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The last two decades of genome-scale research revealed a complex molecular picture of acutemyeloid leukemia (AML). On the one
hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced
into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained
poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation ofAMLpathogenesis
and indicated potential therapeutic directions.The power of transcriptomic approach lies in its comprehensiveness; we can observe
how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression
measurement can be combinedwithmutation detection, as high-impactmutations are often present in transcripts.This review sums
up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected
AML subtypes anduncovered the additional within-subtype heterogeneity.The resultswere particularly valuable in the case ofAML
with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified
and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy
control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes
usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also
reported in AML and correlatedwith poor outcome.However, transcriptome is not limited to the protein-coding genes; other types
of RNAmolecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML
groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and
miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155
was associatedwith FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies andmicroarray
replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected
by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their
special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations
between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now
under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still
not completely understood.

1. Introduction

Acute myeloid leukemia (AML), the most frequent leukemia
in adults, is a severe myeloproliferative disorder with the
high risk of relapse and high mortality rate [1, 2]. Random
genetic alterations sequentially acquired by hematopoietic
stem and progenitor cells disrupt hematopoiesis by differen-
tiation blockades, uncontrolled growth and proliferation, and
inhibition of apoptosis [3]. Immature, partially differentiated

blast cells with self-renewal capacity first accumulate in
bone marrow (BM) and then infiltrate peripheral blood (PB)
and organs, impairing their functions [4]. Despite similar
symptoms, blast morphology, and clinical implications, AML
is a very heterogeneous disease presenting a wide spectrum
of subtypes with different molecular features and outcomes
[5, 6]. A number of chromosomal rearrangements and small
mutations have been detected in AML and associated with
the pathogenesis, diagnosis, and prognosis of the disease
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Figure 1: The number of publications found in PubMed, devoted to (a) AML, leukemia, and the two most common human cancers; (b)
transcriptome and genome-based AML studies; (c) two the most common high-throughput technologies used in AML studies, microarrays,
and next generation sequencing (NGS). The search terms and exact numbers of publications are noted in Supplementary Table 1.

[5, 7, 8]. AML heterogeneity is also reflected in its clas-
sification, first established in 1976 by French-American-
British (FAB) cooperative groups, based on morphological
and cytochemical criteria [9] and revised nine years later
[10]. In 2001, an alternative classification system, combining
the leukemic cell lineage and maturation stage with genetic
aberrations, was proposed by World Health Organization
(WHO) and improved in 2008 and 2016 [11–13].

Although AML accounts for not more than 1% of all
cancer diseases, it belongs to one of the most extensively
studied human tumors, which has been confirmed by the
ever-growing number of scientific reports (Figure 1(a)). In the
Cancer Genome Atlas (TCGA), a landmark cancer genomics
program (https://www.cancer.gov/tcga), AML is one of 33
cancer types collected hitherto, being represented by 200
cases. Availability of the tumor cells, which can be easily and
in extensive amounts extracted from BM aspirates or even
PB, makes AML a perfect model for cancer studies. In AML,
the existence of a cancer stem cell was first demonstrated,
proving the rightness of the tumor stem-cell concept [14–16].
Since then, our knowledge about cancer stem cells started
to increase [6, 17]. Progress in the development of high-
throughputmethods such asmicroarrays and next generation
sequencing (NGS) advanced our understanding of AML and

other cancers [18, 19] (Figures 1(b) and 1(c)). Figure 2 presents
the timeline and milestones of AML research intertwined
with the milestones of the Human Genome Project (HGP).
The first application of global gene expression profiling
(GEP) for cancer classification was demonstrated in 1999 on
the example of two acute leukemias arisen from different
lineages, myeloid (AML) and lymphoid (acute lymphoblastic
leukemia, ALL) [20]. The first cancer genomes sequenced
derived fromAML patients [21, 22]. In 2013, TCGA Research
Network published the sequences of 50 whole genomes
and 150 exomes of AML patients [23]. Three years later,
targeted resequencing of 111 genes in 1540 AML patients
revealed more than 5 thousands of driver mutations [24].
In 2018, functional genomic landscape was drawn based on
the exome sequencing, gene expression, and the analysis
of ex vivo drug sensitivity in a cohort of over 500 AML
patients [25]. Genome-wide studies revealed that the number
of driver mutations in AML (on average, 13 somatic variants
per patient) is lower than in solid tumors [23, 25]. New
AML entities of diagnostic and prognostic significance have
been identified and potential therapeutic targets have been
indicated [26, 27]. Despite the tremendous effort put into
research, AML (except for acute promyelocytic leukemia,
APL) still lacks effective medical treatment [28, 29]. However,



Journal of Oncology 3

Figure 2: The milestones in genomic and transcriptomic research of acute myeloid leukemia. A symbolic mRNA molecule serves as a
timeline on which the most important papers and events are marked, starting from the first FAB classification of AML in 1976 [9] and
its revised version published in 1985 [10]. The microscopic images of M1-M7 FAB AML types come from the private collection of Prof. John
M. Bennett and were used thanks to the courtesy of the Professor. The original pictures from the following publications were used with
the permission of the authors and magazine publishers: Schena et al., PNAS 1996 [47] (Copyright 1996 National Academy of Sciences);
Golub et al., Science 1999 [20] (reprinted with permission of AAAS); Lu et al., Nature 2005 [51] (reprinted by permission from Springer
Nature, Nature, Copyright 2005); Falini et al., NEJM 2005 [52] (Copyright 2005 Massachusetts Medical Society, reprinted with permission
from Massachusetts Medical Society); Haferlach et al., Blood 2005 [53] (reprinted by permission from American Society of Hematology,
Copyright 2005); Mi et al. PNAS 2007 [54] (Copyright 2007 National Academy of Sciences); TCGA paper from NEJM 2013 [23] (Copyright
2013MassachusettsMedical Society, reprintedwith permission fromMassachusettsMedical Society); Tyner et al. Nature 2018 [25] (reprinted
by permission from Springer Nature, Nature, Copyright 2018); Hoadley et al., Cell 2018 [55] (reprinted by permission from Elsevier, Cell,
Copyright 2018). Two Nature journal covers were reprinted by permission from Springer Nature, Nature, Copyright 2001 and 2008. Two
Science journal covers, from 1999 and 2001, were reprinted with permission of AAAS. WHO publication cover images were reproduced
with permission from Jaffe, E.S., Harris. N.L., Stein, H., Vardiman, J.W., Eds. WHO Classification of Tumours, Pathology and Genetics
of Tumours of Haematopoietic and Lymphoid Tissues, IARC, Lyon, 2001 [11]; Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA,
Stein, H, Thiele, J, Vardiman, JW. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC,
Lyon, 2008; Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, Thiele, J, Arber DA, Hasserjian RP, Le Beau MM, Orazi
A, Siebert R. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, revised 4th edition. IARC,
Lyon, 2017. The photograph of Francis Collins and Craig Venter, made by Chuck Kennedy in 2000 (krtphotos001229) was used with the
license of Newscom (https://www.newscom.com). Vitruvian man image was downloaded from Wikimedia Commons under a free license
(https://commons.wikimedia.org/wiki/File:Vitruvian man.jpg). Graphics representing the HumanGenome Project (HGP) were used thanks
to the courtesy of National Human Genome Research Institute ((NHGRI, https://www.genome.gov). The TCGA logo was used with the
permission of National Cancer Institute (NCI, https://www.cancer.gov).

some promising therapeutic strategies are currently under
investigation [30].

Despite the factmuch attention has recently been devoted
to genetic alterations occurring in AML, it should be

remembered that the state of the cell is largely reflected by
its transcriptome, which is the product of genomic activity.
In fact, transcriptome-level analyses preceded whole genome
sequencing and still serve as supplementary approaches in

https://www.newscom.com
https://commons.wikimedia.org/wiki/File:Vitruvian_man.jpg
https://www.genome.gov
https://www.cancer.gov
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AML studies. In this review, I tried to show to what extent
deeper insight into AML transcriptomes helped to unravel
the mysteries of the disease.

2. The Early Beginnings: Studies of Single
Protein-Coding Genes

At the turn of the 1980s and 1990s, more and more reports
documenting gene expression in AML started to appear.
Expression of several protooncogenes, encoding transcrip-
tion factors (MYC, MYB, and FOS) and tyrosine kinases
(ABL1, FES, KIT, and PIM) with essential roles in the
regulation of hematopoiesis, cell proliferation, differentia-
tion, cell cycle, and apoptosis was demonstrated in AML
cells extracted from patients [31–34]. Erythroid progenitors
and HEL erythroleukemia cells presented amplification of
another transcription factor involved in cell proliferation,
E2F1 [35]. Overexpression of RUNX1 gene, previously known
as AML1 or CBF2A, regulator of hematopoiesis, particularly
of myeloid lineage, suppressed granulocytic differentiation
and stimulated cell proliferation in murine cells [36]. Carow
et al. [37] showed that expression of the hematopoietic
growth factor receptor-encoding FLT3 gene was not limited
to normal stem/progenitor cells but was even elevated in
leukemic blasts. In AML M2 with t(8;21), high percentage
of CD34+ cells was correlated with high expression of
CD34 gene [38]. BMI1, member of the polycomb complex,
implicated inmaintenance of normal and leukemic stem cells,
was found to be expressed in AML M0 at a higher level than
in other AML subtypes [39]. High expression of some genes
was associated with adverse AML prognosis, e.g., WT1 [40],
MN1 [41], BAALC [42], ERG [43], and EVI1 (ecotropic viral
integration site 1, at present known as MECOM, from MDS1
and EVI1 complex locus) [44]. Genes which were renamed
within the last years are listed in Table 1, together with the
most commonly used abbreviations.

3. Microarray-Based Gene Expression
Profiling: A Tool for Disease Classification

Technological progress enabled transition from single gene
analysis to whole transcriptome scale at the end of the
previous millennium [45]. The milestone was the invention
of the microarray, chip-format tool which allowed for simul-
taneous analysis of thousands of genes in one test [46, 47].
Golub et al. [20] and Alizadeh et al. [48] were the first
who showed that global gene expression profiling (GEP)
could be a tool for cancer research and classification. Each
group used a different type of microarrays: Golub et al.
used commercially available high-density GeneChips made
of short oligonucleotides synthesized in situ (Affymetrix)
whereas Alizadeh et al. [48] constructed their own cDNA
array, Lymphochip, dedicated to analysis of gene expression
in normal and malignant lymphocytes. Golub et al. [20]
proved that the distinction between two acute leukemias,
AML, and ALL could be performed in a single test. Out of
6,817 human genes measured, expression of 50 genes was
selected as the most closely correlated with AML-ALL class

distinction. The 50-gene predictor was successfully validated
in an independent collection, including samples from PB
instead of BM, samples from childhood AML patients and
samples collected by various laboratories. Among the most
informative genes overexpressed in AML were known genes
encoding cell surface proteins, e.g., CD33 and CD11c (cur-
rently ITGAX), and transcription factors, including HOXA9
oncogene, whose high expression level was noted in AML
patients with poor outcome. In fact, HOXA9 seemed to be a
single gene capable of predicting treatment failure in AML.
The study revealed also novel AML markers, such as gene
coding for leptin receptor with antiapoptotic activity, or zyxin
gene encoding protein with cell adhesion function.The above
results showed the power of GEP in disease classification
and class discovery and encouraged other investigators to
implement DNAmicroarray technology in their laboratories.

4. Protein-Coding Transcriptomes of
Cytogenetically Defined AML Subtypes

Distinction between AML and other hematologic disorders
seemed to be trivial. The question appeared whether gene
expression profiles could successfully differentiate AML sub-
groups with cytogenetic and genetic abnormalities. Starting
fromAMLwith themost common chromosomal aberrations,
different authors demonstrated that each of AML subgroups
possessed its own gene expression signature and could be
easily distinguished from one another. Below, the exemplary
studies are described in more detail.

Virtaneva et al. [49] comparedAMLwith isolated trisomy
8 (+8) to cytogenetically normal AML (CN-AML) and
revealed fundamental biological differences between these
two types of the disease. Common feature of both AML
types was downregulation of genes encoding hematopoietic
transcription factors (STAT4, FUS, MCM3, and MCM5) and
myeloid markers (ELANE and MPO) in comparison to nor-
mal CD34+ bone marrow cells. Genes encoding complement
factor D (CFD), proteins involved in cell growth and differ-
entiation (NDRG1 and BTG1), transcription factorsKLF6 and
ATF3, and transcription coactivator TAF10 were upregulated
in both AMLs in relation to control CD34+ fraction. Two the
most differentiating genes between AML +8 and CN-AML
were MLLT2 (present AFF1 (AF4/FMR2 Family Member 1),
upregulated in CN-AML) encoding regulator of transcription
and chromatin remodeling, and FABP5 (upregulated in AML
+8), encoding protein involved in fatty acid metabolism.
Unsurprisingly, AML +8 blasts presented general overex-
pression of genes encoded on chromosome 8. The effect of
genomic gains and losses on expression levels of genes located
within the affected regions was further confirmed in a study
of AML with trisomy 8, 11, 13, monosomy 7, and deletion
5q [50]. Surprisingly, in a study of Virtaneva et al. [49]
protooncogene MYC, also encoded on chromosome 8, was
downregulated in AML +8. On the one hand, in comparison
toCN-AML, decreased expression level of proapoptotic genes
(e.g., CRADD, BAD) was noted for AML +8 whereas TP53
gene, encoding tumor suppressor and also apoptosis inducer,
was increased in AML +8. On the other hand, only CN-AML
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Table 1: The list of the genes renamed within the last years and the most commonly used abbreviations.

Renamed Genes
Previous Name Previous Description Current Name Current Description

AML1 AcuteMyeloid Leukemia 1 RUNX1 Runt Related Transcription
Factor 1

Ang-1 Angiopoietin-1 ANGPT1 Angiopoietin 1
BRN3A Brain-3A POU4F1 POU Class 4 Homeobox 1
CD11c CD11c Antigen ITGAX Integrin Subunit Alpha X
CD133 CD133 Antigen PROM1 Prominin 1

ELA2 Elastase-2 ELANE Elastase, Neutrophil
Expressed

ETO Protein ETO RUNX1T1 RUNX1 Translocation
Partner 1

EVI1 Ecotropic Viral Integration Site 1 MECOM MDS1 And EVI1 Complex
Locus

FLJ14054 Homo sapiens cDNA FLJ14054 fis, clone
HEMBB1000240 NPR3 Natriuretic Peptide

Receptor 3

IL8 Interleukin-8 CXCL8 C-X-CMotif Chemokine
Ligand 8

MADH1 Mothers Against Decapentaplegic Homolog 1 SMAD1 SMAD Family Member 1

MDR1 Multidrug Resistance Protein 1 ABCB1 ATP Binding Cassette
Subfamily B Member 1

MEL1 MDS1/EVI1-Like Gene 1 PRDM16 PR/SET Domain 16

MLL Mixed Lineage Leukemia KMT2A Lysine Methyltransferase
2A

MLLT2 Myeloid/Lymphoid Or Mixed-Lineage Leukemia
(Trithorax (Drosophila) Homolog); Translocated To, 2 AFF1 AF4/FMR2 Family

Member 1

MLLT4 Myeloid/Lymphoid Or Mixed-Lineage Leukemia
Translocated To, 4 AFDN Afadin, Adherens Junction

Formation Factor

NICAL NEDD9-Interacting Protein With Calponin Homology
And LIM Domains MICAL1

Microtubule Associated
Monooxygenase, Calponin

And LIM Domain
Containing 1

OPN Osteopontin SPP1 Secreted Phosphoprotein 1

PTRF Polymerase I And Transcript Release Factor CAVIN1 Caveolae Associated
Protein 1

PU.1 Hematopoietic Transcription Factor PU.1 SPI1 Spi-1 Proto-Oncogene
Abbreviations
AML acute myeloid leukemia
ALL acute lymphoblastic leukemia
APL acute promyelocytic leukemia
BM bone marrow
CBF core binding factor
circRNAs circular RNAs
CLL chronic lymphocytic leukemia
CML chronic myeloid leukemia
CN-AML cytogenetically normal AML
CR complete remission
DEGs differentially expressed genes
DFS disease-free survival
FLT3-ITD FLT3-internal tandem duplication
FAB French-American-British (classification system)
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Table 1: Continued.

GEP gene expression profiling
HH Hedgehog
HSCs hematopoietic stem cells
HSPCs hematopoietic stem-progenitor cells
lncRNAs long noncoding RNAs
LSCs leukemic stem cells
MDS myelodysplastic syndromes
MRD minimal residual disease
MSC mesenchymal stem cells
NGS next generation sequencing
NK-AML normal karyotype AML
NPMc+ NPM-cytoplasmic positive
OS overall survival
PB peripheral blood
PBMCs peripheral blood mononuclear cells
SAGE serial analysis of gene expression
snoRNAs small nucleolar RNAs
TCGA the Cancer Genome Atlas
TEs transposable elements
WBC white blood cell
WHO World Health Organization

showed upregulation of antiapoptotic gene DAD1. Therefore,
the authors suggested different mechanisms of cell death
escape for the two studied leukemia types and associated it
with AML +8 resistance to cytarabine-based chemotherapy,
which should induce apoptosis [49].

AML subtypes with three reciprocal rearrangements,
t(8;21)(q22;q22), inv(16)(p13q22), and (15;17)(q22;q12), cor-
responding to the morphological FAB subtypes M2, M4eo,
and M3/M3v, respectively, were the subject of research of
Schoch et al. [56]. Principal component analysis (PCA)
of microarray data, performed with the use of 1000 most
informative genes, clearly separated AML samples according
to chromosomal aberration. The minimal set of 13 genes
(PRKAR1B, GNAI1, PRODH, CD52, KRT18, CLIP3, CLU,
PTGDS, HOXB2, CLEC2B, CTSW, S100A9, and MYH11) was
sufficient to distinguish one AML subtype from another on
the basis of gene expression solely. Expression levels of 36
genes enabled accurate classification of all three studied AML
subtypes. Another set of 82 genes allowed for distinction of
M3 and M3v, two phenotypically different AML types with
t(15;17). In addition, the study showed that AMLs with alter-
ations involved core binding factor (CBF) complex, t(8;21)
and inv(16), were more related to each other than to AML
with t(15;17). The authors explained the overexpression of
MYH11 in inv(16) and RUNX1T1 (former ETO) in t(8;21) as a
consequence of high expression of fusion transcripts affecting
these genes. A new marker of t(8;21) was identified by
Debernardi et al. [57], who found that a level of transcription
factor-coding gene, POU4F1 (former BRN3A), was 43-fold
higher in t(8;21) AML than in other AML samples.

Verhaak et al. [58], by gene expression analysis in
two independent cohorts of AML patients under 60, each
exceeding 200 cases, perfectly distinguished three favorable
cytogenetic AML subtypes, t(8;21), t(15;17) and inv(16). For
AML with NPM1 or CEBPAmutations, GEP-based classifiers
were less accurate. The distinction of AML with other
mutations (e.g., FLT3 and RAS) and aberrations (11q23, -5/5q-
, -7/7q-, abn3q, and t(9;22)) was not possible with the use of
GEP. Nevertheless, for abn3q, the most discriminative gene
was MECOM, encoding an oncogenic transcription factor
often involved in 3q26 abnormalities, and in 7(q) almost all
differentially decreased genes were located on chromosome
7.

