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Increased genetic diversity of ADME genes in
African Americans compared with their putative
ancestral source populations and implications for
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Abstract

Background: African Americans have been treated as a representative population for African ancestry for many
purposes, including pharmacogenomic studies. However, the contribution of European ancestry is expected to
result in considerable differences in the genetic architecture of African American individuals compared with an
African genome. In particular, the genetic admixture influences the genomic diversity of drug metabolism-related
genes, and may cause high heterogeneity of drug responses in admixed populations such as African Americans.

Results: The genomic ancestry information of African-American (ASW) samples was obtained from data of the 1000
Genomes Project, and local ancestral components were also extracted for 32 core genes and 252 extended genes,
which are associated with drug absorption, distribution, metabolism, and excretion (ADME) genes. As expected, the
global genetic diversity pattern in ASW was determined by the contributions of its putative ancestral source populations,
and the whole profiles of ADME genes in ASW are much closer to those in YRI than in CEU. However, we observed much
higher diversity in some functionally important ADME genes in ASW than either CEU or YRI, which could be a result of
either genetic drift or natural selection, and we identified some signatures of the latter. We analyzed the clinically relevant
polymorphic alleles and haplotypes, and found that 28 functional mutations (including 3 missense, 3 splice, and 22 regulator
sites) exhibited significantly higher differentiation between the three populations.

Conclusions: Analysis of the genetic diversity of ADME genes showed differentiation between admixed population and its
ancestral source populations. In particular, the different genetic diversity between ASW and YRI indicated that the ethnic
differences in pharmacogenomic studies are broadly existed despite that African ancestry is dominant in Africans Americans.
This study should advance our understanding of the genetic basis of the drug response heterogeneity between populations,
especially in the case of population admixture, and have significant implications for evaluating potential inter-
population heterogeneity in drug treatment effects.
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Background
Many factors such as age, enzyme induction or inhibition,
and diseases can affect enzyme activity. Variations in the
DNA sequence of enzyme-encoding genes can abolish, re-
duce, or increase the activity of an enzyme. The genetic
variations in the genes involved in the absorption, distri-
bution, metabolism, and excretion (ADME) of drugs are
therefore essential factors for the efficacy and safety of
drugs in the human body [1,2]. Generally, ADME enzymes
are composed of Phase I metabolizing enzymes (such as
the cytochrome P450 enzymes), Phase II metabolizing en-
zymes (such as arylamine N-acetyltransferase), and drug
transporters (including the ATP binding cassette proteins)
[3]. Previous studies highlighted the contributions of both
environmental and, in particular, genetic factors to varia-
tions in the activity of ADME proteins [4,5]. Some func-
tional polymorphisms have therefore been reported in
ADME genes that allow the classification of individuals
into intermediate, rapid, and slow metabolized groups,
and the broad distribution of drug responses might
increase the risk of drug therapy when the therapeutic
window is narrow [6]. The careful assessment of the con-
tributions of ADME genetic variations to the efficacy and
safety of drugs is an important task for the development
of clinical pharmacogenetic studies.
Population studies have revealed that ethnic differences

occur in the frequency of genetic variants [7,8], and that
significant genetic differences in the ADME genes between
different populations could lead to therapeutic failure,
or adverse drug responses. For example, the intronic
SNP located at CYP3A5, known as “CYP3A5*3”, results
in a nonfunctional protein, and occurs at a frequency
of ~40% among African Americans, ~90% among Cauca-
sians, and ~65% among Asians [9]. Additional important
ADME genes, such as CYP2C9, CYP2C19, CYP2D6, and
NAT2, also have significantly different frequencies of
genetic variants that may lead to different drug dose
requirements of different ethnic groups [10,11]. For
example warfarin, an anticoagulant, has the highest dose
requirements in African-Americans, the lowest dose re-
quirements in Asians, and intermediate requirements in
Caucasian populations [12]. Since the populations in devel-
oping countries rely mainly on the US FDA or European
Medical Agency guidelines for dosing instructions, a
comprehensive understanding of the inter-ethnic differ-
ences in the ADME genes is therefore critical to guide
more effective global drug prescriptions [13].
African Americans are well known admixed from

Africans and Europeans [14]. As the largest minority
group in the United States, African Americans have re-
ceived significant attention in pharmacogenetic studies.
However, little is known about the influence of admixture
on genetic heterozygosity and haplotype diversity, and
how it may directly implicate the heterogeneity of drug
responses. Furthermore, limited pharmacogenetic data are
available on African populations [15], and so systematic
comparisons of the patterns and magnitudes of diversity
of ADME genes between African and African-American
populations would benefit the drug responses of Africans,
and facilitate future inter-ethnic investigations of drug
metabolism.
We compared the genetic diversity of ADME genes

