 33.4%, p < 0.01 18.0%, p < 0.01 32.3%, p < 0.01
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Table 3.

Median value percentage change and p-values resulting from non-parametric pairwise Kruskal–Wallis test 

between infarct–border, border–remote, and infarct–remote regions for each subject separately and for all 

measured quantities. Values reported in red correspond to p-values greater than or equal to 0.01 or isolated 

cases where percentage changes are opposite to the overall observed trends.

Sub
FA MD

Infarct vs. Border Border vs. Remote Infarct vs. Remote Infarct vs. Border Border vs. Remote Infarct vs. Remote

S1 −18.4%, p < 0.01 −24.0%, p < 0.01 −38.0%, p < 0.01 14.6%, p < 0.01 21.3%, p < 0.01 39.0%, p < 0.01

S2 −6.5%, p = 0.25 −2.7%, p < 0.01 −9.0%, p < 0.01 7.0%, p = 0.02 5.4%, p < 0.01 12.8%, p < 0.01

S3 −11.8%, p < 0.01 −11.1%, p < 0.01 −21.6%, p < 0.01 15.0%, p < 0.01 4.6%, p < 0.01 20.3%, p < 0.01

S4 −9.5%, p < 0.01 −5.7%, p = 0.1 −14.6%, p = 0.02 7.3%, p < 0.01 2.9%, p < 0.01 10.3%, p < 0.01

S5 −10.2%, p < 0.01 8.3%, p < 0.01 −2.7%, p < 0.01 7.1%, p < 0.01 6.0%, p < 0.01 13.5%, p < 0.01

Sub
e1 e2

Infarct vs. Border Border vs. Remote Infarct vs. Remote Infarct vs. Border Border vs. Remote Infarct vs. Remote

S1 9.2%, p < 0.01 14.1%, p < 0.01 24.6%, p < 0.01 15.3%, p < 0.01 25.8%, p < 0.01 45.0%, p < 0.01

S2 3.7%, p = 0.22 3.2%, p < 0.01 7.0%, p < 0.01 13.7%, p < 0.01 6.9%, p < 0.01 21.5%, p < 0.01

S3 7.8%, p < 0.01 3.5%, p < 0.01 11.6%, p < 0.01 16.2%, p < 0.01 8.5%, p < 0.01 26.1%, p < 0.01

S4 7.1%, p < 0.01 −0.8%, p < 0.01 6.2%, p < 0.01 8.4%, p < 0.01 4.5%, p < 0.01 13.2%, p < 0.01

S5 4.1%, p < 0.01 7.8%, p < 0.01 12.2%, p < 0.01 6.7%, p < 0.01 6.7%, p < 0.01 13.8%, p < 0.01

Sub
e3 RD

Infarct vs. Border Border vs. Remote Infarct vs. Remote Infarct vs. Border Border vs. Remote Infarct vs. Remote

S1 19.5%, p < 0.01 35.6%, p < 0.01 62.1%, p < 0.01 17.2%, p < 0.01 30.3%, p < 0.01 52.8%, p < 0.01

S2 5.1%, p = 0.19 8.3%, p < 0.01 13.8%, p < 0.01 10.0%, p = 0.01 8.7%, p < 0.01 19.6%, p < 0.01

S3 16.3%, p < 0.01 6.5%, p < 0.01 23.9%, p < 0.01 16.9%, p < 0.01 6.6%, p < 0.01 24.6%, p < 0.01

S4 10.4%, p < 0.01 5.2%, p < 0.01 16.2%, p < 0.01 7.7%, p < 0.01 4.2%, p < 0.01 12.2%, p < 0.01

S5 10.6%, p < 0.01 2.9%, p < 0.01 13.8%, p < 0.01 7.5%, p < 0.01 4.8%, p < 0.01 12.7%, p < 0.01

Sub
Native T1 ECV

Infarct vs. Border Border vs. Remote Infarct vs. Remote Infarct vs. Border Border vs. Remote Infarct vs. Remote

S1 16.7%, p = 0.06 4.0%, p = 0.88 21.3%, p < 0.01 23.8%, p < 0.01 2.1%, p < 0.01 26.4%, p < 0.01

S2 18.7%, p = 0.66 14.1%, p < 0.01 35.4%, p < 0.01 61.7%, p < 0.01 29.2%, p < 0.01 108.9%, p < 0.01

S3 7.1%, p = 0.11 14.2%, p < 0.01 22.3%, p < 0.01 12.1%, p < 0.01 36.8%, p < 0.01 53.3%, p < 0.01

S4 2.0%, p = 0.3 4.5%, p < 0.01 6.6%, p = 0.018 10.1%, p < 0.01 11.3%, p < 0.01 22.6%, p < 0.01

S5 9.3%, p < 0.01 1.4%, p = 0.1 10.8%, p < 0.01 13.9%, p < 0.01 8.3%, p < 0.01 23.3%, p < 0.01
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