One of the most challenging tasks was to find unique
features characterizing cytogenetically normal AML (CN-
AML or NK-AML from normal karyotype AML) which
accounts for 40-50% of all AML cases. Debernardi et al.
[57] were the first who attempted to do that. Although
the sample size was not large (28 adult AML samples,
including 10 NK-AML) and NK-AML revealed higher vari-
ability than AML with translocations, the authors found NK-
AML could be separated from AML samples with chro-
mosomal rearrangements based on the expression levels
of certain members of the class I homeobox A and B
gene families, which were low or undetectable in AML
with (t(8;21), t(15;17), and inv(16)). In NK-AML, expres-
sion level of 10 genes was extremely increased: HOXA4,
HOXA5, HOXA9, HOXB2, HOXB3, HOXB5, HOXB6, and
HOXB7, and two members of TALE family, MEIS1 and
PBX3. While overexpression of HOXB genes was unique for
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NK-AML, the upregulation of the remaining 5 genes was
shared with 11q23 AMLwhereMLL (mixed lineage leukemia)
gene, now renamed to KMT2A (Lysine Methyltransferase
2A), was fused with different partners. High expression
of some homeobox genes (e.g., HOXA3 and HOXB6) was
later found as typical of hematopoietic stem cells (HSCs)
[59].

In 2004, two remarkable papers, identifying not only
known but also newmolecular AML subtypes through global
GEP, were published in the same issue of the New England
Journal of Medicine [60, 61]. Bullinger et al. (2004) [60]
who analyzed 116 adult AML samples with the use of cDNA
microarrays, found that hierarchical clustering with over
6 thousands of the most varied genes divided all AML
samples into two main clusters. Out of the cytogenetic
groups, only t(15;17) (APL) generated one condense sub-
cluster. To enable biological insight into AML pathogenesis,
group-specific gene expression signatures were established
and functionally characterized. Signature specific for APL
included genes related to hemostasis (PLAU, SERPING1,
ANXA8, and PLAUR), resistance to apoptosis (TNFRSF4,
AVEN, and BIRC5), impairment of retinoic acid-stimulated
cell differentiation (TBL1X, CALR, and RARRES3) and resis-
tance to chemotherapy (CYP2E1, EPHX1, and a group of met-
allothionein (MT) genes). MLLT4 (present AFDN, Afadin),
one of KMT2A fusion partners, was among the genes with
unique expression profile in t(8;21), which suggested similar
mechanism of pathogenesis with t(6;11). High expression of
NT5E, observed in inv(16), was correlated with resistance
to cytarabine. Interestingly, high expression of homeobox
genes (HOXA4, HOXA9, HOXA10, PBX3, and MEIS1) was
detected in AML specimens with not only normal but
also complex karyotypes. Within NK-AML, Bullinger et al.
[60] distinguished two distinct groups: one, where FLT3
aberrations and FAB subtypes M1 and M2 prevailed, and
the second one, where FAB M4 and M5 subtypes were
more common. Of note, patients classified to those groups
had different outcomes. For AML with complex karyotype,
AML with KMT2A partial tandem duplications, and AML
+8, it was impossible to find statistically significant unique
gene expression signatures. Valk et al. [61] who analyzed
285 AML patients using Affymetrix GeneChips, identified
16 AML groups with distinct gene expression profiles. Some
of them were composed of AML samples with known cyto-
genetic aberrations: t(18;21), t(15;17), and inv(16). RUNX1T1
gene, which is a RUNX1 fusion partner, was the most
discriminative gene for AML with t(8;21). Overexpression
of MYH11 was the most discriminative feature of inv(16),
which produces CBFB-MYH11 fusion gene. Simultaneous
downregulation of CBFB observed in this subtype could
be explained by e.g., negative regulation of a wild-type
(wt) CBFB allele by the fusion transcript. For APL, growth
factor-coding genes were the most discriminative (hepato-
cyte growth factor (HGF), macrophage-stimulating 1 growth
factor (MST1), and fibroblast growth factor 13 (FGF13)).
However, AMLs with 11q23 were segregated into two separate
clusters and partially scattered among all samples studied.
AlsoNK-AML sampleswere divided into several clusters.The
observed heterogeneity could be at least partially explained

by the presence of particular mutations and different out-
comes.

Further AML transcriptome studies, performed on inde-
pendent patient cohorts, usually confirmed earlier research,
reporting partially overlapping gene expression signatures.
However, each study delivered a portion of new information,
which deepened our knowledge about AML pathogenesis.
Gutierrez et al. [62] performed hierarchical clustering of
BM samples from 43 adult AML patients, based on the
expression of over 5 thousand genes. Four distinct clusters
they obtained corresponded to AMLwith inv(16), monocytic
AML, APL and other AML samples which included NK-
AML. The authors developed a minimal 21-gene predictor
which classified each sample to appropriate group with
100% accuracy. Its efficiency was then confirmed with an
independent AML sample set. APL samples, which formed
themost condense group among all samples studied, revealed
high expression of several growth factors and other sig-
naling proteins, e.g., HGF, FGF13, MST1, VEGFA, IGFBP2,
and FGFR1. Contrary, overexpression of HOX family mem-
bers (A5, A6, A7, A9, A10, B2, B5, and B7), including
genes encoding TALE proteins (MEIS1; PBX3), and histone
proteins was shared by all non-APL leukemias. Increased
level of MYH11 expression and downregulation of CBFB
and RUNX3 genes were noted specifically for AML with
inv(16). In monocytic leukemia, CSPG2, other adhesion
molecules such as the lectins CLECSF6, CLECSF12, SIGLEC7
and FCN1 were upregulated compared to remaining AMLs.
The remaining AML samples presented more heterogeneity,
which was reflected by the existence of two subclusters,
one with overexpression of genes encoding hematopoietic
serine proteases, present in azurophil granules of neutrophilic
polymorphonuclear leukocytes (AZU1, azurocidin 1, ELANE
(previous ELA2), elastase, PRTN3, proteinase 3, and CTSG,
cathepsin G), second with upregulation of CD34 antigen,
reflecting an early maturation arrest and lack of granulocytic
differentiation.

AMLM3was extensively studied by Payton et al. [63] who
compared the malignant promyelocytes from APL patients
to leukemic cells collected from other AML subtypes and
to promyelocytes, neutrophils and CD34+ cells extracted
from healthy bone marrow donors. The identified “M3-
specific dysregulome” was composed of 510 genes and many
of them exhibited dramatic differences in expression level
comparing to other AML subtypes or normal promyelocytes.
For example, GABRE, FGF13, HGF, ANXA8, and PGBD5
were the most overexpressed genes whereasVNN1,MS4A6A,
P2RY13, HK3, and S100A9 the most underexpressed genes
in M3 vs. other AMLs. 33 genes selected from the identified
signature were validated by another high-throughput digital
technology (nCounter; NanoString), capable of detecting as
little as 0.5 fM of a specific mRNA and measuring up to
500 genes in a multiplex reaction. The authors demonstrated
nCounter reproducibility and applicability as a tool for
biomarker analysis when limited amounts of clinical material
are available. 33 genes validated byNanoString assaywere also
enriched in an independent AML dataset of 325 samples, and
APL mouse model, but, notably, not in a cell line expressing
PML-RARA fusion gene.
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One of the most impressive microarray-based studies was
that of Haferlach et al. [53] who analyzed almost 900 patients
with leukemia, including 620 with AML, with the use of
Affymetrix GeneChips and support vector machine (SVM)
model. The authors identified 13 separate leukemia types,
including 6withinAML. Someof them, e.g., AMLwith t(8;21)
and with t(15:17), could be classified with 100% specificity
and 100% sensitivity based on the expression profile of 100
genes per group.The overall prediction accuracy of 95.1%was
achieved.Themisclassification occurredmainly in subgroups
with a low sample number or high intragroup heterogeneity.
The largest and the most heterogeneous subgroup was AML
with normal karyotype, which cosegregated with AML with
less common cytogenetic aberrations classified as “other”.
Here, AML samples with different fusion partners of KMT2A
gene were included. Haferlach et al. [64] showed that APL
was not only distinct from other AML subtypes in the matter
of gene expression, but two M3 phenotypes, one with heavy
granulation and bundles of Auer rods and AML M3 variant
(M3v) with non- or hypogranular cytoplasm and a bilobed
nucleus, could be discriminated based on gene expression
signatures.

The largest GEP study in hematology and oncology was
conducted thanks to international collaboration within the
European Leukemia Net. In 2010, Gene Expression Profiling
Working Group directed by Torsten Haferlach published the
results of analysis of 3,334 samples collected from leukemia
(including 542 AMLs) and MDS patients by 11 laboratories
across three continents [65]. Apart from European ones,
laboratories from the United States, and one from Singa-
pore joined the program. The main conclusion was GEP
was a robust technology for the diagnosis of hematologic
malignancies with high accuracy. According to the authors,
GEP had invaluable application potential and was vulnerable
to standardization, outperforming more subjective methods
such as cytomorphology and metaphase cytogenetics. To
enable better molecular understanding of leukemias, the
authors deposited the collected data into a publicly available
domain.

In 2012, de la Blétière et al. [66] proved that AML cyto-
genetic subtypes could be successfully determined with the
use of GEP, even in samples with low leukemic blast content
or poor quality. With the use of Illumina Expression Bead-
Chips, the authors first classified 71 good quality samples
from a training set, representing APL, t(8;21)-AML, inv(16)-
AML, or NK-AML with at least 60 percent of leukemic
blasts. The optimal 40-marker gene classifier (10 markers
per class, including previously described as well as newly
discovered genes) was applied to 111 suboptimalAML samples
with low leukemic blast load (from 2 to 59%) and/or poor
quality control criteria. The overall error rate was 3.6%. All
APL and t(8;21) samples were correctly classified, even those
containing as low as 2 percent blasts. The worst result was
achieved for inv(16). Surprisingly, poor sample quality did
not affect classification. By the way, de la Blétière et al.
[66] demonstrated reliability, robustness, and sensitivity of
Illumina bead-based technology which seemed to be not
worse than other, commercially or academically developed,
microarray platforms used before.

5. Between AML and ALL: Acute Leukemia
with KMT2A Rearrangements

In 2002, Armstrong et al. [67] showed that ALL with
translocations involving the KMT2A gene (previously known
asMLL) presented a unique gene expression profile, different
from ALL and AML without KMT2A abnormalities. The
core of this unique gene expression signature consisted of
multilineage markers of early hematopoietic progenitors and
HOX genes, which corresponds with the fact that KMT2A
gene encodes histone lysine methyltransferase, a transcrip-
tional coactivator regulating expression of genes (includ-
ing HOX) during early development and hematopoiesis.
Therefore, the authors proposed to distinguish a distinct
leukemia entity termed “MLL”. Then, a common gene
expression signature, enriched in homeobox genes (MEIS1,
HOXA4, HOXA5, HOXA7, HOXA9, and HIOXA10), was
determined for all acute leukemias with KMT2A fusion,
irrespectively of their lineage (myeloid or lymphoid), by
Ross et al. [68]. Similarly, Andersson et al. [69] associated
childhood acute leukemias with KMT2A rearrangements
with upregulation of homeobox genes (HOXA10, HOXA4,
MEIS1 and PBX3). In their study, KMT2A-positive AMLs
were also enriched in genes involved in cell communica-
tion and adhesion, whereas some antiapoptotic genes (e.g.,
a tumor necrosis factor receptor, TNFRSF21) and tumor
suppressor genes (BRCA1; DLC1) were downregulated in
this AML subtype. Hierarchical clustering with a subset of
genes encoding transcription factors showed that leukemic
samples with KMT2A rearrangements grouped together,
independently on lineage. Although KMT2A translocations
are prevalent in infant and treatment-related leukemias,
they also occur in adult leukemias that were studied by
Kohlmann et al. (2005) [70] who wondered how the differing
KMT2A partner genes influenced the global gene expres-
sion signature and whether pathways could be identified to
explain the molecular determination of KMT2A leukemias
of both lineages. The data analysis in both types of acute
leukemias revealed t(11q23)/KMT2A-positive samples that
were evidently distinct from other subtypes of the same
lineage. As in the case of childhood leukemia, adult KMT2A-
AML and KMT2A-ALL, despite a shared common gene
profile, revealed also lineage-specific expression markers
sufficient to segregate them according to their lineages,
with no respect to the KMT2A fusion partner. The com-
monly overexpressed genes were obviously the homeobox
genes and their regulators (HOXA9, MEIS1, HOXA10, PBX3,
HOXA3, HOXA4, HOXA5, HOXA7), NICAL gene (present
MICAL, encoding Microtubule Associated Monooxygenase),
RUNX2 transcription factor and FLT3 gene. The common
downregulated genes included TNF-receptor superfamily
members (TNFRSF10A and TNFRSF10D), transcription fac-
tor POU4F1, tumor suppressor ST18 or MADH1 (present
SMAD1), encoding a signal transducer and transcriptional
modulator. Comparing to KMT2A-ALL, overexpression of
CEBPB, CEBPA, KIT,MADH2,MITF, FES and SPI1 (former
PU.1) oncogenes, and MNDA, encoding the myeloid cell
nuclear differentiation, was noted in KMT2A-AML. Sum-
marizing their results, the authors concluded AML with
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t(11q23)/KMT2A and ALL with t(11q23)/KMT2A are rather
distinct entities.

6. AML Risk Classification and
Outcome Prediction

AML chemotherapy does not always lead to complete remis-
sion (CR). 20-50% AML patients are primarily resistant to
induction therapy. Having this information at the time of
diagnosis would facilitate treatment decision making. Taking
into account the success of GEP in AML diagnosis and
classification to particular disease subtypes, its application in
prognosis predictionwas only amatter of time. Correlation of
HOXA9 upregulation with poor AML outcome was reported
by Golub et al. in their first microarray paper, devoted to
ALL and AML classification [20]. Later, Andreeff et al. [71]
demonstrated that many AML cases with intermediate and
adverse prognosis, presented HOX expression levels similar
to the levels observed in normal CD34+. Interestingly,HOXA
genes could distinguish favorable vs. unfavorable cases, but
onlyHOXB genes effectively distinguished intermediate from
unfavorable AMLs. Despite the high coordination in HOX
gene family expression, HOXA9 seemed to be the best single
predictor of overall survival (OS), disease-free survival (DFS)
and response to therapy, confirming earlier results of Golub
et al. [20].

AML outcome prediction was often matched with AML
classification. Analysis of AML GEP-based clusters defined
by Valk et al. [61] in the context of prognosis showed that
three clusters, overlapping with inv(16), t(15;17), and t(18;21),
were associated with good outcome. Patients classified to the
cluster that common feature was MECOM overexpression
had clearly worse outcome.

Two prognostically different NK-AML subgroups were
also identified by Bullinger et al. [60]. A group with predom-
inance of FLT3 aberrations and FAB subtypes M1 and M2
presented shorter OS. High expression of GATA2, NOTCH1,
DNMT3A andDNMT3B in this group suggested pathological
impact of aberrant methylation. Genes deregulated in the
second group, where FAB M4 and M5 subtypes were more
common, were associated with granulocytic and monocytic
differentiation, immune response and hematopoietic stem-
cell survival (VEGF). Analysis of prognostically relevant
genes led to the identification of 133-gene based prognostic
signature. FOXO1A, encoding transcription factor involved
in cell cycle arrest and apoptosis regulation, was one of the
genes correlated with favorable outcome. Poor outcome was
determined by overexpression of HOX genes and FLT3 gene.
Prognostic gene expression signature proposed by Bullinger
et al. [60] was 2 years later applied to an independent cohort
of 64 NK-AML patients below the age of 60 by Radmacher
et al. (2006) [72]. GEP of the new sample set, performed
with Affymertix GeneChips, different array technology than
one that was used to establish the prognostic signature,
allowed segregation of patients into 2 clusters with signifi-
cantly different OS and DFS. Strong association between the
outcome classification and FLT3-ITD status was observed:
67% patients with poor outcome were FLT3-ITD-positive.

However, FLT3-ITD was present in almost 20% of patients
from the good-outcome class, which indicated contribution
of other prognostic determinants. Nevertheless, Radmacher
et al. [72] not only validated the previous prognostic sig-
nature, but also developed a well-defined classifier, which
might be applied to individual patients, with best accuracy
to patients with normal cytogenetics and wt FLT3.

Application of gene expressionmicroarrays for prediction
of patient sensitivity to therapy was also demonstrated by
Heuser et al. [73] and Tagliafico et al. [74]. Heuser et al.
[73] identified gene expression profile that distinguished
AML M0-M5 (excluding M3) patients with good or poor
responses. Hierarchical clustering performed on a training
set of 33 AML samples divided good responders into two
clusters, which suggested the effect of determinants other
than treatment. Interestingly, samples with the lowest level
of myeloid cell maturation, corresponding to FAB subtypes
M0 and M1, were equally distributed between clusters rep-
resenting good and poor response. Over 30% of poor-
response-associated genes, e.g., MN1, FHL1, CD34, RBPMS,
LPAR6, and FLJ14054 gene (currently known as NPR3), were
earlier described as overexpressed in hematopoietic stem
or progenitor cells, particularly in the populations with the
highest self-renewing capacity. Application of the identified
gene expression signature to the test set of independent 104
AML samples enabled dividing them into two prognostic
subgroups which correlated with the different response to
induction chemotherapy. The accuracy of prediction was
80%. Tagliafico et al. [74] conducted a similar analysis, but
their training set included 10 blast cell populations collected
form AML patients and 6 AML cell lines with determined
sensitivity to differentiation therapy.The identified prediction
set, containing such genes as MEIS1 and MS4A3, was then
tested on the GEP datasets published by Valk et al. [61]
and Bullinger et al. [60]. Despite a significant overlap in
prognosis prediction, Tagliafico et al. [23] distinguished
within the poor outcome groups described in original papers,
a subgroup of patients (20-40%) which revealed sensitivity
to maturation induction. From the practical point of view,
it suggested that these patients could benefit from a dif-
ferentiation therapy even though the initial prognosis was
unfavorable.

Gene expression analysis of samples from 170 older
AML patients (median age 65 years, all FAB subtypes
except for M3), presented by Wilson et al. [75], showed
the problem of response to therapy as even more complex.
Hierarchical clustering divided patients into 6 groups with
different rates of resistant disease, complete response, and
DFS. Distribution of FAB subtypes and NPM1 (but not FLT3-
ITD) mutation differed significantly between clusters, but
in only two clusters particular subtypes prevailed, e.g., one
cluster almost exclusively consisted of monocytic leukemias
(M4 and M5). Poor-risk clusters had lower WBC and blast
counts whereas cluster with the best DFS and OS contained
75% of NK-AML and 78% samples with NPM1 mutations.
Each cluster was defined by a specific expression profile
of the 50 most discriminating genes. For example, in a
cluster with the poorest outcome, the authors observed
upregulation of multidrug resistance genes (ABCG2 and



10 Journal of Oncology

ABCB1, former MDR1), homeobox gene PBX1, which pre-
vents myeloid differentiation, and STK17 gene, encoding
apoptosis regulator. Another poor outcome cluster revealed
overexpression of genes connected with immunity (IRF4,
IL10RA, and MALT1). The most favorable outcome clus-
ter was characterized by overexpression of genes encoding
proteins implicated in cell signaling (IL12A), promoting
apoptosis (CASP3 and LTBP1), and leukemic transformation
(MEIS1, WT1, and FOXC1), and downregulation of genes
encoding major histocompatibility complex (MHC) proteins
of class II.