(including 32 core genes and 252 extended genes) and
that of non-ADME genes which were randomly selected
from the list of known genes in the genome in African-
American, African, and European populations. We then
investigated the genetic architectures of ADME genes
and searched for the factors that could influence the
genetic diversity of ADME genes in the three popula-
tions. Further, we identified functional mutations with
highly differential allele frequencies and compared the
distributions of haplotypes clinically defined in each
ADME core gene among the three populations. Finally,
we explored the mechanism of higher genetic diversity
of ADME genes in admixed population like the African
American compared with that in its ancestral source
populations.
Results
Ancestral origins of ADME genes in African Americans
Estimating the local admixture proportions of genes
could help not only to understand the genetic differ-
ences between admixed and ancestral source popula-
tions, but also to investigate the natural selection that
has occurred since admixture [16]. Here, we directly ex-
tracted the local ancestry information of each ADME
gene from the dataset provided by the 1000 Genomes
Project. In Additional file 1: Figure S1 and Additional
file 2: Figure S2, data showed that different ADME genes
in ASW exhibited highly variable origins, even for the
same individual at different regions. For example, an
ASW individual (NA19625), who is presented as first
two rows in each box, exhibited two haplotypes of the
ABCB1 gene that originated from Europeans (Figure 1A),
two haplotypes of the CYP3A4 gene that originated from
Africans (Figure 1B), and haplotypes of the CYP1A2
gene that originated from Europeans and Africans separ-
ately (Figure 1C). Detailed descriptions of the local an-
cestral information of all 61 African American subjects
at the ADME 32 core genes are shown in Additional
file 3: Table S1. It is likely that individuals may exhibit
significant differences in drug metabolism due to the
heterogeneity of ancestral origins. Because of this, the
analysis of the ancestral origins of ADME genes in
admixed populations (such as ASW) is important to
understand the high heterogeneity of drug responses in
these populations.
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Figure 1 Ancestral origins of ADME genes in African Americans. The examples of ancestral origins of three ADME core genes in African
Americans: (A) ABCB1, (B) CYP3A4, (C) CYP1A2, where each box has 122 rows representing the diploid sequences of 61 individuals. Blue colored
fragments mean originating from European, red means originating from Africa, and gray means unknown component. The start and end positions of
genes are plotted at corresponding locations using green bars, and the up- and down-stream 100 kb regions are also included in the figures. (D) The
percentage of local European genetic components in ASW for 32 ADME genes. The red bar at the bottom of panel represents the average percentage
of European genetic components from the whole genome, while the error bars represent the SD of the percentages. Note that for CYP2E1, GSTM1,
SULT1A1, UGT1A1, UGT2B15, ABCG2, SLC22A1, and SLCO1B1 the percentages are average values, while for the remaining genes they are consistent values
(see Additional file 2: Figure S2).
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We further examined the local ancestry contributions
from Europeans to African Americans in 32 ADME core
genes and 252 ADME extended genes (Figure 1D and
Additional file 4: Table S2). The average contribution of
European ancestry is 24.1% (SD = 0.036), based on auto-
somal data, which is consistent with previous studies
[14,17]. However, the European genetic contributions
varied from 15.8% (UGT2B7) to 33.4% (UGT1A1) in 32
ADME core genes, and from 15.3% (SULT1C2) to 34.6%
(ABCG1) in the 252 ADME extended genes. In sum-
mary, none of the European ancestries of these 284
ADME genes significantly deviated from the average value
of whole autosomes (<3 SD, 13.3%, and approximately
34.9% European ancestral component). These results did
not support strong natural selection of the ADME genes
in African-Americans since admixture [16].
The diversity patterns of ADME genes in African
Americans
In pharmacogenetic studies, allele frequency, heterozygos-
ity, and haplotype diversity have been commonly used as
indicators of heterogeneity of the drug response. To fur-
ther investigate the influence of admixture on ADME
genes in African Americans, we examined the fluctuations
in heterozygosity and haplotype diversity of each 10 kb
bin spanning the 32 ADME core genes (Additional file 2:
Figure S2). It is clear that heterozygosity and haplotype
diversity have similar trends in the three populations.
In most examples, the diversity pattern of ASW is
closer to YRI, and both are significantly higher than
CEU. Furthermore, heterozygosity and haplotype diver-
sity vary much more than the local ancestral compo-
nents, where the genetic diversity could significantly
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Figure 2 Allele frequency patterns of 32ADME core genes in
African Americans. (A) A scatter plot of observed vs. expected
allele frequencies of 32 ADME core genes in African Americans.
(B) The allele frequency distribution of 806 highly differential SNPs
(a frequency difference larger than 0.37 between at least two
populations) among the three populations.
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change in neighboring 10 kb bins, while similar ances-
tral fragments could span hundred thousand base pairs.
It is likely that the genetic diversity patterns of an
admixed population were affected not only by local
ancestral proportions, but also by the patterns of its
ancestral source populations.
To further investigate the influence of ancestral contri-

butions on the genetic diversity of admixed populations,
we carried out correlation analysis between the observed
and expected allele frequencies of ASW, which was cal-
culated using the following formula:

f ASW ;exp ¼ f CEU :ρEur þ f YRI : 1−ρEur
� �

Where fCEU and fYRI denote the derived allele fre-
quency of each locus in CEU and YRI, respectively, and
ρEur represents the contribution of European ancestry in
each locus. As shown in Figure 2A, the observed and ex-
pected values calculated from ASW showed high linear
correlation, with a Pearson’s correlation coefficient of r >
0.99, and significance of P < 10−15. The ancestral source
populations therefore determined the allele frequencies
of ASW in the ADME core genes. The expected hetero-
zygosity of each locus can be directly calculated from
the allele frequency [18], and the haplotype diversity is
associated with allele frequency and the linkage disequi-
librium of each locus [19]. It may therefore be inferred
that ancestral source populations also somewhat deter-
mine the genetic diversity of ASW.
The admixture resulted in distinct genetic diversity

patterns of the African American population compared
with its ancestral source populations, especially in re-
gions that were highly different between populations.
For example, we extracted the highly differential loci
with frequency difference larger than 0.37 between at
least two populations (with an empirical P value of less
than 0.05 over the whole genome), and presented the
frequency distribution of those 806 loci in Figure 2B.
The data clearly reveal that the alleles of ASW are
largely in moderate frequencies. The heterozygosity and
haplotype diversity of these highly differentiated regions
should therefore be consistently higher for African
Americans.

Comparison of genetic diversity patterns of ADME genes
between African Americans and their ancestral source
populations
To compare the overall genetic diversity of ADME genes
between African American and its ancestral source pop-
ulations, we calculated the derived allele frequencies of
284 ADME genes with the exons, introns, and up- and
down-stream 10 kb regions. In addition, we separated
the above regions into 10 kb bins to avoid bias due to
the varying lengths of different genes, and then
calculated the expected heterozygosity and haplotype di-
versity of these bins and examined their distributions.
Different genetic diversity patterns of 32 ADME core

genes between ASW, CEU, and YRI are shown in
Figure 3A-3C. For the 10 frequency bins from 0 to 1,
CEU showed an extremely high abundance in the low-
derived frequency bin (0–0.1), less abundance at the
intermediate frequency bins, but increased abundance in
the high-frequency-derived-allele bin (0.9-1; Figure 3A).
The unexpected proportions of nearly fixed alleles
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Figure 3 Genetic diversity patterns of 32 ADME core genes and 252 ADME extended genes. (A) Derived allele frequency spectra of core
genes, (B) Expect heterozygosity distributions of core genes, (C) Haplotype diversity distributions of core genes, (D) Derived allele frequency
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suggested that natural selection signals were enriched in
ADME core genes in the CEU population. Compared
with the frequency pattern of CEU, the spectra of the
ADME core genes of ASW and YRI showed high levels
of similarity, although there are still some differences
among many bins, particularly the intermediate fre-
quency bins. For example, ASW showed a higher abun-
dance in the frequency bins of 0.4-0.5, and 0.5-0.6.
Because the alleles with intermediate frequencies were

enriched in the ADME core genes from ASW, African
Americans exhibited the highest expected heterozygosity
compared with the other two populations (Figure 3B).
Overall, CEU showed the lowest median heterozygosity
value of 0.126, YRI exhibited an intermediate median
heterozygosity of 0.179, and ASW demonstrated the
highest median heterozygosity (0.181). Hence although
the heterozygosity distributions of YRI and ASW were
much more similar to each other than to CEU, the curve
of heterozygosity in ASW was shifted to higher values
than that of YRI (p < 0.001), indicating increased genetic
diversity due to genetic admixture.
Haplotype diversity analysis of 32 ADME core genes

showed similar patterns to the comparison of heterozy-
gosity (Figure 3C). Generally, the haplotype diversity dis-
tribution of CEU was lower than the other two
populations, the distribution was flatter, and the median
value was 0.790. Conversely, the haplotype diversity dis-
tributions of ASW and YRI were narrower, and shifted
to higher values. When ASW and YRI were compared,
ASW had higher haplotype diversity with a median value
of 0.912, while the median value of YRI was 0.903
(p < 0.001).