Based on gene expression data from a training cohort of
163 AML patients collected by the German AML Coopertive
Group, Metzeler et al. [76] elaborated 66 gene expression
signatures to predict OS in CN-AML.Then, the signature was
validated in two independent cohorts of 79 and 64 CN-AML
patients from Europe and the United States, respectively.
In all three cohorts, patients with low gene expression risk
score had better outcome. Moreover, in multivariate analyses
of validation cohort, the gene expression score proved to
be a stronger prognostic factor than age, presence of FLT3-
ITD, and NPM1 mutation. The genes from the identified
signature partially overlapped with the results of previous
studies, e.g., TCF4, FHL1, CD109, and SPARC genes, had
been earlier associated with poor response to chemotherapy
[73].

7. Looking for New Therapeutics

Transcriptome, as well as proteome, reflects the current
cell status that dynamically evolves under the influence of
various stimuli, e.g., therapeutic agents. GEP is a sensitive
tool to detect changes in genome activity; therefore it can
be applied to monitor minimal residual disease (MRD) and
cancer cell reaction to novel compounds. AML treatment is
challenging because resistance to therapy is quite common
and even those patients who achieve CR are prone to relapse.
GEP was widely applied for analysis of resistance mecha-
nisms and efficiency of potential drugs. Kinase inhibitors
in the treatment of AML with FLT3-ITD, correlated with
negative prognosis, have been studied for a long time. In
April 2017, staurosporine derivative PKC412 (midostaurin),
a multikinase inhibitor, was approved by the US FDA for
the treatment of newly diagnosed FLT3-mutant AML in
combination with chemotherapy [77]. Activity of this com-
pound was analyzed, inter alia, in human myelomonoblastic
cell line MV4-11 carrying FLT3-ITD by Stölzel et al. [78]
with the use of gene expression microarrays. Two versions
of MV4-11 cells, sensitive and resistant, were compared
prior to and after treatment. Significant downregulation of
TP53 and upregulation of JAG1 was observed in resistant
cells before and after treatment. MCL1 and KIT genes
were upregulated in resistant MV4-11 cells after incuba-
tion with PKC412. The authors concluded that resistance
against PKC412 was mediated by antiapoptotic gene acti-
vation and proapoptotic signal decrease, with contribution
of deregulation of genes involved in normal and malignant
hematopoiesis.

Tavor et al. [79] studied gene expression response
of the AML cell line U937 under treatment with the
CXCR4-antagonist, AMD3100. CXCR4, a receptor for SDF-
1 chemokine secreted by stromal cells, participates in
the interactions of leukemic stem cells with the BM
microenvironment, necessary for cell migration and dis-
ease progression. In addition the role of elastase, neu-
trophil serine protease synthesized during the transition of
myeloblast to promyelocyte, was investigated. The authors
did not observe changes in gene expression after treat-
ment with anti-CXCR4 antibody or elastase inhibitor, but
found AMD3100-induced suppression of the SDF-1/CXCR4
axis or elastase inhibited leukemic cell proliferation as
well as activated genes involved in myeloid differentia-
tion.

Other candidates for target therapeutics in AML treat-
ment are in clinical trials. One example is pinometostat
(EPZ-5676), a small-molecule inhibitor of DOT1L (his-
tone methyltransferase disrupter of telomeric silencing 1-
like). Pinometostat, considered for combination therapies
of acute leukemias with KMT2A gene rearrangements, was
proved to target DOT1L and reduce H3K79 methylation in
adult AML patients with 11q23 translocations [80]. Another
promising therapeutic strategy is directed against mem-
bers of Hedgehog (HH) signaling pathway, which plays
a role in embryonic cell development as well as in pro-
liferation and maintenance of adult stem cells, includ-
ing cancer stem cells [81, 82]. Comparing chemotherapy-
sensitive and resistant cell lines, Queiroz et al. [83] indi-
cated HH pathway as an essential component of myeloid
leukemia MRD. Overexpression of HH pathway effectors,
GLI1 and PTCH1, followed by constitutive activation of
HH signaling, was correlated with chemoresistant pheno-
type. The efficacy of a HH pathway inhibitor, glasdegib,
which targets a smoothened protein (SMO), a G protein-
coupled receptor interacting with PTCH1, was evaluated
by Cortes et al. in AML and high-risk MDS patients who
were not eligible for intensive chemotherapy [81]. At the
end of 2018 glasdegib has been approved in the USA,
under the name DAURISMO�, for use in combination
with low-dose cytarabine for the treatment of newly diag-
nosed AML patients excluded from intensive induction
chemotherapy due to age or comorbidities [84]. Another
compound, GANT61, the inhibitor of GLI family proteins,
was shown to specifically target the CBFA2T3-GLIS2 fusion
gene in pediatric AML [82]. The authors demonstrated that
GANT61 treatment significantly reduced the expression level
of GLIS2 and a gene encoding bone morphogenic protein
(BMP2). Posttreatment microarray-based gene expression
analysis revealed downregulation of CBFA2T3-GLIS2 tar-
get genes as well as genes required for cell cycle pro-
gression, cell proliferation, and epigenetic regulation. New
AML therapies are still being elaborated. Currently, the US
National Cancer Institute (NCI) supports 75 clinical trials for
adult AML treatment (https://www.cancer.gov/about-can-
cer/treatment/clinical-trials/disease/adult-aml/treatment). It
is impossible to provide even a brief summary of all of them
in this work.

https://www.cancer.gov/about-cancer/treatment/clinical-trials/disease/adult-aml/treatment
https://www.cancer.gov/about-cancer/treatment/clinical-trials/disease/adult-aml/treatment
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8. Pediatric AML: Distinct but Similar

AML in children is less frequent than in adults but reveals
similar level of heterogeneity. In both age groups, similar
chromosomal aberrations and mutations occur, though with
different proportions. In children, CN-AML concerns only
about 20% of all AMLs and the frequency of mutations
is generally lower [85]. The power of GEP demonstrated
on adult AML samples triggered the research of childhood
AML. First, the 35-gene expression signature was shown to
predict prognosis in pediatric AML [86]. Genes encoding
cyclins and cyclin-dependent kinases required for cell cycle
progression (CDK6, CCND1, and CDC25A), and TRAF2
gene encoding a signal transducer activating NFKB1, showed
higher expression in patientswith poor outcome.The levels of
NFKBIA, encoding NFKB1 inhibitor, and STK17B, encoding
serine/threonine protein kinase inducing apoptosis, were
lower in patients with poor outcome. STK17B downregula-
tion and NFKB1 enhancement might explain why patients
with adverse prognosis escaped from chemotherapy-induced
apoptosis. An additional reason for the poor outcome could
be increased cell cycle progression. Comparing pediatric
AML patients with different FAB subtypes, the authors
selected 213 probe set representing genes, whose expression
correlated with FAB subtype. Both signatures, prognostic and
diagnostic, shared only three genes (TYMP, STK17B, and
ATP6V0B).

Ross et al. [68] compared gene expression in 130 pediatric
and 20 adult AML samples with Affymetrix GeneChips.
SomeAML groups, namely t(15;17), t(8;21) and FABM7,more
frequent in children than adults, were clearly distinguished
whereas AML with CBFB/MYH11 fusion gene (inv(16)) and
KMT2A chimeric fusion genes revealed more heterogeneity,
indicating the existence of additional subgroups. Biology of
the disease seemed to be similar, independently on age, as
only minimal differences were observed in gene expression
profiles between pediatric and adult AML samples con-
taining the same lesions. The authors identified a set of
class discriminating genes, which included genes specifically
overexpressed in particular AML FAB types, e.g., AML M2,
was characterized by increased expression of genes coding
for cell surface antigens (CD34; CD19), proteins regulating
developmental processes (ROBO1, TWSG1, and PELI2) and
transcription factor POU4F1. Genes upregulated in AMLM3,
M4Eo andM7 encoded proteins reflecting particular stages of
myeloid differentiation or lineage, for example, HGF, MPO
and CPA3 in M3, CD52 and CHI3L1 in M4Eo, GP1BB and
ITGA2B in M7. The results concerning AML with KMT2A
rearrangements were described above. What is interesting,
Ross et al. [68] tested on their dataset the 35-gene prognostic
signature described by Yagi et al. [86] and did not confirm
its correlation with patient outcome. Instead, Ross et al. [68]
selected another, small set of genes whose high expression
correlated with poor outcome. This shows gene expression
profile dependence on sample set, sample size, protocols and
laboratory. However, another study of childhood leukemia,
published by Andersson et al. [69], confirmed the results
obtained by Ross et al. [68], presenting 77–86% overlap
between the differentially expressed genes (DEGs).

Analysis of 237 pediatric AML cases with gene expres-
sion microarrays and double loop cross-validation method
allowed for the selection of 75 probe sets, representing 59
unique genes, able to classify AML with the five most preva-
lent cytogenetic subtypes, constituting about 40% of pediatric
leukemia [85]. Among the most discriminative genes were
WHAMMP3 and ITM2A (encoding membrane associated
proteins) for KMT2A-rearranged; RUNX1T1, IL5RA and
POU4F1 for t(8;21); MYH11, LPAR1 and NT5E for inv(16);
HGF, STAB1 and FAM19A5 for t(15;17); TP53BP2 (coding
for p53-binding protein), and DNAAF4 (encoding protein
interacting with the estrogen receptors and the heat shock
proteins) for t(7;12). The accuracy of the classifier, validated
on two independent cohorts of patients, was equal to 92% and
99%. However, GEP had limited predictive value for AML
cases withNPM1,CEBPA,KMT2A(-PTD), FLT3(-ITD),KIT,
PTPN11, and N/K-RASmutations, perhaps because of gener-
ally lower frequency of mutations in children than in adults.

9. AML in the Elderly

AML is a disease of older adults. Within age, not only the
incidence of illness increases; elderly AML patients usually
present worse outcome and weaker response to therapy. Rao
et al. [87] reanalyzed clinically annotated GEP data from
425 de novo AML patients in the context of age. From this
dataset, two age-related cohorts were selected: 175 young
(<or= 45 years) patients and 144 elderly (>or= 55 years)
patients. Indeed, both cohorts significantly differed in OS
and DFS. This difference could be explained by unique
pattern of deregulated signaling pathway found for older
AML patients, who had a lower probability of E2F and PI3-
kinase pathway activation but a higher probability of RAS,
TNF, SRC, and EPI pathway activation. Thus, the authors
concluded AML in the elderly represents a distinct biologic
entity. The same conclusion was made by de Jonge et al. [88]
who discovered the downregulation of the tumor suppressor
gene CDKN2A in older AML patients with intermediate-
and unfavorable prognosis. CDKN2A gene encodes a cyclin-
dependent kinase inhibitor known as p16(INK4A) protein
whose amount increases with physiologic ageing. The authors
showed that p16-INK4A besides cytogenetic risk groups, was
an independent OS prognostic parameter in older patients.
The conclusion was that in the elderly, oncogenesis might be
facilitated by a suppression of defense mechanisms, which
usually protect older cells against cell and DNA damage [89].

10. Between MDS and AML

Myelodysplastic syndromes (MDS) are a group of clonal
heterogenous hematologic malignancies frequent in the
elderly, characterized by progenitor cell dysplasia, ineffective
hematopoiesis and a high rate of transformation to AML
[90]. Due to the not clearly defined boundaries betweenMDS
and other myeloid disorders, establishing MDS diagnosis
with conventional method is often problematic. Looking for
a novel diagnostic strategy, Miyazato et al. [91] compared
the transcriptomes of MDS with de novo AML and other
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bonemarrow diseases, with the use of custom-made oligonu-
cleotide microarrays. The hematopoietic stem-cell fractions
were purified based on the expression of the surface marker
PROM1, previously named AC133 or CD133. The authors
identified a small set of genes preferentially expressed inMDS
(e.g., DLK1, TEC, and ITPR1) or AML (e.g., genes encoding
solute carrier (SLC) family members, opioid receptor delta 1
(OPRD1) and leptin receptor (LEPR)).

AML with dysplasia, which has a poor outcome with
conventional chemotherapy, was studied by Tsustumi et al.
[92]. The authors analyzed three AML subcategories with
dysplastic morphology, AML with multilineage dysplasia
(AML-MLD),MDS-related AML (MDS-AML), and therapy-
related leukemia (TRL), and compared them with de novo
AML without dysplasia. As in the study of Miazato et
al., fractions of BM hematopoietic stem cells presenting
CD133 antigen were selected for microarray-based tran-
scriptome analysis. 56 genes displayed different expression
levels between AML-MLD and MDS-AML. The genes pref-
erentially expressed in AML-MLD comprise many genes
encoding nuclear proteins, ubiquitination-related proteins,
andPF4 gene encoding platelet factor 4, a chemokine secreted
by platelets and influencing BM environment. The same gene
was overexpressed in AML-MLD also when compared to
AML without dysplasia, suggesting the correlation of PF4
expression with AML-MLD.Distinction betweenMDS-AML
and AML without dysplasia was possible with the use of
28 genes, including 9 shared within the 56-gene signature
differentiating AML-MLD and MDS-AML. One of them,
LAPTM5 gene, encoding lysosomal transmembrane protein,
was clearly upregulated in MDS-AML, being a candidate
for novel marker for MDS-related leukemia. However, the
gene signatures determined by Tsustumi et al. [92] were not
perfect, which showed global gene expression analysis may
be not adequate for AML subgroups with high intragroup
heterogeneity and subtle intergroup differences.

11. Bone Marrow Microenvironment

The main attention of AML investigators was focused on
leukemic blasts. However, it is well known that other factors,
such as tumor microenvironment, contribute to disease
progression. In hematological malignancies, the interplay of
cancer cells and surrounding stroma is particularly impor-
tant. BM microenvironment consists of a heterogeneous
population of cells directly involved in hematopoiesis or
supporting hematopoietic cell function, migration, adhesion,
metabolism, and differentiation, e.g., by production of ligands
and cell adhesion molecules [93]. The role of BM niche
in AML has not been fully elucidated and is currently
intensely studied [4, 93]. Experiments with themousemodels
indicated that the BM microenvironment not only facilitates
the leukemic cell growth but can even initiate leukemogenesis
in healthy cells [94]. The expansion of a single dominant
hematopoietic progenitor clone is favored in the aged BM
microenvironment, which causes monoclonality and may
contribute to higher rates of leukemia incidence with age
[95]. Moreover, BM niche protects quiescent LSCs, being

responsible for MRD and relapse. On the other hand, BM
stromal cells reveal high level of plasticity and can also be
affected by malignant cells [93, 96]. Therefore, the disease
progression depends on the leukemia-microenvironment
crosstalk. One of the best recognized interactions between
leukemic blasts and stroma is directed by a transmembrane
chemokine receptor CXCR4, highly expressed by leukemic
cells, and CXCL12 protein secreted by BM stromal cells.
CXCR4-CXCL12 binding promotes the homing, residence,
and survival of leukemic cells in the BM [4]. Another inter-
action, between the integrin VLA-4, expressed by leukemic
cells, fibronectin present in the extracellular matrix, and
VCAM-1 on BM stroma, contributes to chemoresistance [4].

In 2018, Kumar et al. described how AML blasts trans-
form the BM niche into a leukemia-promoting and nor-
mal hematopoiesis-suppressive microenvironment through a
secretion of exosomes, small vesicles mediating cell-to-cell
communication [96]. The authors demonstrated that AML-
derived exosomes target stromal and endothelial cells in
the BM niche. Using human-to-mouse AML graft models,
they proved AML-derived exosomes caused changes in mice,
similar to those induced by AML cells, i.e., reshaped the
BM niche cell composition and modulated gene expression
in stromal cells. Genes required for normal hematopoiesis
and bone development, e.g., CXCL12, KITL and IGF1, were
downregulated whereas a hematopoiesis and osteogenesis
suppressor, DKK1, was upregulated. Reduction of exosome
secretion in AML cells delayed the disease progression.

One of the recent studies used a unique ex vivo model
of growing leukemic cells on patients’ own stroma (POS)
derived in diagnosis (Dx), remission (Rm) and relapse
(Rx) [97]. Compared to healthy mesenchymal stromal cells
(MSCs), POS presented different morphology, larger cell size,
reduced proliferation rate, slower expansion, and poor cell-
cell contact. Coculture cross experiments revealed that POS
preferentially supported proliferation of the same patient’s
AML cells, irrespective of the disease state POS was obtained
in. The unique crosstalk between POS and AML cells was
mediated by cytokines and chemokines, angiopoietin 1,
secreted phosphoprotein 1, and SDF-1, encoded by ANGPT1
(former Ang-1), SPP1 (former OPN), and CXCL12 genes,
respectively. Compared to healthy MSCs, SPP1 expression
was higher in Dx/Rx and Rm POS whereas ANGPT1 expres-
sion was upregulated in Dx/Rx POS and increased in the
presence of AML cell. In contrast, CXCL12 was decreased in
Dx/Rx and Rm POS, which was associated by the authors
with interruption in the CXCL12-CXCR4 signaling, and
a consequent loss of hematopoietic progenitor quiescence
and induced proliferation. Interestingly, POS demonstrated
similar features in remission as in the active disease, which
indicates the critical role of BMniche in relapse and treatment
failure.

BM microenvironment-mediated protection of FLT3-
ITDAML from tyrosine kinase inhibitors (TKIs) was recently
reported by Chang et al. [98]. Drug resistance was a result
of elevated expression of genes encoding cytochrome P450
enzymes, in particular CYP3A4, by BM stromal cells. Because
CYP3A4 inhibitor reversed the protective effects of BMniche,
the authors proposed a combination of FLT3 TKIs with
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CYP3A4 inhibitors as a novel strategy to treat FLT3-ITD
AML.

Passaro et al. [99], who studied the BM vasculature
in AML using intravital two-photon microscopy, associated
increased vascular permeability in the BM microenviron-
ment with disease progression and poor treatment response.
Transcriptome analysis of BM-derived endothelial cells via
RNA-seq identified deregulation of genes involved in vascu-
lature development, angiogenesis, and response to hypoxia.
Nox4 gene, encoding NAPDH oxidase, responsible for pro-
duction of reactive oxygen species (ROS), activation of nitric
oxide synthase 3 (NOS3), and release of nitric oxide (NO),
was particularly upregulated. Increased NO level contributed
to the vascular leakiness in AML-engrafted mice and was
associated with poor prognosis in AML patients. Appli-
cation of NO synthase inhibitors combined with standard
chemotherapy restored normal vasculature and improved the
treatment response, demonstrating the efficacy of combined
leukemia-niche therapies.

The role of lymphocytes and other blood cells has long
been neglected in the studies of AML. However, Le Dieu et
al. found that the absolute number of T-cells circulating in PB
of de novo AML patients, not belonging to malignant clones,
was increased compared to healthy controls [100]. Activation
of T-cells might reflect a response to growth signals present in
a local microenvironment. GEP of CD4+ and CD8+ T-cells
from AML patients and healthy volunteers revealed global
differences in transcription pattern, with little similarities
to T-cells of CLL patients. Particularly, genes associated
with the actin cytoskeleton and cellular polarization were
deregulated in AML T-cells. According to the authors, T-cell
aberrant activation leads to their dysfunction and impaired
immune response, which is not a sufficient weapon against
the leukemic blasts. Here, a rationale to apply immunomod-
ulatory drugs appears.

12. Discovering the Power of Small Molecules:
miRNA Expression Profiling

The discovery of regulatory role of RNA in cell and organ-
ism development completely changed our understanding of
biology and at least partially explained the paradox that is the
large size of mammalian genomes of which only a small per-
centage are the protein-coding genes [101–103]. Among small
regulatory RNAs,microRNAs (miRNAs), termed due to their
small size (18-23 nt), are best recognized [104, 105]. The
function of miRNAs in gene expression regulation (usually
repression), controlling cell fate and normal developmental
processes as well as oncogenesis, is well-established [106–
109]. As one miRNA targets multiple transcripts [110], dys-
function of miRNA may result in a wide-scale deregulation
of gene expression, often triggering a cascade of events
leading to pathogenesis. In 2002, Calin et al. demonstrated
miR-15 and miR-16 are located at chromosome 13q14 region
frequently deleted in B-cell chronic lymphocytic leukemias
(B-CLL) [111]. Then, more than half miRNA genes were
linked with cancer-associated genomic regions or fragile
sites, and their amplification or deletion in human cancers

supported miRNA role in malignant transformation [112].
Since 2005, when Lu et al. classified multiple human can-
cers, including AML, based on miRNA expression profiles
exclusively, and proved general downregulation of miRNAs
in tumors compared to normal tissues [51], miRNAs started
to be widely investigated in cancers and other diseases.

MicroRNAs were also described as regulators of mam-
malian hematopoiesis [113, 114]. In 2004, three microRNAs,
whichmodulatemouse hematopoietic lineage differentiation,
were found byChen et al. [113]:miR-181, a positive regulator of
B-lymphoid cell differentiation, miR-223, nearly exclusively
expressed in BM and myeloid cells, and miR-142, found at
highest levels in B-lymphoid and myeloid lineages. Geor-
gantas et al. identified 33 miRNAs specifically expressed in
CD34+ hematopoietic stem-progenitor cells (HSPCs) [115].
The identified miRNA signature included miRNA-17, -24, -
146, -155, -128, and -181, holding early hematopoietic cells
at a stem-progenitor stage and blocking their maturation,
miRNA-16, -103, and -107 responsible for block differentiation
of later progenitor cells, and miRNA-221, -222, and -223
controlling terminal stages of hematopoietic differentiation.
Some miRNAs indeed presented lineage-specific expres-
sion, which suggested the limitation of function to e.g.,
lymphoid (miRNA-146), erythroid (miRNA-221 and -222),
or granulocytic (miRNA-223) development. Inhibition of
erythropoiesis and erythroleukemic cell growth through KIT
gene suppression by miR-221 and -222 was also reported
by Felli et al. [116] whereas granulopoiesis regulation by a
minicircuitry involving miR-223, NFIA and CEBPA, by Fazi
et al. [117]. Other miRNAs were able to control different
processes, e.g., myelopoiesis and erythropoiesis, as miRNA-
155 [115]. Contrary to the results of Chen et al. [113] who
studied hematopoiesis on murine model,miR-142 expression
was not detected in human hematopoietic cells byGeorgantas
et al. [115]. Later, Bissels et al. deepened the knowledge about
miRNA-regulated hematopoiesis by combining analyses of
microRNA and mRNA profiles in CD133+ and CD34+
hematopoietic stem and progenitor cells [118]. In both types
of cells, 25 highest expressed miRNAs accounted for 73-
74% of the total miRNA pool. However, the most abundant
miRNAs were rather common for both progenitor cell types,
except for miR-142-3p, which was upregulated in CD34+
cells, to the level of up to 5,000 copies per cell. Remarkably,
one of miR-142-3p targets seemed to be CD133 gene. The
authors found 18 miRNAs expressed differentially between
theCD133+ (ancestral) andCD34+/CD133- (later progenitor)
cells. miR-10a, -99a, -125a and b, and miR-146a and b,
expressed at highest level in CD133+ cells, were postulated
to maintain the stem-cell character, whereas miR-484 and
other miRNAs upregulated in CD34+ cells, probably blocked
cell differentiation at a later stage. Generally, differentially
expressed miRNAs were involved in inhibition of differenti-
ation, prevention of apoptosis, and cytoskeletal remodeling.

In 2007,Mi et al. [54] showed that discrimination of AML
from ALL is possible through miRNA expression profiling.
Among 27 miRNAs differentially expressed between AML
and ALL, four were sufficient to distinguish these two types
of acute leukemia: let-7b and miR-223 were significantly
upregulated in AML whereas miR-128a and miR-128b were
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downregulated in AML comparing to ALL [54]. In 2010,
Wang et al. [119] conducted similar research on Chinese
cohort of 85 patients and found 16 miRNAs differentially
expressed between AML and ALL. Half of them were previ-
ously reported by Mi et al. [54] (miR-23a, miR-27a/b, miR-
128a, miR-128b, miR-221, miR-222, miR-223, and let-7b), but
eight have not identified previously in this context (miR-
17, miR-20a, miR-29a/c, miR-29b, miR-146a, miR-150, miR-
155, and miR-196b). In addition, prognostically relevant sig-
natures were determined for ALL, AML and non-M3-AML.
One miRNA, miR-146a, was strongly inversely correlated
with OS of both acute leukemias in two independent patient
cohorts.

Garzon et al. studied miRNA expression in APL cells
treated with all-trans-retinoic acid (ATRA) [120], and found
upregulation of miR-15a, -15b, -16-1, let-7a-3, let-7c, let-7d,
miR-223, -342, and -107, and downregulation of miR-181b.
The observed ATRA modulation of NFIA, RAS and BCL2
gene expression corresponded with the fact the mentioned
genes were targets of miR-107, let-7a and miR-15a/miR-16-1,
respectively. Then, Garzon et al. [121] evaluated the miRNA
expression in 122 newly diagnosed AML cases comparing
to CD34+ cells from 10 healthy donors, and found 26
differentially expressed miRNAs, all downregulated in AML,
e.g., miR-126, -130a, -135, -93, -146, -106b, and -125a. Expres-
sion level of some miRNAs was variable within AML and
correlated with AML cytogenetics, prognosis and clinical fea-
tures. For example, miR-181 was downregulated particularly
in AML with multilineage dysplasia whereas miR-155 and
miR-181b positively correlated with WBC (white blood cell
count). In AML with balanced 11q23 translocations, many
tumor suppressormiRNAs, targeting knownoncogenes, were
downregulated, e.g., miR-34b (targeting CDK4 and CCNE2),
miR-15a (targeting BCL2), let-7 family (targeting RAS genes),
and miR-196 (targeting HOX genes). In trisomy 8, only
upregulated miRNAswere identified, including those located
at chromosome 8, e.g., miR-124a whose known target is
CEBPA. NK-AML was the most heterogeneous; therefore
the identified miRNA signature was not predictive of NK-
AML. However, five miRNAs overexpressed in AML (miR-
199a and b, miR-191, miR-25, and miR-20a) were associated
with adverse patient outcome.

Debernardi et al. [122] showed strong correlation of
miR-181a expression with the AML FAB subtypes (elevated
in M1 and M2), and with the expression of its predicted
targets. Half of them, e.g., BCL2L11, KLF3, MAP2K1, were
negatively correlated with miR-181a expression. Havelange
et al. [123] observed two other mRNA-miRNA interactions:
negative correlation between miR-181a and miR-181b, miR-
155, and miR-146 expression with that of genes involved in
immunity and inflammation (IRF7 and TLR4), and positive
correlation between miR-23a, miR-26a, miR-128a, and miR-
145 expression level with that of proapoptotic genes (BIM
and PTEN). Association of the last three miRNA with
apoptosis was experimentally validated. Lineage-associations
were showed for miR-23a and miR-196a (positive correla-
tion with myeloid differentiation), miR-191, miR-222 and
miR-17 (negative correlation with erythroid differentiation).
Interaction analysis induced the authors to conclude that

a small group of miRNAs coordinately regulates protein-
coding transcriptome influencing the same group of genes
(presumably the key players) within the pathway.

In 2008, distinctive patterns of miRNA expression asso-
ciated with cytogenetic and genetic AML subtypes were
determined by Dixon-McIver et al.[124], Jongen-Lavrencic
et al. [125], and Li et al. [126]. Dixon-McIver et al. [124]
measured the expression level of 157 miRNAs in 100 AML
patients and two AML cell lines, with the use of bead-
based flow cytometric miRNA expression assay, and found
33 miRNAs with differential expression level between AML
and normal BM, 17 upregulated (let-7e, miR-27a, -30d, -
142-5p, -155, -181a, -181b, -181c, -195, -221, -222, -324-5p, -
326, -328, -331, -340, -374), and 16 downregulated (miR-9∗,
-15b, -26a, -30a-3p, -34c, -103, -147, -151, -182, -184, -199a,
-302b∗, -302d, -325, -367, -372). Moreover, they associated
t(15;17) translocation with upregulation of miRNAs located
in the 14q32 imprinted domain, e.g., miR-127, miR-154, miR-
154∗, miR-299, miR-323, miR-368, and miR-370. In AML
with inv(16), high level of miR-99a, miR-100, and miR-224
expression, was observed whereas t(8;21) AML presented
high expression of miR-146a and a decrease of miR-133a.
High degree of variability across samples was noted for miR-
10a and miR-125b. Jongen-Lavrencic et al. [125] found a set
of strongly upregulated microRNAs (miR-382, -134, -376a, -
127, -299–5p, and -323) in t(15;17), partially overlapping with
the APL signature defined by Dixon-McIver et al. [124].
Clustering of AML cases with miRNA expression revealed
that inv(16) were sometimes mixed with t(8;21) and shared
a part of miRNA signature, which is not unexpected as these
both AML subtypes belong to CBF AMLs. Predictors of most
AML subclasses, containing from a few to several dozen
miRNAs, were built for AML with NPM1mutation, and even
for AMLwith FLT3-ITD or FLT3-TKDmutationswhichwere
not separated from other AMLs as a result of global miRNA
expression-based clustering.

Li et al. [126] found miRNA signatures composed of 2-
24miRNAs able to distinguish AMLwith KMT2A rearrange-
ment, t(15;17), t(8;21) plus inv(16), t(8;21), inv(16), and normal
controls. They noted that miR-126/126∗ were specifically
overexpressed in both t(8;21) and inv(16) AMLs, while miR-
224, miR-368, and miR-382 in t(15;17). In KMT2A-AML,
significant overexpression of miRNAs from polycistronic
miRNA cluster, mir-17-92, was observed. A minimal class-
predictor contained only seven miRNAs: miR-126, -126∗, -
224, -368, -382, 17-5p, and -20a. Interestingly, differential
expression of miR-126/126∗ was not associated with DNA
duplication nor mutation, but probably resulted from epi-
genetic regulation. Gain- and loss-of-function experiments
revealed that high expression of miR-126 inhibits apoptosis
and increases cell viability and proliferation, synergistically
with the fusion gene RUNX1-RUNX1T1. From 674 predicted
miR-126 targets, the authors empirically tested 12 genes and
confirmed that only one of them, PLK2, was indeed regulated
bymiR-126.

MicroRNA expression pattern correspondence with FAB
classification was shown by Wang et al. [127] who noted that
M1, M2, M3 and M4 tended to depart from each other more
effectively thanM5. Apart frommiRNAs reported previously,
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the authors identified a spectrum of new miRNAs whose
expression strongly correlated with particular AML FAB
types, e.g., miR-1300, miR-1180, miR-297, miR-610 and miR-
650 overexpressed exclusively in AML M1. High expression
of some miRNAs was common in a few FAB types, e.g.,
miR-181a-d, miR-221 and miR-222 by M1, M2 and M3. The
most distinct miRNA expression pattern was shown in AML
M3, with 36 miRNAs strongly and exclusively upregulated,
e.g., miR-370, miR-224, miR-382, miR-154 described earlier,
and miR-100, miR-195, miR-452, miR-654-3p not reported
previously. Comparing to normal PBMCs, all AML samples
displayed downregulation ofmiR-29a and miR-142-3p which
were proposed by the authors as AML diagnostic biomarkers.

Analysis of miRNA expression data in CN-AML, per-
formed by Marcucci et al. [128] allowed identification of
miRNA signature of prognostic relevance. Upregulation of
miR-181a and b was associated with low risk whereas over-
expression of miR-124, -128-1, -194, 219-5p, 220a, and -320
with increased risk of failure to achieve CR, relapse or death.
Increased miRNA levels were correlated with increased
expression of genes involved in innate immunity, encoding
toll-like receptors, interleukins and caspases. Some of them
were putative targets ofmiR-181.

13. Mutation-Defined AML Subtypes

Progressive accumulation of transcriptomic data regarding
both mRNA and miRNA expression allowed more precisely
characterize AMLs with the recurrent mutations.

13.1. AML with Mutated CEBPA. Valk et al. [61] first tried
to determine gene expression profiles specific for AML with
particular mutations. Having a set of nearly 300 samples,
the authors were able to distinguish a unique gene expres-
sion signature for AML with CEBPA mutations. CEBPA
gene, mutated in 5% to 15% of all AML cases encodes a
critical regulator of hematopoietic stem-cell maintenance
and myeloid differentiation, therefore unique gene expres-
sion pattern was not unexpected for samples with the
loss-of-function CEBPA mutation. Valk et al. [61] showed
that the most prominent features of CEBPA-mutated AML
were CD7 overexpression and downregulation of CTNNA1,
TUBB and NDFIP1. Interestingly, hierarchical clustering of
all AML samples segregated AMLs with CEBPA mutations
into 2 different clusters, and one of them included also
samples without any known mutations or chromosomal
aberrations. In their subsequent paper, the authors, using
bisulfite genomic sequencing, revealed that this previously
unidentified subset of AML was represented by samples
where CEBPA gene promoter was hypermethylated [129].
In fact, within this mysterious AML cluster identified by
Valk et al. [61], CEBPA levels were very high in AML cases
with CEBPA mutations whereas in AML with wt variant,
CEBPA expression was minimal or undetectable, due to its
epigenetic silencing [129]. Detailed characteristics ofCEBPA-
silenced AML samples showed that they expressed both,
myeloid markers (CD13, CD33, and MPO), and T-lymphoid
markers (e.g., CD7 mentioned above). In addition, high

expression of the myeloid oncogene TRIB2 and NOTCH1
gene, encoding a membrane receptor and transcriptional
regulator of T-cell development, was noted. In a part of those
AML patients, activating NOTCH1 mutation was identified.
Moreover, TRIB2 was determined to be a direct target of
NOTCH1 signaling. Later, the authors found that CEBPA
methylation was accompanied by aberrant hypermethylation
of many genes compared to CEBPA-mutated AMLs or with
normal CD34+ hematopoietic progenitor cells [130]. This
could explain an observed in vitro decreased response of
CEBPA-silenced AML to myeloid growth factors and makes
this AML subtype susceptible to dynamically developing
treatment with demethylating agents. Interestingly, compari-
son of genome-wide methylation pattern with GEP revealed
only a minimal overlap (12 unique genes, including CEBPA)
between the differentially expressed and differentially methy-
lated genes. This suggested that gene expression and genome
methylation are biologically independent processes.

13.2. AMLwith Mutated NPM1 and the Paradox of HOXGene
Expression. Since the time a 4-nucleotide insertion in NPM1
gene and its significance in AML was discovered by Falini
et al. in 2005 [52], much attention was paid to unveiling
the mechanism of AML triggered by NPM1mutation. NPM1
encodes a multifunctional protein, involved in ribosome
biosynthesis and transport, DNAreplication and repair, chro-
matin remodeling, protein chaperoning, regulation of cell
cycle, embryogenesis and oncogenesis [131, 132]. Although
NPM1 protein localizes mainly in the nucleolus, it constantly
shuttles between nucleus and cytoplasm. The 4-nucleotide
insertion in the last exon of NPM1 gene results in aberrant
cytoplasmic accumulation of a protein and, consequently,
affects its functions. NPM1 gene is mutated in about 30% of
AML and in 50% to 60% cases of adult NK-AML. Given that
NPM-cytoplasmic positive (NPMc+) AML reveals unique
molecular and clinical features [133], it was introduced into
WHO classification as a separate entity [13]. An invaluable
contribution to cognition of AML promotion by NPM1
mutation was made by GEP.

Alcalay et al. [134] first claimedNPMc+AML represented
a distinct entity, which can be easily distinguished from other
AML samples, regardless of the karyotype. They compared
global gene expression of 58 AML NPMc+ samples with
prevalence of NK-AML and frequent occurrence of FLT3
mutations, to the group of 20NK-AMLswithoutNPM1muta-
tions and lower occurrence of FLT3mutations. Unsupervised
approach showed NPM1 mutation status was the strongest
clustering parameter. A selected 369-gene-predictor effi-
ciently segregated NPMc+ from NPMc- patients. Interest-
ingly, NPM1 transcript level did not differ between these
two groups, indicating the lack of NPM1 mutation influence
on NPM1 gene expression. I confirmed this observation by
analysis of NPM1 alternative transcripts with droplet digital
PCR (ddPCR) [135]. In theNPMc+patients,CD34 andCD133
antigens, as well as POU4F1 and CDKN2C, were suppressed
whereas a number of homeodomain-containing transcrip-
tion factors, including HOX and TALE genes, were activated
[134]. Because several HOX genes are highly expressed in
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HSCs and their expression decreases within cell differentia-
tion, the authors concluded HOX gene activation is a mech-
anism of stem-cell phenotype maintenance utilized by AML
blasts. The obtained results explained the overexpression of
HOX genes described earlier in an uncharacterized subgroup
of NK-AML samples [57], which probably in significant
proportion carried NPM1mutation.

A miRNA-based expression signature of AML with
mutated NPM1was later published by Garzon et al. [136].The
signature consisted of upregulated miR-10a and b, members
of let-7 and miR-29 families, and miR-15a-16-1 and miR-
17-18a-19a-20a clusters. Contrary, miR-204 and miR-128a,
predicted to target HOX genes, were downregulated in
NPM1-mutated AML, what is consistent with the observed
upregulation ofHOX genes in this AML subtype.The authors
proved positive correlation between miR-10a and HOXB4
expression, and confirmed that miR-204 targets HOXA10
and MEIS1 genes. Similarly, other authors showed three
miRNAs located in intergenic regions in the HOX clusters,
miR-10a, miR-10b, and miR-196a-1, were highly positively
correlated with HOX gene expression [122, 123]. Jongen-
Lavrencic et al. [125] observed in AML with NPM1mutation
not only overexpression of miR-10a and miR-10b, but also
overexpression ofmiR-196a and miR-196b.