Li et al. BMC Genetics 2014, 15:52 Page 6 of 15
http://www.biomedcentral.com/1471-2156/15/52
When the genetic diversity of 252 extended ADME
genes was analyzed (Figure 3D-3F), obvious differences
were identified between CEU and the other populations.
However, compared with the analysis of the 32 core
ADME genes, CEU exhibited a pattern with less enrich-
ment in the very low or high frequency bins (Figure 3D),
but shifted to higher values of both heterozygosity (with
a median 0.148) and haplotype diversity (with a median
0.792; Figure 3E and 3F). When the 252 extend ADME
genes of ASW and YRI were compared, the difference in
allele frequency was smaller (Figure 3D). ASW and YRI
showed high overlapping heterozygosity and haplotype
diversities, and were different only at peak regions of the
distributions (Figure 3E and 3F). Specifically, the median
heterozygosities were 0.178 and 0.181, while the median
haplotype diversities were 0.919 and 0.921, for ASW and
YRI, respectively. In the 252 ADME extended genes
assessed, ASW therefore showed slightly lower genetic
complexity than YRI (p < 0.001), in contrast to the re-
sults from 32 ADME core genes.
To better characterize genetic architecture of ADME

genes, we further compared the genetic diversity pat-
terns of 32 ADME core genes with those of 50 randomly
selected genes, and genetic diversity patterns of 252 ex-
tended genes with those of 500 randomly selected genes,
as well as those of the whole autosomal regions. With
respect to derived allele frequency (DAF) spectrums
(Additional file 5: Figure S3 A-C), all three populations
exhibited an exponential distribution, with CEU showing
the highest, ASW moderate, and YRI the lowest enrich-
ment in the low DAF bin (0.0-0.1). With respect to the
expected heterozygosity distributions (Additional file 5:
Figure S3 D-F), CEU again exhibited the lowest hetero-
zygosity in all the three datasets (two randomly selected
and one whole autosomal), while ASW and YRI showed
very similar distributions. Similarly, haplotype diversity
of CEU was the lowest among the three populations,
whereas the distributions of ASW and YRI were com-
parable, as shown in Additional file 5: Figure S3 G-I. In
summary, CEU showed consistently the lowest genetic
diversity in all the random data sets we examined, which
was consistent with the patterns we observed in ADME
genes. However, the genetic diversity of ASW was simi-
lar to or even lower than that of YRI in random data
sets, which was contrast to the patterns observed in the
32 ADME core genes.

Characterizing genetic diversity patterns of ADME core
genes
To investigate why ADME core genes exhibited signifi-
cantly higher diversity than random datasets, we separ-
ately assessed the genetic diversity patterns of
population-specific high diversity regions in ASW, CEU,
and YRI. The method used to build LSBL (locus specific
branch length) trees based on pairwise FST values from
the three populations were described in Methods. Taking
the values of branch length with P = 0.01 as a threshold
based on the empirical distributions (0.061 for ASW,
0.367 for CEU, and 0.114 for YRI, seen in Additional
file 6: Figure S4), we found 15 out of the 32 ADME core
genes showing significant LSBL signals. Detailedly, 7
genes (ABCG2, GSTP1, GSTT1, UGT2B15, CYP3A4,
CYP3A5, and SLCO1B3) showed significant LASW frag-
ments, 8 genes (CYP3A4, CYP3A5, ABCB1, ABCC2,
CYP1A2, CYP2C19, DPYD, SLC22A6) displayed signifi-
cant LCEU fragments, and 3 genes (SLCO1B3, CYP2E1,
SLCO1B1) exhibited significant LYRI fragments, as
shown in Figure 4. In the 10 kb bins spanning entire
autosomal regions, as shown in Additional file 7: Figure
S5, CEU consistently showed the lowest genetic diver-
sity compared with the other two populations. In con-
trast, the results of comparison between ASW and YRI
depended on the different situations. For example, in
significant LASW regions, ASW showed lower genetic di-
versity than YRI, in contrast, whereas in significant LCEU
regions, ASW showed higher single-locus heterozygos-
ity but lower haplotype diversity than YRI, while in sig-
nificant LYRI regions, ASW showed consistently higher
genetic diversity than YRI. Therefore, the special gen-
etic pattern of ADME core genes is probably due to the
prevalence of significant LSBL regions in the core genes,
which made the differentiations between ASW and YRI
more distinguishable.
Significant LSBL regions within given populations in-

dicate the natural selection signals. Because we were un-
able to conduct distinct detailed selective sweeps, we
used two independent natural selection detection ap-
proaches; iHS (integrated Haplotype Score) and CLR
(Composite Likelihood Ratio) tests, to validate the selec-
tion signals of those genes (Figure 4). In most of genes
showing significant LSBL, natural selection signals from
iHS and CLR tests were also identified in at least one
population, but were not necessarily found in the exact
population that exhibited significant LSBL signals. For
example, 12 out of 15 genes showed natural selection
signals in at least one population by either iHS or CLR.
However, only 3 genes (CYP3A4, CYP3A5, and CYP1A2)
showed consistent LSBL and iHS/CLR signals in CEU.
It is noteworthy that LSBL is a cross-population test,
whereas iHS/CLR methods are used for within-population
analysis. The inconsistent results observed in Figure 4
therefore accurately explain how natural selection shaped
the genetic differences between populations.
Interestingly, 7 of the 15 genes presented in Figure 4

were identified as underlying natural selection by iHS/
CLR tests in ASW, which was a similar proportion to
CEU (8 out of 15) and YRI (6 out of 15). However, each
of the genes with signals in ASW consistently showed