From the other side, Verhaak et al. [137] found that
HOX-gene-based discriminative signature was not limited
to AML with mutated NPM1. They showed HOX-based
classification produced high percentage of false positive
results, including AML cases with 11q23 abnormalities and
KMT2A gene rearrangements, which corresponded with
the results described above. One of possible explanations
is the fact that NPM1 mutation in AML is not exclusive.
More insight into HOX gene phenomenon was given by
Andreeff et al. [71], who measured, using real-time RT-
PCR technique, expression of 39 HOX genes in 115 de
novo AMLs representing various cytogenetic types. While
in normal CD34+ cells homogeneous expression of HOX
genes was observed, AML samples were very heterogeneous
in the matter of HOX expression. As previously reported,
low levels of HOXA and HOXB expression was noted in
favorable cytogenetic AMLs. Overexpression of HOX genes
was detected in AMLs with intermediate cytogenetics and in
AMLswithNPM1mutation, usually associatedwith favorable
prognosis. Considering impact of FLT3-ITD, the authors
observed higher HOX expression in AML samples with both
mutations, NPM1 and FLT3-ITD, than in AMLwith exclusive
FLT3-ITD.

Biological significance of NPM1mutation with concomi-
tant FLT3-ITD, andNPM1mutation with concomitant NRAS
mutation, was also verified with the use of mouse knock-
in models [138]. Overexpression of HOX genes, enhanced
self-renewal, expansion of hematopoietic progenitors, and
myeloid differentiation bias, were common for both combi-
nations, which indicated the persistence of transcriptional
signature specific for NPM1 mutation in hematopoietic pro-
genitors of both double-mutants. Comparing to wtmice, dra-
matically altered gene expression profile was only observed in
NPM1-FLT3-ITD mutants which also had higher leukocyte
counts, early depletion of common lymphoid progenitors,

and a monocytic bias, presenting more acute course of the
disease. NPM1 and Nras-mutants, characterized by granulo-
cytic bias, developed AML with a longer latency and a more
mature phenotype. Moreover, additional somatic mutations
were required for AML progression. The molecular-level
results, including GEP, underpinned the higher frequency
and significantly worse prognosis of AML with simultaneous
NPM1 and FLT3-ITD mutations.

Kühn et al. [139] explained the phenomenon of HOX
and FLT3 gene upregulation in NPM1-mutated AML as a
result of the activity of chromatin regulators, KMT2A and
DOT1L. Earlier, KMT2AandDOT1Lmethyltransferaseswere
known to positively regulateHOX gene expression in normal
hematopoiesis and AML with KMT2A rearrangements [140].
Many KMT2A fusion partners interact with DOT1L. With
the use of CRISPR-Cas9 genome editing, small-molecule
inhibition and RNA-seq, the authors proved that KMT2A
and DOT1L control the expression ofHOX,MEIS1 and FLT3
(which is a downstream target of MEIS1), and also cell
differentiation in NPM1-mutated leukemia, despite the lack
of KMT2A rearrangement [139]. Interaction of wt KMT2A
with another protein, called menin, and their association
with HOX and MEIS1 promoters, were required for HOX,
MEIS1, and FLT3 upregulation. DOT1L showed a synergis-
tic effect. Combinatorial inhibition of the menin-KMT2A
interaction and DOT1L more profoundly suppressed HOX,
MEIS1, and FLT3 expression, and induced differentiation of
NPM1-mutated AML.Therefore, novel and possibly less toxic
therapeutic strategies emerged for the acute leukemias with
NPM1mutation and concomitant FLT3-ITD.

13.3. AML with FLT3-ITD. FLT3 gene, encoding FMS-like
tyrosine kinase 3, is mutated in one-third of AML patients.
Usually, the consequence is constitutive activation of the
kinase receptorwhat impairs hematopoietic cell signaling and
disturbs hematopoiesis. The presence of FLT3-ITD without
concomitant NPM1 mutation is well-established marker of
poor AML prognosis. In contrast to AML with mutated
NPM1 or CEBPA, gene expression signature specific for AML
with FLT3-ITD was not found for a long time, probably
due to the cooccurrence of other mutations. For example,
in the study of Valk et al. [61], samples with FLT3-ITD
were segregated into three clusters. Considering miRNA
expression, Garzon et al. [113] reportedmiR-155, miR-10a, and
-10b were upregulated in AML with FLT3-ITD.

Two classifiers, based on the expression of 10 or 34
genes predicting FLT3-ITD inNPM1-mutated CN-AMLwere
determined by Huang et al. [141] by analysis of two inde-
pendent AML patient cohorts, each with over 100 CN-AML
patients. Among the 6 genes common for both classifiers,
one was downregulated (MIR155HG,miR-155 host gene, and
noncoding oncogene) and 5 were upregulated, encoding
membrane proteins (TMEM273 and STON2), ectonucleotide
pyrophosphatase/phosphodiesterase (ENPP2), matrix met-
allopeptidase (MMP2), and cytokine signaling suppressor
(SOCS2).

In 2017, Zhu et al. [142] analyzed four microarray datasets
and identified 22 DEGs between FLT3-ITD-positive and
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negative AMLs shared by all four datasets. Reactome pathway
analysis revealed correlation of the identified genes with
hemopoiesis, hemoglobin metabolic process, hematopoietic
or lymphoid organ development, immune system develop-
ment, and myeloid cell differentiation. Expression levels of
AHSP, EPB42, GYPC and HEMGN genes were negatively
correlated with FLT3 expression. High expression of these
four genes in NK-AML with FLT3-ITD was associated with
better prognosis. In concordance with the fact that HEMGN
is a direct transcriptional target of HOXB4, a negative
correlation between HEMGN and HOXB4 expression was
found. Based on the data collected, the authors concluded
that FLT3-ITD might influence AML prognosis by decreas-
ing the expression of AHSP, EPB42, GYPC, and HEMGN
genes.

Wellbrock et al. [143] associated FLT3 mutation with
the expression of HH pathway downstream effector, GLI2.
Just as the presence of FLT3 mutation, GLI2 expression
significantly decreased event-free survival (EFS), relapse-
free survival (RFS), and OS. Because GLI2 was coexpressed
with SMO (Smoothened) and GLI1, one can conclude FLT3
mutation is generally associated with HH pathway activa-
tion. In fact, the analysis of an independent patient cohort
revealed the expression ofGLI2 andGLI1, and FLT3mutation
could serve as independent risk factors for the survival of
AML patients. Interestingly, the expression of three HH
pathway ligands, Sonic Hedgehog (SHH), Desert Hedgehog
(DHH), and Indian Hedgehog (IHH), undetectable in AML
blasts, was detected in primary BM stromal cells. Thus, BM
microenvironment seemed to sustain activation of HH path-
way, supporting leukemia progression and mediating AML
resistance to conventional chemotherapy [143]. Targeting
HH pathway emerges as an alternative or complimentary
therapeutic strategy against FLT3-mutated AML.

13.4. AML with IDH Mutations. Mutations in IDH1 and
IDH2 genes, encoding two isoforms of the nicotinamide ade-
nine dinucleotide phosphate (NADP)-dependent isocitrate
dehydrogenases, cytosolic and mitochondrial, respectively,
occur in 33% of CN-AML patients and confer unfavorable
prognosis [144]. Marcucci et al. [144] identified a novel
subset of CN-AML with R172 IDH2 mutation, which was
mutually exclusive with other known prognostic mutations,
associated with lower CR rates and presented distinctive gene
and miRNA expression profiles. Comparing to IDH1/IDH2-
wt patients, AML with R172 IDH2 mutation revealed higher
expression of APP, CXCL12, PAWR, CDC42BPA, and SPARC
genes, and decreased expression of KYNU, SUCLG2, CD93,
LY86, LIST1 and PTHR2. As far as the above-mentioned
overexpressed genes were more or less directly related to
AML and cancer, none of the downregulated genes had pre-
viously been associated with AML. In the miRNA expression
signature specific for R172 IDH2-AML, members of miR-
125 family (including miR-125b which targets the tumor
suppressor gene TP53 and inhibits myeloid differentiation),
and two microRNAs not associated with cancer but involved
in embryonal stem-cell differentiation, miR-1 and miR-133,
were upregulated. None of the downregulated miRNAs (e.g.,

mir-194-1, miR-526, miR-520a-3p, and mir-548b) had been
associated with normal hematopoiesis or AML.

13.5. AMLwithRUNX1Mutations. Apart from translocations
and fusion transcripts, small mutations were also found in
runt-related transcription factor 1 (RUNX1) gene in 6% [145]
to more than 30% of AML patients [146]. In older AML
patients, the frequency of RUNX1mutation was twice as high
as in younger patients [147]. Presence ofRUNX1mutationwas
also associatedwith the resistance to induction chemotherapy
[145].

Gaidzik et al. [145] found 148 genes differentially
expressed between RUNX1-mutated AML and AML with wt
RUNX1. However, the identified gene expression signature
was not exclusive for RUNX1mutation but shared with AML
with monosomy 7 and MECOM rearrangements, and AML
with complex karyotypes, both deprived of RUNX1mutation.
A key feature of RUNX1-mutated AML was deregulation of
apoptotic pathway, supported by an increased expression of
BCL2-like gene, BCL2L1.

Association of RUNX1 mutations with CN-AML poor
outcome and distinct gene and miRNA expression was
confirmed by Mendler et al. [147]. In older (> 60 years) CN-
AML patients with RUNX1 mutation and wt NPM1, genes
normally expressed in primitive hematopoietic cells (e.g.,
BAALC, CD109, GNAI1, HGF, and FHL1) and early lymphoid
precursors, B-cell progenitors (e.g., DNTT, BLNK, FOXO1,
and FLT3), were upregulated whereas myelopoiesis promot-
ers, such as CEBPA, components of neutrophil granules
(AZU1, MPO, and CTSG), were downregulated. Regarding
miRNA profile, miR-223 and two members of the let-7
tumor suppressor familywere decreased inAMLwithRUNX1
mutations. Three other miRNAs, of unknown functions
in leukemogenesis, miR-211, miR-220, and miR-595, were
upregulated in RUNX1-mutated blasts.

The collected data indicated definitely different biology
of RUNX1-mutated AML than, for example, NPM1-mutated
AML, and contributed to the distinction of AML with
mutated RUNX1 as a provisional entity in the revised WHO
classification of AML [13].

14. AML with Overexpression of Particular
Protein-Coding Genes

Valk et al. [61] distinguished a compact cluster of AML
samples with overexpression of MECOM, transcriptional
regulator, and oncoprotein involved in hematopoiesis, apop-
tosis, development, cell differentiation, and proliferation.
High expression of BAALC gene, postulated marker of early
hematopoietic progenitor cells, was earlier established as
an independent poor prognostic factor in CN-AML [42].
Langer et al. [148] proved younger (<60 years) CN-AML
patients with BAALC overexpression presented distinct gene
expression signature, with upregulation of genes earlier
associated with poor outcome (e.g., HGF, MN1, CD200),
genes involved in drug resistance (e.g., ABCB1 alias MDR1)
and hematopoietic stem-cell markers (PROM1 alias CD133,
CD34, KIT). CD133 was the most upregulated gene in high
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BAALC expressers. Interestingly, no differences were found
in global microRNA expression, but an inverse correlation
between the expression levels of miR-148a and BAALC was
observed suggesting that miR-148a might act as a negative
regulator for BAALC. Later, the same authors focused on the
meningioma 1 (MN1) gene, encoding a member of gene tran-
scription regulator complex with the nuclear receptor RAR-
RXR or the vitamin D receptor [149]. They associated high
MN1 expression with the lack of NPM1 mutation, increased
BAALC expression, less extramedullary involvement, and
worse outcome. Gene- and microRNA-expression patterns
determined from highMN1 expressers had common features
with high BAALC expressers (upregulation of PROM1, CD34,
FZD6, CRYGD, CD200, and ABCB1 genes) and patients with
wt NPM1 (low levels of HOX genes). Positive correlation
was also found between the expression of MN1 gene and the
hsa-miR-126 family, contributing to proangiogenic activity
of VEGF and formation of new blood vessels, and hsa-miR-
424, which regulates monocyte and macrophage differenti-
ation. Apoptosis-related hsa-miR-16 and miRNAs involved
in malignant transformation (e.g., hsa-miR-19a and hsa-miR-
20a members of the miR-17-92 polycistron), as well as hsa-
miR-100 and hsa-miR-196a, were downregulated in AML
samples with higherMN1 expression.

Metzeler et al. [150] who analyzed the expression levels
of ERG, BAALC and MN1 in over 200 CN-AML patients
with the use of oligonucleotide microarrays, confirmed the
association of high level of expression of the studied genes
with inferior OS and a lower rate of CR. Indeed, the
expression levels of all three genes were highly correlated.
However, in multivariate analyses, high ERG expression,
similarly as FLT3-ITD, seemed to be an independent and
strongest predictor of negative prognosis in younger and
older CN-AMLpatients. The results suggested the prognostic
value ofERG, BAALC, andMN1 genesmight partially overlap,
and highERG expression, togetherwith the presence of FLT3-
ITD,might be a sufficient combination of factors for high-risk
stratification in CN-AML.

15. Time for Meta-Analyses

After a significant amount of gene expression data had
been collected, papers reporting meta-analysis started to
appear. For example, in 2010, Miller et al. [151] systematically
analyzed the results of 25 AML studies published between
1999 and 2008. In total, close to 16 thousand expression
features, corresponding to 5 thousand unique genes, were
available from 2,744 patient samples analyzed with 10 differ-
ent microarray platforms. One-third of genes were reported
inmore than one study. Several genes, e.g.,VCAN and PGDS,
were identified only in AML cell lines. 25 genes, including 7
HOX family members, POU4F1, TSPAN7,MYH11,RUNX1T1,
RUNX3, CD34, and MN1, were reported as AML-specific
by at least 8 independent studies. HOX/TALE expression
was increased in AML with normal cytogenetics, NPM1
and FLT3 mutations, and 11q23 abnormalities involving the
KMT2A gene. Decreased expression of these genes was
typical of CD34+ cells, AML with CEBPA mutations and

AML with cytogenetic aberrations. Considering prognosis-
relevant signatures, the authors found only a minority of
genes (9.6%) were reported by at least two studies. Among
these genes, BCL11A, TBXAS1, HOXB5, HOXA10, CD34,
MN1, NME1, FLT3, were upregulated whereas genes such as
EML4, C3AR1, SMG1, FOXO1, AZU1, were downregulated
in AML samples with poor prognosis. In AML with NPM1
mutations, increased expression of SMC4 gene was reported
by 5 different studies. Apart from the selection of genes
and pathways shared by different AML studies, meta-analysis
made by Miller et al. [151] enabled identifying novel marker
genes and potential therapeutic targetswhichwere skipped by
single studies.The exampleswere two geneswhose expression
correlated with response to therapy, namely TBXAS1 and
SEMA3F, increased in AML samples with poor and good
prognosis, respectively. This evidently shows that reanalysis
of collected transcriptomic data and combining the results
from different studies may be an underestimated source of
new AML-relevant information.

16. Custom-Made Microarrays: An Alternative
to Global GEP

Since the time microarray technology was established, mul-
tiple types and applications of microarrays were developed
[45]. To benefit from this dynamically developing tech-
nology, guidelines for microarray gene expression analyses
in leukemia were formulated by three European leukemia
networks in 2006 [152]. Among all microarray platforms used
for gene expression analysis of AML, commercially available
GeneChips of Affymetrix�, predominated (see Supplemen-
tary Table 1). However, a few prominent AML papers were
published based on cDNAmicroarrays developed at the Stan-
ford University [60, 73] or Lund University [69]. All of the
above microarray platforms were generated to study global
gene expression. Alternatively, small custom-made microar-
rays, dedicated to analysis of a selected subset of genes, were
harnessed to AML studies. IntelliGene Human Cancer CHIP,
cDNA microarray from Takara Biomedicals, as well as two
kinds of custom oligonucleotide microarrays, covering 2,304
genes, mainly encoding transcription factors, membrane
proteins, growth factors, and proteins involved in redox
regulation, were used byMiyazato et al. [91] to identify MDS-
specific genes. In-house microarray was applied by Park et
al. [153] to study the expression of about 300 prognosis-
related genes in 4 clinical AML samples. The genes were
selected based on globalGEPofAML cell lines and previously
published data. Taking advantage of our own experience
with custom microarrays, we also designed and generated a
boutique microarray dedicated to gene expression analysis
of AML [154]. Our AML-array was composed of about 900
oligonucleotide probes complementary to genes selected by
the literature search: proven and postulated acute leukemia
biomarkers, general oncogenes, genes specifically involved in
leukemic transformation, genes related to immune response,
and a set of positive (housekeeping human genes) and
negative (plant and bacterial) control genes. AML-array was
used to analyze gene expression in 33 AML patients without
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or with minimal maturation (FAB M1 and M2 subtypes) and
15 healthy volunteers (HV). Based on 83-gene classifier, we
were able to perfectly distinguishAML fromHVsamples.The
genes overexpressed in AML included well-established AML
markers such asKIT,MYH11,MYC, CEBPA,MN1,MPO, SET,
and HOXA10, but also genes rarely discussed in the context
of AML pathogenesis, e.g., STMN1 (the most discriminative
gene in our analysis), CDK6, ANGPT1 or ENO1. The role
of genes determined in our analysis as underexpressed in
AML, e.g., IFITM1, FCN1, S100A9, LTB, LYZ, FCER1G, was
even less clear and demand further research. We found that
the upregulation of CPA3 gene was specific for AML with
mutated NPM1 and FLT3 genes. Although we observed some
gene expression trends, we were not able to find any genes
with statistically significant differences between AML sub-
groups divided according to FAB subtype, mutation status,
or response to therapy. This may be due to too small sample
size, high homogeneity level within the study group, limited
to M1 and M2 FAB subtypes which are not dramatically
different, too high technical bias or a preselection of genes
which could skipmore discriminative genes.Nevertheless, we
showed applicability of a small custom array to AML gene
expression analysis. Following optimization, it could serve,
for example, as a first-line diagnostic tool. With the use of
complementary quantitative RT-PCRmethods, we identified
three genes (S100A9, ANXA3 and WT1) whose expression
levels can be used to distinguish between M1 and M2 FAB
subtypes. We showed relationship between STMN1 and ABL1
expression level, and FLT3 and NPM1 mutation status. We
have also found correlation between positive response to
treatment and high CAT expression and lowWT1 expression
[154].

17. SAGE: Alternative to Microarrays before
Massive Sequencing Era

Apart from microarrays, serial analysis of gene expression
(SAGE) technique was also applied to AML gene expression
profiling [59, 155, 156]. Although thismethod did not demand
prior gene sequence knowledge, produced more quantitative
results and was described as very sensitive, it was definitely
less common than microarrays and finally was ousted by
NGS.

With the use of SAGE, 22 AML samples with four most
common translocations, t(8;21), t(15;17), inv(16), and t(9;11),
were compared to normal myeloid progenitor cells [155].
Over 2.6 thousand transcripts were abnormally expressed.
Altered expression of 56 genes was shared by all AML sam-
ples, e.g.,NUBPL, TRAM2, PTRF (presentCAVIN1) (upregu-
lated), FCN1, LCN2 and FASN (downregulated). Other genes
were differentially expressed in one or some of the transloca-
tions studied. In all translocations except t(8;21), more than
2/3 DEGs were underexpressed. Of note, only a small part of
the SAGE results corresponded with the results of published
microarray-based experiments. For example, Lee et al. [155]
did not observeMYH11 overexpression in inv(16) nor RUNX1
and RUNX1T1 overexpression in t(8;21). In subsequent paper,
the authors compared SAGE results obtained for three pooled

primary AMLs with t(9;11)(p22;q23) with SAGE-based GEP
of Mono Mac 6 (MM6) cell line, representing AML with
this particular translocation. Despite generally similar gene
expression profile, the authors identified 884 alternatively
expressed transcripts corresponding to 83 known genes,
mainly related to biosynthetic andmetabolic processes. Inter-
estingly, HRAS with well-established role in leukemogenesis,
and three other genes fromERK1/ERK2MAPKpathway, gov-
erning cell growth, proliferation, differentiation and survival,
were overexpressed exclusively in MM6.

18. Next Generation Sequencing:
Unlimited Perspectives

Microarray boom lasted about 15 years. Since 2006, when
a first high-throughput automatic sequencer, Genome Ana-
lyzer was launched by Solexa, DNA microarrays were being
gradually replaced by the NGS, termed also massive parallel
sequencing (MPS). At the beginning, the costs of NGS
outbalanced the costs of microarray experiment, but they
were soon compensated. While microarrays are still applied
for genotyping, due to their simplicity compared to the
whole genome sequence analysis, in the field of transcrip-
tome research, NGS is incomparably better. Transcriptome
sequencing, called RNA-seq, is able to detect all types of
transcripts present in a cell, including noncoding RNAs,
products of gene fusions and alternative splicing. In addi-
tion, transcriptome sequencing is often combined with a
whole genome, exome or targeted resequencing which allows
completely characterizing the studied object. In 2013, such
comprehensive study of AML was published by The Cancer
GenomeAtlas Research Network in theNewEngland Journal
of Medicine [23]. A total number of 200 cases represented
different AML subtypes were sequenced (50 whole genomes
and 150 exomes). For the same individuals, analyses of global
mRNA and miRNA expression, and DNA methylation were
performed. In several cases, RNA-seq revealed increased
or exclusive expression of the mutant DNMT3A, RUNX1,
PHF6, and TP53 genes. Gene fusions, including 15 new fusion
events with maintained open reading frame, were detected in
almost half of AML patients. Hierarchical clustering of gene
expression data enabled distinguishing seven AML groups
based onmRNAexpression and five groups based onmiRNA
expression. Similarly as in microarray data analysis, the iden-
tified groups were highly correlated with AML FAB subtypes,
differentiation stage, presence of the recurrentmutations, and
patient outcomes. Integration of gene expression and DNA
methylation data led to the discovery of a small RNA set
within an imprinted locus on chromosome 14. These small
RNAs were specifically dysregulated in APL. Patients with
PML-RARA fusions had generally very distinct mRNA and
miRNA signatures that were strongly correlated with each
other and with a specific DNA methylation signature. AML
with RUNX1-RUNX1T1, AML with some KMT2A fusions,
and AML with three mutations (in NPM1, DNMT3A, and
FLT3) together were also associated with mRNA and miRNA
expression signatures. In compliance with previous research,
the most discriminatory miRNAs for the triple-mutant AML
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were miR-10a, miR-424, miR-196b, miR-130a, and let-7b.
Other transcription factor fusions were correlated with only
mRNA expression signatures.

At the end of 2018, functional genomic landscape of acute
myeloid leukemia was highlighted by Tyner et al. [25]. The
study, within the frame of Beat AML program, included half
thousand AML patients, for whom whole-exome sequenc-
ing and RNA sequencing data were integrated with the
analyses of ex vivo drug sensitivity. Clustering of the 2,000
most variably expressed genes allowed to distinguish gene
expression signatures associated with genetic and cytogenetic
AML groups. Mutations in several genes, e.g., TP53 and
ASXL1, seemed to be responsible for a broad pattern of
drug resistance. Specific gene expression signatures were also
identified for 78 out of 119 testable drugs. For example, 17 gene
expression-based signature predicting sensitivity to ibrutinib
was determined. Multivariate modelling was harnessed to
estimate contributions of both mutation and gene expression
patterns in drug response prediction.

Apart from two most prominent studies mentioned
above, a significant number of NGS-based AML papers were
published within the last several years. Since referring to all
of them is impossible in one review, a few selected examples
are highlighted below.

19. Better Tools: Better Characterization

Like the microarrays, RNA-seq was used to better char-
acterize particular AML subgroups and cell lines. For
example, transcriptome sequencing of three basic myeloid
leukemia cell lines, K562, HL-60, and THP1, representing
chronic myeloid leukemia (CML), APL and acute monocytic
leukemia, respectively, was conducted by Wang et al. [157].
They found ERK/MAPK and JAK-STAT signaling pathways
were more highly activated in K562 than in HL-60 cells.
Contrary, PI3K/PKB pathway, induced by oncogene KIT
or FLT3, as well as PML and RARA genes, which are
fusion partners in APL, were upregulated in HL-60. Genes
related to cell cycle, cell division, and chemokine signaling
pathway were also overexpressed in HL-60 cells. Genes
upregulated in THP1 cells were enriched in immune defense,
inflammatory response, and other processes connected with
monocyte functions (e.g., LYZ, MPO, HLA-B, IL8, present
CXCL8, PRG2, SPI1, former PU.1, and TFRC). Based on
GEP, the authors concluded K562 cells are a good model to
study erythroid differentiation, HL-60 cells, chemotaxis and
phagocytosis, and THP1, inflammatory response. Gosse et
al. [158] described a novel NK-AML cell line, termed CG-
SH. A whole genome sequencing revealed the absence of
recurrent mutations but novel small alterations were found
in several genes, including GATA2 and EZH2. Compar-
ing genome and transcriptome data showed allele-specific
expression of GATA2 gene which resulted from epigenetic
silencing. Although the mutation was heterozygous, only a
mutated variant was transcribed. Interestingly, genes which
are frequently mutated in AML, but not mutated in CG-
SH (e.g., NPM1, GATA2, IDH2, RUNX1, and TP53), were
upregulated in the studied cell line, however, their levels

of expression remained within the ranges observed for 55
AML patients. Differential expression of genes implicated
in proliferation, apoptosis and differentiation, was noted for
CG-SH cells following cytokine treatment.

Two subtypes of pediatric CBF AML, t(8;21), and inv(16),
were compared with the use of RNA-seq by Hsu et al.
[159]. Although both CBF leukemias revealed many common
features, the authors were able to discover two hundreds of
DEGs. In t(8;21) samples, the most upregulated gene was
RUNX1T1, fusion partner gene, whereas the most underex-
pressed was RFX8. Overexpression of matrix metallopep-
tidase gene MMP14 and downregulation of collagen gene
COL23A1 was typical of inv(16). Compared to NK-AML
samples, HOX gene family, including MEIS1 and NKX2-
3 transcription factors, were downregulated in both CBF
AMLs. Within NK-AML, two subgroups, with and without
FLT3-ITD, were not able to distinguish based on GEP. In
total, 287 fusion transcripts were identified; 16 of them were
novel, including three involving NUP98 gene. In the whole
cohort of 64 patients, alternative splicing events (ASEs)
differentially expressed across all subtypes were also detected.
The predominant alternative splicing events were skipped
exon (SE), mutually exclusive exons (MXE) and retained
intron (RI).

Singh et al. [160] compared genome-wide DNA bind-
ing sites and transcriptome data associated with RUNX1-
RUNX1T1, CBFB-MYH11, and PML-RARA oncofusion pro-
tein expression and found many target genes, pathways, and
acetylation patterns are shared between these three fusion
transcription factors. In the case of RUNX1-RUNX1T1 and
PML-RARA, the percentage of common target genes reached
40%. Gene expression analysis revealed both common and
unique signatures for each translocation. The unique DEGs
included genes described earlier as specific for particular
translocation, namely, TRH, POU4F1, PRAME and RUNX1T1
genes for t(8;21), VCAN, MN1 and S100A12 for inv(16), and
CTSG and PTGDS for t(15;17). However, even these unique
genes were members of the similar pathways, in particular,
linked to cell proliferation (e.g., TGFB signaling pathway)
and apoptosis. Therefore, the authors hypothesized the three
differentAML subtypes, despite distinctmolecular properties
(binding sites; mechanisms of action) exploit common pro-
grams of malignant cell transformation.

Eisfeld et al. [161] studied AML with a sole monosomy
of chromosome 7 (-7 AML), the most frequent autosomal
monosomy associated with poor outcome. In over 30 cases
analyzed, the authors not only identified the most frequent
AML mutations but found different mRNA and miRNA
expression profiles compared to AML with both copies of
chromosome 7. AmongDEGs, downregulated prevailed, with
94% genes mapping to chromosome 7, affirming dosage
effect.Themost overexpressed genes were PTPRM, encoding
a protein tyrosine phosphatase receptor, a regulator of cell
growth, differentiation and oncogenic transformation, ID1,
a downstream target of oncogenic tyrosine kinases, and
MECOM, coding for a transcriptional regulator and onco-
protein implicated in hematopoiesis, apoptosis, development,
cell differentiation and proliferation. Out of 16 differen-
tially expressed miRNAs, 6 were significantly downregulated,
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including 5 from chromosome 7 and miR-9-1 from chromo-
some 1. UpregulatedmiRNAs came from two clusters, located
on chromosome X (miR-20b, miR-363, and miR-106a) and
chromosome 19 (miR-99b, miR-125a, and miR-let7e).

RNA-seq data were also collected from 13 patients with
deletions of the long arm of chromosome 9 [del(9q)], a
rare aberration occurring in about 2% of all AML cases, as
a sole abnormality or accompanied by t(8;21), t(15;17), or
other cytogenetic aberration [162]. Transcriptome of del(9q),
combined with the exome and target amplicon sequencing,
was compared with the transcriptomes of 454 AML patients
with normal karyotype or various cytogenetic aberrations.
Characteristic features of del(9q) AML were mutations in
NPM1, DNMT3A, and WT1, more frequent than in other
AML subtypes, and downregulation of TLE4 gene.

Mixed-phenotype acute leukemia (MPAL), a rare type of
progenitor leukemia with ambiguous expression of myeloid
and lymphoid lineage markers, was studied by Pallavajjala
et al. (2018) [163]. RNA-seq combined with whole genomic
sequencing (WGS) enabled identifying mutations in 70
genes, different translocations, residing mainly in the non-
coding regions of the genome, and describing gene expression
profiles in samples from four patients with T/Myeloid MPAL.
For two patients with matched diagnostic and remission
samples, enriched pathway analysis allowed for association
of genes which were upregulated at diagnosis, with pathways
involving nucleosome and chromatin assembly and organi-
zation.

20. Discovery of New Fusion Transcripts

Being a useful tool for fusion transcript detection, RNA-
seq was applied to identify a complex 3-way translocation
t(8;12;21)(q22;p11;q22) in an individual AML M2 patient
[164]. In addition to RUNX1–RUNX1T1 fusion, typical of
t(8;21) AML, the patient harbored two additional transloca-
tions with the contribution of VPS13B gene, a causative gene
of Cohen syndrome, encoding vacuolar protein sorting 13,
forming TM7SF3–VPS13B andVPS13B–RUNX1 fusion genes.

With the use of a whole transcriptome sequencing, 88
new fusion transcripts were discovered in AML by Wen et
al. [165]. In total, 134 fusion transcripts were detected in
45 AML samples, including 29 NK-AMLs. The fusions were
predominantly formed between the genes adjacent in the
same chromosome, in different orientations, and distributed
at different frequencies in the AML cases, regardless of the
karyotype. While comparing to other tumors, the authors
found only 5 common fusions, all shared with only one tumor
type (prostate cancer). It underpins the AML-specificity of
the discovered fusions. Out of 114 fusions identified in NK-
AML, seven were unique for this AML subtype. Moreover,
CIITA-DEXI fusion transcript, occurring in three isoforms,
was found in 48% of NK-AML cases. Of note, the maximal
number of fusion transcripts found in one NK-AML case was
57. Although some fusions were generated posttranscription-
ally, these results suggest that genome-level changes are not
so rare in AMLs with normal karyotypes. The significance of
particular fusions remained to be elucidated.

Also in pediatric CN-AML, novel fusion transcripts
were identified with RNA-seq, e.g., NUP98-PHF23 [166] or
CBFA2T3-GLIS2 [167, 168], occurring with 2.6% and 4.3-
8.4% frequency, respectively. More frequent CBFA2T3-GLIS2
fusion resulted from a cryptic inversion of chromosome 16
andwas correlatedwith high risk of relapse and poor outcome
[167, 168]. Schuback et al. [167] demonstrated the fusion
was most prevalent in the youngest patients (<5 years) and
absent in adults (>20 years). In another work, Masetti et al.
identified another fusion transcript in 40% of the CBFA2T3-
GLIS2-positive patients [169]. The novel fusion derived from
a member of Hedgehog signaling pathway, Desert Hedgehog
(DHH), andRasHomologueEnrich inBrain Like 1 (RHEBL1)
gene, coding for a small GTPase of the Ras family. DHH-
RHEBL1–positive patients exhibited a specific gene expres-
sion pattern, with upregulation of FLT3, BEX1, MUC4 and
AFAP1L2 genes. The outcome of these patients was even
worse than that of the patients with exclusive CBFA2T3-
GLIS2-rearrangement. Notably, targeted treatments against
AML with CBFA2T3-GLIS2 are under evaluation. GANT61,
the most potent inhibitor of GLI family proteins, which are
the final effectors of Hedgehog pathway, seems to be efficient
also against GLIS2 chimeric proteins [82].

21. Alternative Transcripts: Another Source of
Transcriptome Variability

Therole of alternative splicing (AS) in AMLpathogenesis was
first highlighted by Tanaka et al. (1995) [36] who analyzed two
of three previously identified alternative isoforms of AML1
gene, at present termed RUNX1. Both transcripts, AML1a
and AML1b, shared a runt homology domain, responsible
for DNA binding, whereas transcriptional activation domain
was present only in AML1b. The authors found that the two
AS products regulated hematopoietic myeloid cell differen-
tiation in an antagonistic way, presumably via competing
for the binding to CBF2B gene encoding transcriptional
activator. While AML1a inhibited granulocytic differentia-
tion and induced cell proliferation upon granulocyte colony-
stimulating factor (G-CSF) treatment, concomitant AML1b
overexpression recovered the granulocytic differentiation.

Development of NGS contributed to the progress in AS
research. Now, the role of splicing abnormalities in AML
progression and drug resistance is incontestable [170]. While
overexpression of SRSF1 was associated with solid tumor
promotion, mutations in genes encoding splice factors, i.e.,
SF3B1, SRSF2, U2AF1, are considered as important drivers
of hematological disorders such as MDS and AML [170].
Contribution to AML pathogenesis was assigned to splice
variants of FLT3, aberrant splicing of BCL2 gene, linked
with drug resistance, and overexpression of WT1 and E2F1
genes, which encode transcription factors taking part in AS
regulation [170]. We recently demonstrated that alternative
transcripts ofNPM1 gene are upregulated in AML and ALL at
diagnosis, decrease in CR and increase again at relapse [135].
High expression of twoNPM1 gene isoforms was significantly
associated with shorter overall and disease-free survival. This
suggested that not only mutation but also expression level of
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NPM1 gene affects patient outcome. Aberrant proportions of
particular NPM1 splice variants could be linked to abnormal
expression of genes encoding alternative splicing factors.

RNA-seq of two samples collected from an individual
AML M2 patient at diagnosis and remission were explored
in the context of AS by Li et al. (2014) [171] and Gao et al.
(2014) [172]. In both studies, a few dozens of differentially
splicing events were detected in differentially splicing genes,
associated with RNA processing, cellular macromolecule
catabolic process and DNA binding.

Shirai et al. (2015) investigated the consequences of
the most common U2AF1 mutation in a transgenic mouse
model [173]. Whole transcriptome analysis of hematopoietic
progenitor cells of U2af1-mutated mice revealed altered
hematopoiesis and changes in premRNA splicing. Compar-
ing the results of the analysis with human RNA-seq data from
TCGAAML cohort displayed enrichment ofU2AF1-induced
splicing alterations in processing genes, ribosomal genes,
and recurrently mutated MDS and AML-associated genes
(e.g., NPM1, BCOR, and KMT2D). The authors concluded
sequence-specific AS pattern triggered bymutant U2AF1was
similar in mouse and human cells.

Li et al. (2018) integrated AS events derived from RNA-
seq with H3K79me2 ChIP-seq data across 34 human normal
and cancer cell types [174]. Clustering based on skipping
exon-associated sites divided all cell types to 6 clusters. Two
of them consisted predominately of cell lines derived from
hematological malignancies. Moreover, four AML cell lines,
mainly with KMT2A rearrangements, were found in one
cluster, together with one CML cell line. Deregulated genes
associatedwith this particular clusterwere involved inmRNA
splicing via spliceosome. The obtained results corroborated
contribution of epigenetic-mediated splicing events to pro-
gression of KMT2A-AML and associated alternative splicing
mediated by K79me methyltransferase, encoded by DOT1L
gene, with leukemogenesis.

22. Chimeric RNAs: Newly Discovered
Contribution to Transcriptome Complexity

Apart from well-established fusions and alternative tran-
scripts, another class of transcripts has been recently discov-
ered in tumor as well as in normal cells by RNA-seq [175, 176].
The new class of functional and potentially oncogenic RNAs,
called chimeric RNAs (chRNAs), not only are transcribed
from genome regions modified by translocation, inversion,
or more complex chromosomal rearrangement, but can be
generated as a result of posttranscriptional RNA processing,
e.g., cis- or trans-splicing. By combining two or more gene
loci, chRNAs also differ from conventional splicing variants.
The existence of chRNAs in AML was proved by Ruffle
et al. in 2017 [177]. In RNA-seq data from three AML
patients, 17 chRNAs were identified, including new PML-
RARA transcripts with exon junctions not described earlier
in t(15;17), and expression changes with time and treatment.
Other chRNAs originated from two adjacent genes (e.g.,
VAMP8-VAMP5), nonadjacent exons separated by thousands
of base pairs (e.g., SLC16A3-METRNL andUBR5-AZIN1), two

distant genes (e.g., NONE-CTDP1), or gene fragments corre-
sponding to opposite chromosome strands. Extending their
research to a larger AML patient cohort and normal CD34+
transcriptome, the authors identified four new types of
tumor-specific chRNAs recurrently expressed in AML sam-
ples (TRIM28-TRIM28, DHRS7B-TMEM11, PLXNB-BLRD1,
and SLC16A3-METRNL). On the basis of PML-RAR fusions,
it was shown in one patient several isoforms of the same
chimeric transcript can coexist and present various sensitivity
to therapeutic agents. The resistance to treatment can be
indicated by the appearance or increase of fusion transcripts.
However, the oncogenic potential of chRNAs needs to be
verified by further research.