Figure 4 LSBL analysis and natural selection testing of the ADME core genes. Brown represents the genes with significant LASW, blue
represents genes with significant LCEU, and green represents significant LYRI. The diamond symbol represents the genes with significant CLR scores,
whereas the cycle symbol represents the genes with significant iHS scores.
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similar signals in the ancestral source populations, par-
ticularly YRI. For example, SLC22A6 had underlying se-
lection based on the iHS signal in both ASW and CEU,
whereas ABCG2, CYP2C19, and SLCO1B3 were identi-
fied based on iHS or CLR signals in both ASW and YRI.
Finally, GSTT1, ABCB1, and DPYD had underlying se-
lection based on iHS or CLR signals in all populations.
The beneficial selective sweeps found in ASW may
therefore be inherited from either of its ancestral
populations.
Twenty-four of the 252 ADME extended genes exhib-

ited strong LSBL signals in at least one population
(Additional file 8: Figure S6). Of these 24 genes, only 13
played a role in natural selection based on iHS/CLR sig-
nals, which showed less selective sweeps in the ADME
extended genes compared with the core genes. The
ADME extended genes also showed much more compar-
able genetic diversity patterns than the neutral datasets
(Figure 3 and Additional file 5: Figure S3), suggesting that
genes are subject to less selective pressure compared with
the more functionally important ADME core genes.

Highly differential functional SNPs in ADME genes across
the three populations
Given the above evidence that some ADME core genes
showed natural selection signals in particular popula-
tions, it was important to identify the causal mutations
that affected the function of the genes. Considering that
the potential causal mutations typically exhibit large
allele frequency differences between individuals that
adapt to the local environment and those that do not,
we used global FST to identify SNPs with high differen-
tial frequencies between populations, and annotated
their functions using public datasets. Figure 5A reveals a
histogram of FST values of all loci from 32 ADME core
gene regions (including 10 kb up- and downstream).
The ADME core genes showed a significantly higher
percentage of mutations with high FST (415 out of the
total 12,255 SNPs with FST >=0.221) compared with 252
ADME extended genes (Additional file 9: Figure S7A),
50 or 500 randomly selected genes (Additional file 9:
Figure S7B and C), and the entire autosomal region
(Additional file 9: Figure S7D). For the identified highly
differential SNPs between the three populations, we used
the variance effect predict tools (Ensembl) to predict
and catalog the function of each locus (Figure 5B). Out
of the SNPs with high FST values, 75% were located in
introns, 3% were in the intergenic region, 8% in the
downstream region, and 10% SNPs were upstream.
While the function of the SNPs could not be directly
identified, it is possible that they might be associated
with regulating gene expression. In addition, three SNPs
were found in 3′-UTR regions, three were synonymous
mutations, four were non-synonymous mutations, and
four were located in splice sites, which combined make
up 1% of the total number of SNPs with high FST, and
are more likely to be directly associated with protein
structure and gene expression.
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To further explore the function of the SNPs with high
FST, we used two additional functional annotation
databases to investigate their detailed function (Table 1).
We identified 28 potentially functional SNPs with high
FST in 11 genes. Of these, ABCG2, CYP1A2, CYP3A4,
CYP3A5, SLCO1B3, and UGT2B7 had more than one
highly differential functional SNPs, showing a natural
selection signature (Figure 4). From the 28 highly
differential SNPs, 20 were annotated in the PharmGKB
database, all of which were associated with drug hetero-
geneity responses in clinical studies. For example, it was
reported that the genotype AA at the SNP rs2032582 in
the ABCB1 gene is associated with an increased re-
quired dose of antipsychotics in patients with schizo-
phrenia [20], while CC and AC genotypes are associated
with decreased responsiveness to paroxetine in patients
with depression compared with the AA genotype
[21,22]. Of the remaining eight SNPs, five have been an-
notated in RegulomeDB, which are significantly associ-
ated with gene expression as eQTL. Although the
remaining three SNPs have not been annotated in either
database, they may still modulate enzyme function as
non-synonymous mutations or splice sites in genes. The
derived allele frequency and expect heterozygosity of
each population for each SNP is listed in Table 1. By com-
paring the frequencies of the functional SNPs, we found
significant differences between ASW, CEU, and YRI. In
particular, variants in CEU or YRI were almost fixed to the
ancestral (frequency <=0.1) or derived state (frequency
>=0.9), while the frequencies of ASW were between those
of CEU and YRI. This is consistent with the overall fre-
quency spectrum of the ADME genes, and also explains
why the expected heterozygosity in ASW is the highest of
the three populations.
Functional haplotype analysis of ADME genes between
the three populations
In pharmacogenetic studies, the clinical phenotypes of
drug metabolism are more likely to be dominated by the
haplotype composed of functional variants, rather than
single independent SNPs. Based on the PharmGKB data-
base, we therefore analyzed the diversity and distributions
of the clinical haplotypes of the ADME core genes be-
tween the three populations. Since the nomenclature com-
mittee defines the composition of the clinical haplotypes,
some variants may only exist in certain individuals and
not in healthy samples in the 1000 Genomes Project. As a
result, only a partial component of the completed clinical
haplotype could be found for 28 of the 32 ADME core
genes. Detailed information and the significance of pair-
wise comparison based on bootstrap resampling are
shown in Table 2. In these genes, ASW showed the high-
est diversity, whereas CEU showed the lowest. For ex-
ample, ASW had significantly higher haplotype diversity
than CEU at 22 genes (P < 0.05). In contrast, ASW exhib-
ited comparable haplotype diversity to YRI, and so only
six genes were significantly different between ASW and
YRI. In five out of the six genes (ABCG2, CYP1A2,
CYP3A4, GSTT1, and UGT1A1), ASW showed higher
haplotype diversity, while in NAT2, YRI had higher haplo-
type diversity than ASW (Table 2).
Two examples of haplotype abundance distributions for

CYP1A2 and NAT2 are shown (Figure 6). We observed that
seven different CYP1A2 haplotypes (rs2069514, rs2069526,
rs762551, rs35796837, rs2472304, and rs2470890) were
composed of six SNPs (Figure 6A). Strikingly, the haplotype
particularly enriched in CEU is GTACAT (66.9%), which is
not observed in YRI, and has a frequency of 13.1% in ASW
that may be due to admixture. The haplotype GTACAT is



Table 1 Summary information of highly differential functional SNPs at ADME core genes
rsID Gene allele fASW fCEU fYRI HeASW HeCEU HeYRI Type Dataset Related

rs2032582 ABCB1 C/A 0.082 0.453 0.000 0.151 0.496 0.000 NON_SYNONYMOUS GKB amitriptyline, atorvastatin, etc.