23. Small RNAs from the NGS Perspective

Compared to microarrays, NGS enabled more comprehen-
sive and quantitative analysis of miRNome. Ramsingh et al.
[178] analyzed miRNome of one CN-AML patient, female
diagnosed as FAB M1, to assess miRNA expression and
mutations in miRNA or miRNA binding sites. Small RNA
sequencing of leukemic myeloblasts and CD34+ cells pooled
from 5 healthy donors revealed expression of 472 miRNAs,
including 7 novel miRNAs. The most highly expressed
miRNA in both AML and CD34+ cells wasmiR-233. In AML,
it represented almost 50% of all miRNA reads. miRNAs,
which displayed differential expression between AML and
control CD34+ pool, includedmiR-362-3p andmiR-25, over-
expressed and underexpressed in AML, respectively. Com-
parison of NGS-based miRNA profiling with the array- and
RT-PCR-based approaches, showedmicroarray and real-time
analyses underestimated the expression of some miRNA,
although the general correlation between platforms was
significant. The authors did not find acquired mutations in
miRNA genes but revealed several novel germline polymor-
phisms. Comparing the results of miRNA expression with
the sequence of this particular AML patient genome, which
was known earlier [21], they identified a single mutation in
the putative tumor suppressor gene TNFAIP2 and proved
this mutation generated a new miRNA binding site. As
this mutation resulted in a Dicer-dependent translational
repression of a reporter gene, the consequence could be a
translational repression of TNFAIP2, previously described
as a target of PML-RARA or PZLF-RARA fusion genes and
highly expressed in hematopoietic cells. TNFAIP2 mutation
was predicted to generate imperfect binding sites formiR-223
and miR-181b, but the experiments conducted on AML cell
lines did not confirm contribution of miR-223 and miR-181b
and any other known miRNA to the translational repression
of mutant TNFAIP2 3󸀠-UTR. The authors did not exclude
possibility of regulation by a new, unknown yet, miRNA.
Nevertheless, the TNFAIP2 3󸀠-UTRmutation must be rare as
it was not found in any other AML samples from 187 patients
screened.

Integrating SNP and mRNA arrays with microRNA
profiling of 16 myeloid cell lines, Garcı́a-Ort́ı et al. [179]
associated expression levels of 19 miRNAs with CNVs
affecting their loci. One of these miRNAs, miR-370, often
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upregulated in AML, was proven to target tumor suppressor
NF1, downregulated in more than 30% AMLs. Because
NF1 suppression activates RAS similarly as RAS-activating
mutation, AML patients with miR-370 overexpression may
potentially benefit from additional treatment with either RAS
or mTOR inhibitors.

Starczynowski et al. [180] who globally analyzed miRNA
localization and expression in human genome using cell line
models, discovered that 77% miRNAs mapped to leukemia-
associated copy-number alterations, and the expression of
only 18%of themwas detectable. Furthermore, they found the
loss of two selected miRNA,miR-145 andmiR-146a, localized
in a commonly deleted in AML region 5q, initiated leukemia
inmice. Using small RNA sequencing they identified 28 novel
miRNAs, 18 of which mapped to leukemia-associated copy-
number alterations, and may play a role in leukemogenesis.

Using t(8;21) AML mRNA- and miRNA-sequencing data
from TCGA project, Junge et al. [181] constructed a net-
work of 605 transcripts, potential competitors of RUNX1T1
in miRNA binding. The so called competing endogenous
RNAs (ceRNAs) cross-regulate each other by competing for
binding to shared miRNAs. The predicted set of ceRNAs
contained multiple oncogenes and members of the integrin,
cadherin, and Wnt signaling pathways. One-third of those
genes were differentially expressed between t(8;21) AML and
normal granulocyte-macrophage progenitor cells. Taking
into account experimentally validated miRNA binding sites,
the authors selected 21 top RUNX1T1 ceRNAs, including
13 which shared miRNA binding sites with RUNX1T1, e.g.,
PLAG1, TCF4, NFIB, and YWHAZ. Therefore, the authors
supported the hypothetical miRNA sponge function of
RUNX1T1 gene, particularly its 3’UTR, present in a leukemic
RUNX1-RUNX1T1 fusion transcript and overexpressed up to
1000 times in t(8;21) versus other and control samples.

24. piRNAs, Extracellular Vesicles, and
Transposable Elements

From small RNAs, miRNAs are definitely best characterized
and their association with normal and malignant develop-
ment is well established. Recently, a little longer (25-33 nt)
P-element-induced wimpy testis (PIWI)-interacting RNAs
(piRNAs), responsible for epigenetic silencing of transpos-
able elements (TEs) in germline tissue, have been corre-
lated with brain functioning and tumor transformation [104,
182]. Aberrant piRNA expression was detected in multiple
myeloma and various solid tumors [104]. In cancer cells,
piRNAs and PIWI proteins may contribute to tumorigenesis
through aberrant DNA methylation leading to genomic
silencing and promotion of a “stem-like” state, or, oppo-
sitely, through gene expression activation via regulation of
histone acetylation and euchromatin formation. Comparative
analysis of malignant and normal tissues from 11 organs
showed that out of approximately 20,000 piRNA present
in human genome, less than 300 are expressed in somatic
tissues and more than 500 in corresponding tumors [183].
Although most piRNAs were commonly upregulated across
tumors, some piRNAs were expressed in tumor-specific

manner. A fraction of small RNAs, abundant in miRNAs
and piRNAs, was detected in extracellular vesicles (EVs),
secreted by bone marrow mesenchymal stem cells (BM-
MSC), which are a component of hematopoietic microen-
vironment [184]. EVs treatment of hematopoietic stem cells
extracted from umbilical cord blood (UCB-CD34+ cells)
induced cell survival, suppressed apoptosis and decreased cell
differentiation. However, piRNA role in AML remains to be
elucidated. Up to date, the only evidence of direct relation
between piRNAs and AML pathogenesis was presented by
Shiva Bamezai in her Ph.D. thesis, devoted to the role of
Argonaute protein PIWIL4 in hematopoiesis and AML [185].
The author showed upregulation of PIWIL4 gene, encoding
one of PIWI proteins, in AML samples, the highest in AML
with KMT2A-AF9 translocation conferring poor prognosis.
Of note, prognostically favorable AML with PML-RARA and
inv16 showed the lowest levels of PIWIL4. Overexpression
of PIWIL4 was correlated with high expression of genes
involved in cell proliferation, such as FLT3, CBL and NRAS.
Contrary, depletion of PIWIL4 in AML with KMT2A rear-
rangements drastically reduced leukemic cell growth in vitro
and in vivo, but did not affect normal cord blood CD34+
cell growth. Out of 10 thousand unique piRNAs detected
in wt THP-1 cells, over 1000 revealed changed expression
following PIWIL4 knockdown, including 80mapped to genes
indicated by RNA-seq as deregulated by PIWIL4 depletion.
Interestingly, most of these genes belonged to the actin
cytoskeleton regulation pathway.

The role of TEs in AML and MDS was highlighted by
Colombo et al. [186]. While highly expressed in embryo-
genesis, TEs are usually methylated and silenced by hete-
rochromatin in the somatic cells. Activation of TEs is being
observed in ageing tissues and cancers. In LSCs, which
are the most therapy-resistant fraction of AML cells, low
expression of TEs was noted, along with the suppression
of genes involved in interferon pathway, inflammation, and
immune response. Significant suppression of TE expression
was also identified in high-risk MDS compared to low-risk
MDS. Considering the suppression of TEs in in AML and
MDS as a mechanism for immune escape, indicates the
potential targets to activate cancer immunogenicity in these
myeloproliferative malignancies.

25. snoRNA

Small nucleolar RNAs (snoRNAs) are basically involved in
the posttranscriptional modification of ribosomal RNAs,
in cooperation with protein partners [102, 187]. In recent
years, new functions of snoRNAs, which can be submitted
to an extensive processing, have been discovered, namely
in alternative splicing, regulation of chromatin structure,
metabolism, and neoplastic transformation [187]. NGS-based
analysis of snoRNAs is more tricky as their size, ranging
from 60 to 250 nucleotides [187], overlaps with a gap
between conventional small RNA sequencing and RNA-seq,
devoted to mRNAs and other RNA molecules longer than
200 nt. Developing their own sequencing approach, Warner
et al. [188] showed that snoRNAs, e.g., orphan snoRNAs
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contained in the imprinted DLK-DIO3 and SNURF/SNRPN
loci, are expressed in a lineage- and developmentally
restricted manner in human hematopoiesis. Moreover, 120
snoRNAs, including SNORA21, SNORA36C and SCARNA15,
displayed consistent differential expression in AML, and,
what is even more interesting, all of them were decreased
in AML samples compared to normal CD34+ cells. Of note,
although the majority of snoRNAs were embedded in the
introns of host genes, expression levels of snoRNAs did not
correlated with expression or alternative splicing of host
genes, which suggested cellular levels of mature snoRNAs
were determined by other factors. No somatic mutations
were detected in the snoRNA genes, either. By the way,
the authors found a few novel snoRNAs and proved stan-
dard transcriptome sequencing cannot reliably distinguish
unspliced primary host gene RNA from correctly processed
snoRNA [188].

26. Long Noncoding RNAs

A novel class of functional RNAs, which do not encode
proteins and are longer than 200 nt, are referred to as long
noncoding RNAs (lncRNAs) [189]. Their role in imprinting
and regulation of cell cycle, cell differentiation and apoptosis
has been postulated [190]. In 2014, Garzon et al. [191] first
reported significance of lncRNAs for AML pathogenesis
and prognosis. Using a custom microarray platform, they
evaluated lncRNA expression in 148 older CN-AML patients
and validated the results in an independent cohort of 71
patients. Distinct lncRNApatterns were determined for AML
with FLT3-ITD and mutations in such genes as NPM1,
CEBPA, IDH1, IDH2, ASXL1, and RUNX1. For example,
patients with mutated NPM1 revealed upregulation of several
antisense transcripts ofHOX genes (HOXB-AS3;MEIS1-AS2),
plasmacytoma variant translocation 1 (PVT1), and the coiled-
coil domain containing 26 (CCD26) lncRNAs. Wilms tumor
1 antisense RNA (WT1-AS) lncRNA was found as typical
of FLT3-ITD signature whereas downregulation of HOXB-
AS3 lncRNA was noted in CEBPA-mutated AML. RUNX1
mutationwas associatedwith the increase of lncRNAs located
in the proximity of lymphoid marker genes (e.g., BLNK), the
immunoglobulin heavy locus (IGH) complex, and vault RNA
1-1 (VTRNA1-1), which was linked with multidrug resistance.
Of note, no specific lncRNAprofileswere found forDNMT3A
and TET2 mutations which frequently occur in older CN-
AML patients. Instead, prognostic signature composed of 48
lncRNAs was identified, indicating correlation of lncRNA
expression with AML treatment response and survival.

In 2017, Schwarzer et al. [192] presented the com-
prehensive transcriptome landscape of the normal human
hematopoietic stem cells and their differentiated progenies.
Short and long noncoding RNAs (ncRNAs), together with
mRNAs, were characterized with the use of three microar-
ray platforms in 12 distinct cell populations purified with
multicolor flow cytometry from blood of healthy donors.
The observed cell-type-specific ncRNA expression indicated
the tight regulation and coordinated function of this RNA
class in human hematopoietic system. Functional analysis

of the identified ncRNA fingerprints in the studied cells
and in two independent datasets of more than 600 AML
samples, revealed 80% overlap of associated gene sets.
For example, HOTAIRM1, granulocyte-specific lncRNA, was
associated with inflammatory and innate immune response
pathways, andwas strongly correlatedwith genes upregulated
in AML with NPM1 mutation. In addition, novel ncRNA
regulators of granulopoiesis were predicted, e.g., LINC00173
expressed specifically in mature granulocytes and negatively
associated with the expression of genes related to stemness,
cell cycle progression and cancer. The role of LINC00173
in granulocyte proliferation and differentiation was then
confirmed by its transcriptional repression with CRISPR-
interference (CRISPRi) in NB4 leukemia cell line. Similarly,
gain- and loss-of-function experiments validated the func-
tion ofmiRNAs and lncRNAsof the humanDLK1-DIO3 locus
in the differentiation and maintenance of megakaryocytes.
Transcriptome analysis of 46 pediatric AML samples allowed
identification of prognostically relevant ncRNA signatures
shared by normal HSCs and AML blasts of distinct cytoge-
netic and morphologic subgroups.

In the same year, a systematic analysis of lncRNAs
in hematopoiesis and hematological malignancies was also
conducted by Delás et al. [193] with a murine model and
AML cell lines. First, a catalog of lncRNAs was made,
in the 11 types of cells, representing different stages of
hematopoietic differentiation and blood cancers. Remark-
ably, similar expression patterns were observed for protein-
coding genes and lncRNAs through hematopoietic system
and disease development, which indicated involvement of
similar mechanisms of expression regulation. A loss-of-
function screen revealed that 20 lncRNAs were required
for leukemia progression in vivo. Some of them seemed to
promote leukemia stem-cell signatures, e.g., Pvt1 and Lilam,
whose functions were correlated with the function of MYC
oncogene. Another lncRNA, termed Pilna, was required
for the myeloid lineage during bone marrow reconstitu-
tion.

Transcriptome analysis of an individual primary AML
sample fromTCGA dataset enabled discovering 194 unanno-
tated small RNAs in the 17-35 nt size range, 258 unannotated
small RNAs in the range of 36-100 nt, and 977 previously
unannotated multiexon lncRNA transcripts [194]. Amajority
of them were also found in the sequencing data of other
AML patients from TCGA collection. Integration of the
collected data with RNA-seq data from 179 other AML
cases led to identification of a subset of lncRNAs with
enriched expression in AMLM3 (e.g.,MEG3) and other FAB
subtypes comparing to normal CD34+ cells. Reanalysis of
200 transcriptomes from TCGA AML dataset was also used
to construct prognosis-related lncRNAmodule pathway net-
work [195]. First, lncRNA coexpression network, composed
of 42 functionalmodules, was generated thanks to integration
of data from small and mRNA sequencing. Then, survival
analysis was performed for each of the identified lncRNA
modules and 8 of them, significantly enriched in 70 pathways
(including AML pathway, chemokine signaling pathway and
pathway in cancer), appeared to be correlated with patient
outcome.
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Relation between lncRNAexpression andAMLprognosis
was also studied by Mer et al. [196] who sequenced tran-
scriptomes of 274 intensively treated AML patients from a
Swedish cohort and found 33 individual lncRNAs signifi-
cantly associated with OS. Based on lncRNA expression, the
authors classified all AML patients to four distinct molecular
subtypes. The reproducibility and prognostic significance of
the identified lncRNA-based signatures were validated in
an independent AML patient cohort (142 TCGA samples).
Remarkably, neither of the lncRNA-driven AML subtypes
was found to be highly concordant with any of the con-
ventional clinical or genetic factors, although enrichment
in CEBPA, NPM1, FLT3-ITD and TP53 mutation was noted
for particular subtypes. Despite some similarities between
lncRNA and mRNA expression, both types of transcripts
stratified AML patients in different ways. This suggested a
limited overlap in information retrieved from various levels
of transcriptome analysis and underpinned the rationale for
further lncRNA studies.

In 2019, Bill et al. [197], while analyzing a large set of tran-
scriptome data, collected from 450 CN-AML patients, iden-
tified a 111-lncRNA-based signature specific for LSCs. Inter-
estingly, only four out of 111 lncRNAs were downregulated in
samples with high stem cell like gene expression profile. The
lncRNA signature was mainly composed of long intergenic
noncoding RNAs (lincRNAs; 30%), antisense RNAs (19%)
and sense intronic RNAs (13%). One of the upregulated
lncRNAs in LSCs was DANCR (Differentiation Antagonizing
NonproteinCoding RNA), lincRNAhighly conserved between
mice and humans, overexpressed in hepatocellular carci-
noma. DANCR, described as a regulator of the Wnt pathway,
crucial for the biology of LSCs, was proved to play a role
in LSC self-renewal and quiescence. Decreased expression of
MYC and other genes from Wnt pathway in AML cell line
after DANCR knockdown confirmed association of DANCR
with Wnt pathway.

27. Circular RNA

Thoughmost human and mammalian premRNAs are spliced
into linear molecules, the existence of circular RNAs (cir-
cRNAs), generated by noncanonical splicing (also termed
backsplicing), was sporadically reported within the last 30
years [198]. In leukemia, a spectrum of abnormal KMT2A
transcripts, including circular isoforms, resulted from exon
scramblingwas shown byCaldas et al. in 1998 [199]. However,
until deep transcriptome sequencing was developed, this
phenomenon could not be studied on a large scale. At present,
it is known that circRNAs arise from hundreds of human
genes in normal and malignant cells [198]. The abundance,
diversity, and enhanced stability of circular transcripts in
human cells suggest that they not only are a result of splicing
side effect, but can play a role in the regulation of important
physiological and pathological processes.

You and Conrad who elaborated the acfs algorithm for
identification and quantification of circRNAs from single-
and paired-ended RNA-seq data [200], demonstrated its effi-
ciency on published AML datasets. Comparing 5 APL and 5

CN-AML cases, the authors found 80 circRNAswith opposite
pattern of expression, generated from the host genes crucial
to the differentiation and proliferation of myeloid cells. For
example, circ EMB, generated from EMB gene encoding
embigin, transmembrane protein from the immunoglobulin
superfamily considered as a cancer biomarker, was highly
abundant in APL. Upregulation in CN-AML was noted for
circ SMARCA5, originated from SMARCA5 gene encoding a
core component of chromatin remodeling and spacing factor
RSF, which promotes cell proliferation. In compliance with
the theory of circRNA functioning as miRNA sponges, the
authors found miR-10b (a member of the miR-99 family)
binding site on circ SMARCA5. As SMARCA5 expression
was shown to be affected by miR-99, binding of miR-10b
by circ SMARCA5 could relieve linear SMARCA5 transcripts
from repression and contribute to the accumulation of
undifferentiated myeloid cells. Analysis of data from a larger
AML cohort revealed that the gene loci frequently mutated in
AML produced significantly more circRNAs.