rs2231164 ABCG2 C/T 0.287 0.912 0.188 0.409 0.161 0.305 INTRONIC GKB antineoplastic agents

rs2622628 ABCG2 C/A 0.443 0.012 0.494 0.493 0.023 0.500 INTRONIC GKB antiepileptics

rs2606345 CYP1A1 C/A 0.197 0.682 0.006 0.316 0.433 0.011 UPSTREAM GKB carbamazepine, phenobarbital, etc.

rs2472304 CYP1A2 C/T 0.131 0.659 0.000 0.228 0.450 0.000 SYNONYMOUS GKB caffeine, paroxetine

rs2470890 CYP1A2 G/A 0.139 0.659 0.011 0.240 0.450 0.023 INTRONIC GKB caffeine, paroxetine

rs2070673 CYP2E1 A/T 0.369 0.777 0.205 0.466 0.347 0.325 INTRONIC GKB cytarabine, ethambutol, etc.

rs12333983 CYP3A4 A/T 0.361 0.924 0.205 0.461 0.141 0.325 DOWNSTREAM GKB tacrolimus

rs3735451 CYP3A4 A/G 0.279 0.982 0.199 0.402 0.035 0.319 UPSTREAM GKB methadone

rs2242480 CYP3A4 T/C 0.303 0.947 0.142 0.423 0.100 0.244 INTRONIC GKB clopidogrel, warfarin, etc.

rs4646437 CYP3A4 C/A 0.353 0.982 0.256 0.456 0.035 0.381 INTRONIC GKB methadone, tacrolimus

rs2687116 CYP3A4 C/T 0.344 0.982 0.233 0.452 0.035 0.357 UPSTREAM GKB tacrolimus

rs2740574 CYP3A4 C/T 0.344 0.924 0.171 0.452 0.141 0.283 INTRONIC GKB carbamazepine, cyclophosphamide, etc.

rs1851426 CYP3A4 A/G 0.303 0.929 0.171 0.423 0.131 0.283 INTRONIC GKB tacrolimus

rs4646458 CYP3A5 G/A 0.418 0.947 0.278 0.487 0.100 0.402 3PRIME_UTR GKB tacrolimus

rs4646457 CYP3A5 C/A 0.328 0.947 0.159 0.441 0.100 0.268 DOWNSTREAM GKB tacrolimus

rs15524 CYP3A5 G/T 0.648 0.988 0.483 0.456 0.023 0.499 DOWNSTREAM GKB tacrolimus

rs7780328 CYP3A5 T/C 0.336 0.953 0.159 0.446 0.090 0.268 ESSENTIAL_SPLICE_SITE GKB alfentanil, alprazolam, etc.

rs776746 CYP3A5 G/A 0.426 0.959 0.301 0.489 0.079 0.421 INTRONIC RegulomeDB -

rs11101985 GSTM1 G/C 0.098 0.418 0.011 0.177 0.486 0.023 INTRONIC RegulomeDB -

rs4630 GSTT1 G/A 0.279 0.877 0.091 0.402 0.216 0.165 3PRIME_UTR GKB dexamethasone, paclitaxel, etc.

rs145334570 SLCO1B3 G/T 0.516 0.112 0.631 0.499 0.199 0.466 NON_SYNONYMOUS - -

rs4762683 SLCO1B3 T/C 0.516 0.112 0.631 0.499 0.199 0.466 SPLICE_SITE - -

rs3764009 SLCO1B3 C/T 0.484 0.888 0.369 0.499 0.199 0.466 SPLICE_SITE - -

rs7311358 SLCO1B3 G/A 0.484 0.888 0.369 0.499 0.199 0.466 NON_SYNONYMOUS GKB docetaxel, mycophenolate mofetil

rs7435827 UGT2B17 A/G 0.098 0.665 0.046 0.177 0.446 0.087 INTRONIC RegulomeDB -

rs7434408 UGT2B17 A/G 0.172 0.706 0.068 0.285 0.415 0.127 INTRONIC RegulomeDB -

rs74764812 UGT2B17 T/C 0.172 0.665 0.057 0.285 0.446 0.107 INTRONIC RegulomeDB -

It is noted that in the column “allele”, the first allele is ancestral state, while the second one highlighted in bold is derived state.
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close to the clinically defined haplotypes CYP1A2 *1 M and
*1Q [23]. It can be distinguished from other haplotypes be-
cause it carries derived mutations at rs762551 (−163C > A*),
rs2472304 (2159G > A*), and rs2470890 (5347C > T*), of
which rs2472304 and rs2470890 are associated with rapid
metabolism of caffeine and anti-depression drugs such as
paroxetine [24,25]. Interestingly, these two SNPs are also in
the list of highly differential mutations (Table 1), suggesting
that they could be potential causal mutations in the CYP1A2
gene for local adaptation of Europeans, leading to specific
genotypes and haplotypes in CEU. This also explains why
ASW showed higher genetic diversity at the CYP1A2 gene
than YRI, since the genetic diversity of the admixed popula-
tion is shaped by both the influence of the admixture and
natural selection. In this example, African Americans inher-
ited some beneficial mutations from one ancestral popula-
tion (CEU) that do not exist in the other (YRI).
In the haplotype analysis of NAT2 (Figure 6B), although
CEU had the lowest diversity, the haplotypes were dis-
tributed into three groups with similar proportions:
GCCTGGG (38.8%), GCTCGAG (27.7%), and GTTCAAG
(29.4%), which are also common haplotypes in ASW and
YRI. For the 13 haplotypes formed by 7 SNPs (Additional
file 10: Table S3), 12 haplotypes were found in YRI, while
only 10 were identified in ASW. With the exception of the
three common haplotypes mentioned above, all other haplo-
types exist at low frequency (<10%) in ASW. It is therefore
clear that the haplotype diversity of the NAT2 gene in ASW
is lower than in YRI. Considering that we did not find any
natural signals of the NAT2 gene in the three populations
here, it is likely that the genetic diversity of NAT2 in African
Americans was mainly influenced by admixture. It is there-
fore noteworthy that we could not apply the efficacy and
safety standard of NAT2 substrates in African Americans



Table 2 Haplotype diversity analysis of the 32 ADME core
genes

Gene HdASW HdCEU HdYRI P value of 10000 times resampling

ASW_CEU ASW_YRI CEU_YRI

ABCB1 0.6853 0.7284 0.6655 0.3221 0.6599 0.1000

ABCC2 0.6151 0.6966 0.6652 0.0238 0.2121 0.2892

ABCG2 0.9678 0.8872 0.9414 0.0000 0.0400 0.0001

CYP1A1 0.4050 0.2184 0.3655 0.0200 0.4900 0.0062

CYP1A2 0.7904 0.4904 0.6999 0.0000 0.0022 0.0000

CYP2A6 0.3781 0.1962 0.4553 0.0200 0.2600 0.0000

CYP2B6 0.8594 0.7722 0.8208 0.0021 0.2014 0.1000

CYP2C19 0.8328 0.6718 0.8701 0.0000 0.1229 0.0000

CYP2C8 0.3333 0.2178 0.3205 0.0800 0.9400 0.0800

CYP2C9 0.2800 0.1009 0.3358 0.0028 0.5000 0.0000

CYP2D6 0.7261 0.7436 0.7233 0.5936 0.9600 0.4799

CYP2E1 0.7009 0.4614 0.7062 0.0000 0.8974 0.0000

CYP3A4 0.4552 0.0578 0.3594 0.0000 0.0285 0.0000

CYP3A5 0.5461 0.1125 0.4932 0.0000 0.2577 0.0000

DPYD 0.4975 0.2847 0.4901 0.0000 0.7000 0.0000

GSTP1 0.5182 0.5415 0.4742 0.4746 0.0912 0.0600

GSTT1 0.4054 0.2178 0.1662 0.0004 0.0000 0.3400

NAT1 0.5198 0.4005 0.5109 0.0035 0.8000 0.0060

NAT2 0.8245 0.6897 0.8673 0.0000 0.0283 0.0000

SLC22A1 0.6034 0.7277 0.5445 0.0040 0.2492 0.0000

SLC22A2 0.2536 0.1619 0.2691 0.1800 0.8000 0.0392

SLC22A6 0.1236 0.0000 0.1278 0.0015 0.9338 0.0001

SLCO1B1 0.7177 0.6446 0.6918 0.1400 0.5753 0.3198

SLCO1B3 0.8954 0.6618 0.9010 0.0000 0.6520 0.0000

SULT1A1 0.1378 0.0685 0.1847 0.1505 0.5000 0.0096

TPMT 0.6124 0.5236 0.5688 0.0375 0.6000 0.2234

UGT1A1 0.7508 0.5671 0.6923 0.0000 0.0049 0.0001

UGT2B7 0.7506 0.6741 0.7337 0.0470 0.8000 0.1000

The haplotype diversity values of 32 ADME core genes in three populations,
and the significances of haplotype diversity between each two populations
were calculated by 10000 times resampling. More detailed haplotype
information of each gene can be found in Additional file 10: Table S3.
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directly to Africans, since Africans show higher genetic di-
versity in this region.

Discussion
In this study, we investigated the genetic diversity of
drug metabolism-related (ADME) genes in African-
Americans (ASW) compared with Europeans (CEU) and
Africans (YRI), which are the representative ancestral
source populations of African-Americans according to a
previous study [17]. As expected, the genetic diversity of
the admixed population, such as allele frequency, ex-
pected heterozygosity, and haplotype diversity, was
largely determined by its ancestral source populations,
demonstrating the large influence of admixture on the
genetic profiles of African Americans, including drug re-
lated genes. In practice, due to few pharmacogenomics
studies carried out on African populations, the results
from African Americans, which have been more exten-
sively studied, are expected to benefit Africans. However,
it is noteworthy that there could be considerable differ-
ences of drug responses between African and African
American populations. In addition, it was reported that
the contribution of African ancestry to African Americans
was mainly from west and west-central Africans (~73%)
but also from other African populations (~7%) [14].
Therefore, despite taking YRI as representation of Africans
sources would not significantly bias the local ancestry in-
ference [17,26], the differences between African American
and African populations could be more complicated
than what we presented here. Therefore, we suggest it is
necessary to make efforts conducting pharmacogenomics
studies in African populations in the future.
To further investigate the influence of admixture on

the genetic architecture and diversity patterns of African
Americans, we performed general genetic diversity com-
parisons, and found that ASW had a higher genetic
complexity than CEU or YRI in the functionally import-
ant ADME core genes. It is expected that the ADME
genes in ASW populations would have higher genetic di-
versity than CEU because ancient Europeans were sub-
jected to severe migrational blocks compared with
Africans, based on the “out of Africa” theory [27], and
thus exhibit lower diversity [28]. Consequently, African
Americans received more gene flow from Africans than
from Europeans [26,29]. Nevertheless, it was surprising
that ASW showed much higher genetic diversity in
ADME core genes than YRI, which is significantly differ-
ent from the patterns observed in the randomly selected
genes or whole autosomal regions.
From a comparison of the genetic diversity of ADME

core genes across the three populations, ASW showed
the highest complexity by the main influence of admix-
ture and enriched selection signatures as complemen-
tary. Since these results are based on comparisons of
general patterns, these conclusions may not be applied
directly to certain cases. We therefore further investi-
gated the genetic diversity of each ADME gene, with
particular focus particularly on the highly differentiated
SNPs. As with gene-based analysis, CEU showed the
lowest genetic complexity in most examples, while
ASW showed enriched mediate allele frequencies,
higher heterozygosity, and more complex haplotype
diversity compared with CEU or YRI in certain genes
such as ABCG2, CYP1A2, and CYP3A4. However in
some genes such as NAT2, ASW showed a lower genetic
diversity than YRI.
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Figure 6 The haplotype distribution analysis. The haplotype distribution in three populations: (A) CYP1A2 and (B) NAT2.
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Due to population admixture, the ASW showed the
different allele frequencies from its ancestral source pop-
ulations, especially, ASW has higher heterozygosity and
haplotype diversity than CEU and YRI in some import-
ant functional variants or haplotypes of ADME genes
(Tables 1 and 2). Differential allele frequencies of the
functional variants among populations suggested the
phenotypes of drug responses with which these variants
are associated could be also different among those popula-
tions. Generally speaking, the higher heterozygosity and
haplotype diversity indicate that the distribution of pheno-
typic drug responses is broader in that certain population.
For instance, we identified two functional SNPs of
CYP1A2 reported by clinical studies that showed signifi-
cant differentiation of allele frequencies and heterozygous
states among the three populations, while ASW exhibited
significantly higher haplotype diversity in CYP1A2 gene
than the other two populations. To our knowledge, so far
there has been no systemic study investigating the pheno-
typic distributions of CYP1A2’s substrates in these three
populations, but we thought our observations should
benefit exploring the population differentiations of clinic
consequences at the genetic level. However, it is note-
worthy that the genetic variants are only one of the factors
affecting drug responses and most of explicit conse-
quences of genetic variants are not yet fully understood.
Thus, the phenotypic consequences of population differ-
entiations of ADME genes should be carefully validated in
future studies. On the other hand, although the role of
ethnicity in pharmacogenomics studies is still debatable,
there are essential ethnic consequences of the different
drug dose requirements among different populations [30].
Given that African Americans exhibited higher genetic di-
versity due to admixture, individual genotyping/sequen-
cing is necessary in the future pharmacogenomic studies
of African Americans because higher heterogeneity of
drug responses is also expected in admixed populations
and any oversimplified ethnic medicine standards might
be inappropriate.
In this study, we established the connection between

genetic diversity and the effects of clinic drug efficacy
and safety based on literatures and public database.
Especially, the PharmGKB database provides an oppor-
tunity to study the functional consequence of highly dif-
ferentiated SNPs between different populations using the
clinical results manually collected from literature. On
the other side, the significant advancement of next gen-
eration sequencing and the establishment of public data-
bases such as the 1000 Genomes Project have allowed us
to access to the full spectrum of ADME gene mutations
among different populations. However, some mutations
in PharmGKB are not present in the 1000 Genomes
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dataset, which may be due to either rare mutations that
only exist in some certain patients, or the sequencing
depth of the 1000 Genomes Project is not sufficient to
detect them.
The genetic diversity patterns between ASW, CEU,

and YRI identified in this study could not completely ex-
plain the heterogenic drug responses between different
populations, but still have important clinical implica-
tions. In addition, high-throughput DNA sequencing
technology provides additional information not available
from traditional pharmacogenetic studies. For example,
we discovered eight highly differential SNPs which were
not identified in PharmGKB: one non-synonymous SNP,
two splice sites, and five intronic SNPs (Table 1). These
data may have important functional implications for
pharmacogenomics studies.
Conclusion
Inter-ethnic genetic differences are shaped by both
demographic history that affects genome-wide pattern,
such as population subdivision and admixture, and evo-
lutionary forces such as natural selection that affect local
regions only. In this study, we identified considerable
differences between African American and African pop-
ulations in some functionally important ADME genes,
indicating individuals from the two populations should
be treated differently in pharmacogenomics. It is likely
the genetic characteristics of ADME core genes in Afri-
can Americans have been shaped by both genetic admix-
ture and natural selection.
Methods
Genetic variation data
The investigations of genetic diversity in this study were
based on 1000 Genomes project Phase I data [31]. Given
the low coverage of sequencing data (2-4x) and even
lower coverage on sex chromosomes (1.74x), we focused
on the autosomal SNP data in which most of ADME
genes are located. We extracted the genetic variation
data of African Americans (ASW), Europeans (CEU),
and Africans (YRI) from the VCF files released by the
1000 Genomes Project, and the genetic variation data
have been already phased with BEAGLEs [32]. The se-
quencing error in the condition of low coverage could
make some singletons unreliable [33] and our work fo-
cused on high frequency SNPs, therefore we filtered out
the monomorphic sites and singletons in the 234-pooled
individuals. Finally, we obtained a total of 18,389,222
SNPs from 61 ASWs, 85 CEUs, and 88 YRIs. Derived al-
lele frequencies and positive selection tests (such as iHS
and CLR tests) were only performed on SNPs with
known ancestral information that were obtained from the
1000 Genomes Project. As a result, there were a total of
16,224,331 SNPs with known ancestral states, which is ap-
proximately 88.2% of the total SNPs obtained.

ADME genes and putative neutral datasets
As described previously [34], the ADME gene lists were
obtained from the PharmaADME database (http://www.
pharmaadme.org/), including the core and extended sets
[35], as shown in Additional file 4: Table S2. After ex-
cluding the genes located on sex chromosomes, there
are 32 core ADME genes that play the most important
roles in drug metabolism, and 252 extended ADME
genes that play a role in drug metabolism, but are not
the major factors. Gene coordinate information was ob-
tained from the RefSeq database [36], and 10 kb up- and
downstream of each gene was included.
To compare the ADME genes between populations,

we used two additional groups of genes/regions as con-
trol data. Firstly, to check whether the ADME genes ex-
hibit the specific genetic diversity pattern compared with
other coding regions, we created data of several sets of
genes (including the 10 kb up- and downstream regions)
that were randomly sampled from the RefSeq database
without replacement (http://www.ncbi.nlm.nih.gov/RefSeq/).
Given the different number of ADME core genes
(n = 32) and extended genes (n = 252), we accordingly
generated two datasets with comparable number of
genes, i.e. 50 and 500 randomly selected genes, re-
spectively. Secondly, data sets were also generated
from 10 kb sliding windows in the autosomal regions
to compare with ADME genes.

Functional annotations of SNPs and haplotypes
The functional effects of each SNP from each ADME
gene were determined based on the variance effect pre-
diction tools from the Ensembl database [37]. The SNPs
that affect gene expression were then studied based on
the RegulomeDB dataset [38]. In addition, we studied
the SNPs and haplotypes with obvious clinical effects,
which were collected and annotated from the PharmGKB
database [39].

Inference of local ancestry
The local ancestry information of ASW was obtained
from 1000 Genomes Project (ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/phase1/analysis_results/ancestry_deconvo-
lution), which was based on the consistent results of
four commonly used methods (LAMP-LD [40], HAP-
MIX [26], RFMIX [41], and MULTIMIX [42]), and was
reported to have high accuracy for ASW (98.9-99.5%)
[31]. Briefly, these methods used different principles and
algorithms to infer the locus specific ancestry of each in-
dividual in admixed populations. For instance, the HAP-
MIX incorporates background LD to calculate the
likelihood of how the haplotypes of admixed individuals

http://www.pharmaadme.org/
http://www.pharmaadme.org/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/ancestry_deconvolution
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/ancestry_deconvolution
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/ancestry_deconvolution


Li et al. BMC Genetics 2014, 15:52 Page 13 of 15
http://www.biomedcentral.com/1471-2156/15/52
relate to those in the ancestral populations, and uses
Hidden Markov Model to combine these likelihoods
with information from neighboring loci, therefore it
could infer an individual's local ancestry, their number
of copies of each ancestry at each location in the
genome.
From the local ancestry information of ASW (61 indi-

viduals in total) in the 1000 Genomes Project, there
listed each track of diploid ancestry call for each individ-
ual, which including the code of diploid ancestry, the
chromosome number, start and end position and length
of tract in base pairs. Diploid ancestry calls are a consen-
sus of calls that agree in >=3 of above methods, while
the codes of diploid ancestry calls are: 0 is “unknown”, 1
is “European:European”, 2 is “European:African”, and 3
is “African:African”.

Analysis of genetic diversity
Frequency spectra were constructed by calculating the
frequency of derived alleles at each polymorphic site of
the genes or regions of interest in a given population.
The distributions of heterozygosity and haplotype diver-
sity were calculated in sliding windows of 10 kb, without
overlapping across entire genes or regions. To avoid un-
certainties in estimations, we excluded windows with
less than 5 SNPs. Finally, a total of 168,026 windows
were analyzed, among which 227 and 1,797 windows
were from the ADME core gene and extended gene sets,
respectively, while 381 and 4,092 were from 50 and 500
randomly selected genes, respectively.
The expected heterozygosity (He) of each window was

calculated using the following formula:

He ¼ 2

X
nmaj

X
nmin

X
nmaj þ

X
nmin

� �2

Where nmaj and nmin are the number of the most and
least observed alleles at each locus, respectively.
The haplotype diversity (Hd) of each window was cal-

culated using the formula:

Hd ¼ N
N−1

1−
X

x2i
� �

Where N is the total number of haplotypes, and xi is the
frequency of each haplotype. For each ADME core gene,
the significance of Hd between any two populations was
assessed using 10,000 times bootstrap re-sampling [43].
The significance of distributions of heterozygosity and

haplotype diversity was assessed using the Kolmogorov-
Smirnov test [44], which was implemented in an R script
(http://www.r-project.org/).
Identification of highly differential loci between
populations and the detection of natural selection signals
in ADME genes
The genetic differences between the three populations
at each locus was measured by unbiased FST based on
Weir and Cockerham [45]. The FST for the sliding win-
dows of 10 kb is a weighted average F-statistic over the
corresponding loci. For the entire autosomal regions,
the top 1 percent of FST values for the three populations
was 0.221, and thus loci with an FST value higher than
that were considered to be highly differential SNPs.
Next, LSBL (Locus Specific Branch Length) analysis
[46] was used to describe the specific differentiation of
a given population compared with the other two popu-
lations at each locus, by apportioning the genetic diver-
sity into the branch length of a triangular tree. For
example, each branch length of ASW could be calcu-
lated by

LASW ¼ FAC
ST þ FAY

ST −F
CY
ST

2

Where FAC
ST , F

AY
ST , and FCY

ST are the pairwise FST among
ASW, CEU, and YRI, separately. Similarly, the mean
LSBL values for the sliding windows of 10 kb were
weighted over all loci in the window range. The top 1
percent of the empirical distribution of the average
LSBL values of 10 kb windows spanning entire auto-
somal regions was therefore 0.061 for ASW, 0.367 for
CEU, and 0.114 for YRI. The average LSBL value of a
given window that is larger than the corresponding
threshold was defined as a population-specific signifi-
cant LSBL region.
The unstandardized iHS scores were calculated using

the iHS program [47], and the standardized scores were
obtained using Voight’s formula [47], in which the mean
and standard deviation of the iHS score in different fre-
quency bins were calculated from all the autosomes, and
the frequency bin size was set as 0.01.
CLR (composite likelihood ratio) is a statistic to com-

pute the likelihood ratio of selective sweeps by compar-
ing the spatial distribution of allele frequencies in a
given window to the frequency spectrum of null distri-
bution, such as all the autosomal regions. In this study,
the SweepFinder [48] program was used to carry out all
calculations.
For both iHS and CLR tests, we calculated the stan-

dardized iHS or CLR scores of each population for the
entire autosomal regions, and used the values with an
empirical P value of 0.01 as the cutoff to detect natural
selection signals at given ADME genes by these two ap-
proaches independently.

http://www.r-project.org/
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Additional files

Additional file 1: Figure S1. Local ancestral origins of African
Americans. In the figure, rectangular boxes represent 22 autosomes. In
each box there are 122 rows representing the diploid sequences of 61
individuals, in which blue color fragments mean European origin, red
means originating from Africa, and gray means an unknown component.
The start and end positions of 32 ADME core genes are plotted at
corresponding locations using green bars.

Additional file 2: Figure S2. The local ancestral origins of ASW and
corresponding heterozygosity and haplotype diversity variants for 32
ADME core genes. Each box including the 100 kb up- and down-stream
regions surrounding the genes. In detail, the local ancestral origins of 61
African Americans for 32 ADME core genes are extracted from Figure S1,
and the local heterozygosity and haplotype diversity of the three populations
at sliding 10 kb windows were plotted at the corresponding positions.

Additional file 3: Table S1. The diploid ancestry tract code for 61
African Americans at 32 ADME genes. In this table, 0 is “unknown”, 1 is
“European:European”, 2 is “European:African”, and 3 is “African:African”.

Additional file 4: Table S2. The local European ancestral inference for
(A) 32 ADME core genes and (B) 252 ADME extended genes.

Additional file 5: Figure S3. The genetic diversity patterns for 50 or
500 randomly selected genes and whole autosomal regions. (A)-(C)
Derived allele frequency spectra, heterozygosity distribution, and
haplotype diversity distribution of 50 randomly selected genes. (D)-(F)
The diversity patterns of 500 randomly selected genes. (G)-(I) The
diversity patterns for whole autosomal regions.

Additional file 6: Figure S4. The LSBL analysis. (A) the LSBL tree
constructed by the median values of pairwise FST values from the
distribution of whole autosomal regions, (B) the distribution of LASW, (C)
the distribution of LCEU, (D) the distribution of LYRI. Note that the dashed
lines in Figures S4B, S4C and S4D represent the top 1% of empirical
distributions.

Additional file 7: Figure S5. The genetic diversity patterns for
population-specific significant LSBL regions. (A)-(C) Diversity patterns for
significant LASW regions. (D)-(F) Diversity patterns for significant LCEU regions.
(G)-(I) Diversity patterns for significant LYRI regions.

Additional file 8: Figure S6. The LSBL analysis and natural selection
tests for ADME extended genes.

Additional file 9: Figure S7. The loci FST distributions. (A) 252 ADME
extended genes, (B) 50 randomly selected genes, (C) 500 randomly
selected genes, and d) whole autosomal regions. The dashed lines on
each panel represent the top 1% of empirical distributions of the whole
autosomal region (FST value is 0.221).

Additional file 10: Table S3. The distribution of clinically defined
haplotypes for 28 ADME core genes.
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