In 2017, circRNAs generated from NPM1 gene have been
extensively studied by Hirsch et al. [201]. In total, in six AML
cell lines (including OCI-AML3 line with NPM1 mutation),
one CML cell line, and 3 samples derived from the PBMC
fraction of healthy volunteers, 15 circular NPM1 transcripts
were identified, including those previously deposited in cir-
cBase and novel ones. Oxford Nanopore technology of long
read sequencingwas harnessed to verify the internal structure
of identified transcripts. One of them (hsa circ 0075001),
which exhibited highly differential expression in theAML cell
lines, was quantified in a cohort of 46 AMLpatients. Based on
hsa circ 0075001 expression, patients were divided into two
groups that differed in the expression ofmore than 2000 other
genes. AML patients with high hsa circ 0075001 expression,
presented upregulation of ribosomal protein genes, increase
of total NPM1 expression, and downregulation of genes
involved in the Toll-like receptor (TLR) signaling pathway
and genes targeted by miR-181 (e.g., CARD8, CASP1, MSR1,
SLC11A1, TLR4), which is deregulated in CN-AML. The
expression of hsa circ 0075001 correlated with total NPM1
expression, but was not affected by the NPM1 mutational
status. Global analysis of circRNA expression in 10AML sam-
ples and 10 sorted cell fractions form healthy hematopoietic
controls evidenced the existence of circRNA transcripts for
almost half of all highly expressed genes [201]. Despite a
general tendency towards higher circRNA expression from
genes with higher parental gene expression, there were some
exceptions, e.g., circFLT3 expression was not correlated with
FLT3 gene expression in AML samples (though it was in
healthy samples). AML patients and healthy controls differed
in the expression levels of circRNAs arisen from 27 genes,
including ANGPT1, UGCG and FLT3. In addition, AML
subgroup-specific circRNA signatures were identified, e.g.,
NPM1-mutated patients could be distinguished from NPM1-
wt patients based on their global circRNA expression (but not
based on circNPM1 expression).

L’Abbate et al. [202] who analyzed the architecture and
expression pattern of chromosome 8 region with MYC
amplification in 23 cases of AML, detected a significant
overexpression of circPVT1, a circular transcript of PVT1
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gene in the studied AML cases compared to NK-AML. The
expression of circPVT1 was correlated with PVT1 gene copy-
number increase and high PVT1 expression in AML patients
withMYC amplification.

Contribution of circRNA to drug resistance was recently
shown by Shang et al. with the use of doxorubicin-resistant
THP-1 AML cell line (THP-1/ADM) [203]. The authors
identified 49 circRNAsdifferentially expressed betweenTHP-
1/ADM and THP-1 cells. One of them, circPAN3, was
overexpressed not only in THP-1/ADM cells but also in
refractory and recurrent AML samples. Silencing of this
circRNA restored sensitivity to doxorubicin in THP-1/ADM
cells, which indicated its significant role in chemoresistance
mediation.

28. Focus on Stem Cells

Leukemic blasts which accumulate in BM and PB of AML
patients represent cells blocked at a particular stage of
differentiation. However, in the majority of GEP studies
performed within the first years of microarray technology
development, bulk AML cells were compared to the whole
pool of mononuclear cells from healthy control samples.
Then, the cell sorting techniques were introduced to select
particular cell fractions. The example of a study where AML
cells were compared not only to unselected healthy BM and
PB samples, but also to normal hematopoietic CD34+ cells
extracted from BM and PB, was that of Stirewalt et al. [204].
They found 13 genes deregulated in AML compared to all
subpopulations of normal hematopoietic cells, including 7
upregulated (BIK, CCNA1, FUT4, IL3RA, HOMER3, JAG1,
WT1) and 6 downregulated (ALDHA1A, PELO, PLXNC1,
PRUNE, SERPINB9, TRIB2). Moreover, the expression lev-
els of WT1, FUT4, CCNA1, HOMER3, JAG1, TRIB2, and
SERPINB9 were strongly associated with FAB classification
whereas WT1, JAG1, ALDH1A1, TRIB2, and PLXNC1 with
cytogenetics. For example, WT1 was the most overexpressed
in AML with inv(16) or t(15;17), CCNA1 in t(15;17), while
BIK expression was absent or extremely low in t(8;21). 7
upregulated genes were also measured in pediatric AML,
where BIK, FUT4, and WT1 showed the most significant
increase in expression.

After the discovery of the self-renewing leukemic stem
cells (LSCs), the main focus was shifted to these early
progenitor cells capable of initiating leukemogenesis. How
they are different from normal human hematopoietic stem
cells (HSCs) was first shown in 2009 by Majeti et al. [205]
who identified over 3000 DEGs between normal HSCs
and LSCs extracted from AML patients. The selected genes
encoded mainly proteins with kinase activity, associated with
nucleoplasm, Golgi apparatus, chromosomes, vacuoles and
actin cytoskeleton. KEGG pathway analysis revealed the top
dysregulated pathways in LSCswere those related to adherens
junction, ribosome, regulation of actin cytoskeleton, tight
junction, focal adhesion, apoptosis, MAPK signaling, T-cell
receptor signaling, pathway, JAK-STAT signaling and Wnt
signaling. Some of these pathways were already associated
with stem-cell biology and cancer development, other were

not studied in cancer stem cells yet. The obtained results
emphasized the importance of the LSCs’ interaction with
their niche in leukemia initiation and progression.

Gentles et al. showed the correlation of high expression
of leukemic stem-cell genes with adverse outcomes in AML
[206]. Comparing subpopulations of cells extracted from 163
NK-AML samples, the authors identified 52 genes discrim-
inating the LSC-enriched subpopulations (CD34+/CD38-)
from the leukemic progenitor cell (LPC)-enriched subpop-
ulations (CD34+/CD38+), among others genes involved in
early hematopoiesis, e.g.,VNN1, RBPMS, SETBP1, GUCY1A3,
MEF2C, and HOPX. Genes associated with proliferation, cell
cycle, and differentiation were systematically repressed in the
LSCs. The identified LSC gene expression signature (LSC
score), reflecting self-renewal ability, was validated on four
independent datasets of 1047 patients in total, leading to
similar conclusions. OS, EFS, and RFSwereworse for patients
with high LSC score [100].

Ng et al. [207] compared gene expression profiles between
138 LSC+ and 89 LSC- cell fractions from 78 AML patients.
From the list of 104 DEGs, 17 most related to stemness
were selected to generate a LSC score (LSC17), which
could be calculated for each patient as the weighted sum
of expression of the 17 genes. Strong association between
high LSC17 scores and poor overall and event-free survival
was observed, as in the case of higher bone marrow blast
percentage at diagnosis, higher incidence of the FLT3-ITD
and adverse cytogenetics. The LSC score was validated by
xenotransplantation assays and by reanalysis of microarray
and RNA-seq data from five independent cohorts of more
than 900 AML patients with different subtypes. Comparing
with other prognostic determinants such as age, WBC count,
cytogenetic risk group, and mutational status, LSC17 score
was the strongest and independent prognostic factor. In the
end, the authors designed a customNanoString assay to easily
analyze expression of 17 genes from the LSC signature. The
assay should allow for rapid risk assessment at diagnosis,
application of more intensified investigational therapies in
the case of high-score patients, and protection of low-score
patients against unnecessary toxicity. To test its efficiency in
childhood leukemia, Duployez et al. applied the LSC17 score
to 228 de novopediatricAMLpatients [208]. Indeed, children
with low LSC17 score had significantly better outcome (OS
and EFS) compared to children with high score. Then, the
stemness signature was validated in 257 children from an
independent AML cohort. However, prognosis of pediatric
patients with low LSC17 was not significantly better than
thosewith intermediate LSC17 score. The differences between
adult and pediatric AML patients might result from the
different proportion of CBF AML in both groups (twice as
high in children). Nevertheless, the authors extended the
LSC17 prognostic value to pediatric AML patients, at least
with non-CBF AML [208]. Among all negative prognostic
factors, including the high LSC17 score, high WBC count,
cytogenetic group “other aberrations” and presence of WT1
and RUNX1 mutations, high LSC17 score gained the best
statistics.

Recently, GEP of LSCs, HSCs, and leukemic progenitors
from the same AML bone marrow enabled identifying three
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genes overlapping in the results of two pairwise comparisons
(LSCs vs. HSCs and LSCs vs. leukemic progenitors): S100A8,
SOD2, and IGFBP7 [209]. Significantly lower expression of
IGFBP7, encoding insulin-like growth factor-binding pro-
tein 7, in LSCs was correlated with reduced sensitivity to
chemotherapy. Restoration of IGFBP7 expression by a recom-
binant human gene resulted in differentiation, inhibition of
LSC survival, and improved response to therapy, without
affecting normal hematopoiesis and HSC survival. Therefore,
IGFBP7 gene was postulated to be a factor responsible for the
persistence of LSCs.

29. Taking Advantage of Model Organisms

Deep insight into the biology of the disease is not possible
by the analysis of cells extracted from patient BM or PB. In
vitro experiments with cell line models are convenient, but
have also some limitations. In fact, animal models are the
best option to study particular gene function, consequences
of early pathogenic events or treatment with potential ther-
apeutics. Using retroviral insertion mutagenesis in mice,
Erkeland et al. (2004) [210] identified a number of genes that
could be involved in the pathogenesis of AML. In one of
their later works, the authors studied the virus integration
sites (VISs) and virus common integration sites (CISs) in
the human GEP datasets of 285 adult AML samples [61]
and 130 pediatric AML samples [68]. First, they noted
VIS flanking genes were significantly more differentially
expressed between AML clusters than random genes in both
datasets. Then the authors identified five regulatory networks
involving 110 VIS/CIS genes most differentially expressed in
the adult dataset. Network associated with cell growth con-
tained only these genes. Many of them, e.g., interleukin and
STAT genes, were implicated in cytokine signaling. Another
network, consisted of gene expression regulators, was able
to discriminate between AML patients with favorable and
unfavorable prognosis. In the unfavorable group, HOXA9,
MEIS1, and CCND3 genes were increased whereas BCOR and
GFI1 genes were decreased.

Glass et al. [211] used NGS platform to identify MECOM
(previously EVI1) target genes by comparison in MECOM-
overexpressing murine myeloid leukemia cell lines (DA-1,
NFS-60) before and after shRNA-mediated MECOM knock-
down. MECOM, oncogenic transcription factor associated
with human myeloid malignancies of poor prognosis, is
overexpressed in 8–10% of adult AML and up to 27% of
pediatric leukemias with KMT2A rearrangements.MECOM-
induced leukemic cells present impaired myeloid differen-
tiation, resistance to apoptosis, and aberrant cell cycle reg-
ulation, which results in excessive proliferation. Combining
RNA-seq expression profiling with ChIP-seq, the authors
found MECOM directly bound to and downregulated Cebpe
gene, encoding a master myeloid differentiation regulator,
Serpinb2 gene, encoding serine protease inhibitor involved
in cell cycle regulation, and numerous genes from the Jak-
Stat signaling pathway that drive cellular differentiation.
In addition, several P2X purinoceptors, responsible for
ATP mediated apoptosis in neutrophils and macrophages,

appeared to be significantly downregulated in MECOM
leukemic cells.

An interesting approach was applied by Wilhelm et al.
(2011) [212] who generated two related murine leukemic
clones through the retroviral overexpression of Meis1 and
Hoxa9 genes in the purified fetal liver (FL) cells. Both
clones differed in the hematopoietic stem-cell frequency and
gene expression profile. Considering microRNAs, only a
few miRNAs were really highly expressed; more than 95%
of all miRNA transcripts came from the top 15 miRNAs.
Functional annotation analysis showed the most differenti-
ating genes betweenMeis1- andHoxa9-overexpressing clones
were related to immune system development, hemopoietic or
lymphoid organ development, hemopoiesis, and myeloid cell
differentiation. Both, differential expression and/or differen-
tial splicing, were observed in the studied transcriptomes.
Moreover, hundreds of single nucleotide variants (SNVs),
shared by both cell clones or unique for one of them, were
identified with respect to the public reference sequence. The
study revealed also a number of unannotated transcribed
elements.

30. Gene Expression Regulation:
New Directions

McKeown et al. (2017) [213] matched the epigenomic cir-
cuitry with the transcriptional state of leukemic cells to
identify potential new treatment strategies. The authors
focused on the large (>20 kb), highly active chromatin
regions called “super-enhancers” (SEs) described previously
as key oncogenic drivers in tumor cells [214]. Although
SEs constitute only about 5% of all enhancers, they are
involved in the regulation of the crucial genes defining cell
identity and phenotype. 66 AML patients were characterized
in terms of enhancers, super-enhancers, gene expression,
and mutational status of blasts [213]. On average, 807 SEs
per sample with a median length of 22 kb were identified.
Most of them were linked to multiple genes. In addition,
SE maps from normal HSPCs and monocytes were used to
define the signature of differentiation state. The two most
pervasive enhancer signatures were found in the genome and
named Myeloid Differentiation and HOX Factor Activation,
the last correlated with enhancers associated with homeobox
(HOX) genes, PBX3, and MEIS1. Based on overall SE distri-
bution, patients were classified to 6 subgroups, including 4
enriched in NPM1 and FLT3 mutation, and one containing
all AML samples with KMT2A translocation. The authors
concluded KMT2A translocations might induce a unique
epigenetic state affecting overall enhancer landscape, which
is consistent with the association of KMT2A fusion pro-
teins with DOT1L deregulation and, consequently, aberrant
histone H3K79 methylation. Moreover, patients classified to
different SE-clusters showed differences in OS. Discovery
of RARA-associated SE which differentiated patient samples
and correlated with significantly higher RARA expression
in 25% patients, prompted the authors to test the sensi-
tivity of AML cells presenting a strong SE at the RARA
locus to RAR𝛼 targeted compounds. The results of tests
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conducted on AML cell lines, AML patient derived mouse
xenograft models and AML cells ex vivo, demonstrated that
RAR𝛼 agonist SY-1425 (tamibarotene) selectively inhibited
the proliferation of AML cells with high (but not low) RARA
expression, stimulating the expression of genes linked to
granulocytic differentiation (e.g., CD38, ITGAX, ITGAM,
and CD66) and retinoic acid response (e.g., DHRS3). In
the context of efficiency, comparison of SY-1425 to ATRA,
used clinically for APL therapy, showed the prevalence of
the tested compound. Transcriptional response of APL to
retinoids was similar to the response of AML cell lines with
high RARA expression to SY-1425.The authors presented the
following interpretation of the observed results: while APL-
specific PML-RARA fusion protein represses transcription
of differentiation-related genes, in non-APL AML, RARA-
associated SE induces overexpression of unliganded RAR𝛼
which acts as a transcriptional repressor of genes regulating
by RAR𝛼. The practical consequence of clinical significance
is that some non-APL AML patient may benefit from the
ATRA-like therapy, and increased levels of RARA mRNA
could be used as a prerequisite for the treatment by SY-1425,
which has a power to reset RAR𝛼 transcriptional activity.

Not only genetic and epigenetic factors contribute to
AML pathogenesis; initiation, progression and maturation of
AML are also affected by posttranslational modification of
proteins. The important role of SUMOylation of sPRDM16
in AML progression was demonstrated by Dong & Chen on
leukemic cell lines [215]. PRDM16, previously termed MEL1,
encodes transcription factor acting as a H3K9me1 methyl-
transferase responsible for maintenance of heterochromatin
integrity. However, only protein isoform deprived of the his-
tonemethyltransferase domain, encoded by a short transcript
variant, sPRDM16, was associated with AML pathogenesis.
The authors showed that SUMOylation of sPRDM16 changed
the expression of genes implicated in wound response,
cell proliferation, chemotaxis, differentiation, and cell cycle
progression, including 13 genes (e.g., KLF10, BCL3, HDAC9,
CCL5, IL6R, LIF, and NUMB) involved in proliferation and
differentiation of hematopoietic and leukemic cells.

31. Single-Cell Sequencing: The Future

ConsideringAMLas amulticlonal cancer, we should be aware
of the fact that bulk RNA sequencing reflects what is going
on in a dominant clone that is not necessarily a clone of
origin. Even application of cell sorting technique may not
be sufficient to catch the whole AML heterogeneity as far as
we sequence a pool of cells. A promising approach, which
can overcome this problem is single-cell gene expression
profiling. A pilot single-cell AML study was performed on
twenty CD45-positive cells collected from an individual AML
patient [216]. GEP showed only 11 out of 20 cells selected
for the analysis were putative blasts, i.e., CD34-positive, or
HLA-DRA- and CD117-positive. Moreover, two of them were
outliers in PCA. Complementary targeted DNA sequencing
revealed the presence of mutations in DNMT3A and NPM1,
and FLT3-ITD in the analyzed AML sample. However,
RNA-seq identified only DNMT3A mutation in only one

single cell. Possible explanations are not sufficient coverage
(althoughNPM1 and FLT3 genes are usually highly expressed
in AML), imperfect algorithms for mutation detection in
RNA-seq data, and mutational heterogeneity of blast cells.
An argument for the last explanation can be found in the
report of Shlush et al. [217] who identified in highly purified
preleukemic stem cells DNMT3A mutation at high allele
frequency, but did not detected concomitant NPM1mutation.
Therefore, the authors concluded DNMT3A arose early in
AML evolution. The preliminary experiences with single-cell
sequencing show this technology demands optimization, but
seems to be a strategy of future.

32. Commercial Solutions for
AML Research and Clinics

As a result of years of transcriptome-scale studies, a few
commercial tools dedicated to AML and other hemato-
logic malignancies were developed. Affymetrix technology,
which conquered the microarray market, was used by Sky-
lineDx (https://www.skylinedx.com), high-tech commercial-
stage biotech company headquartered in Rotterdam, the
Netherlands, to design AMLprofiler, a qualitative in vitro
diagnostic and prognostic microarray supporting the choice
of optimal therapy strategy [218]. AMLprofiler combines
seven separate assays used for the purpose of cytogenetics,
mutation detection, and gene expression analysis, reducing
the time between sampling and diagnosis from 4 weeks to
3 days. The time of diagnostic report generation does not
exceed 15 min.

Illumina (https://www.illumina.com), the company
headquartered in SanDiego, California,USA,whopractically
monopolized the NGSmarket, released theMiSeqDx system,
the first FDA-regulated, CE-IVD-marked, NGS platform
for in vitro diagnostic testing. Although AML-dedicated
kits do not exist for MiSeqDx, the system is customizable
and a number of partners collaborates with the company
to develop new clinical assays. At present, kits for target
sequencing are available for other Illumina systems, e.g.,
TruSight Myeloid Sequencing Panel, targeting 54 genes,
including CEBPA, NPM1 and FLT3-ITD, or AmpliSeq for
Illumina Myeloid Panel, targeting 40 DNA genes, 29 RNA
fusion driver genes, and 5 gene expression levels associated
with myeloid cancers, including AML.

Other integrated diagnostic platforms are being devel-
oped and validated, e.g., rapid and sensitive NGS-based assay
combining karyotyping and mutational screening of AML
[219]. Here, three NGS libraries are generated: two DNA-
based libraries—for whole genome sequencing and selected
variant identification—and one RNA-based library for fusion
transcript detection. The whole workflow can be completed
within 5 days.

33. Conclusions

Within the last two decades, an explosion of AML studies,
driven by technological progress, could be observed. AML
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picture emerging from transcriptome research is very com-
plex and dynamic. AML transcriptome, affected by cytoge-
netic and genetic variability, resembles a mosaic, composed
of many elements interacting with each other. AML sub-
types present unique patterns of protein-coding gene and
microRNA expression.Moreover, a spectrumof fusion genes,
alternative transcripts and newly discovered chimeric RNAs,
as well as a lot of noncoding RNAs, including long linear
and circular forms, contribute to the complexity of leukemic
transcriptome.

Transcriptomedata cannot be interpreted separately from
genetic and genomic data. Even a sole point mutation can
affect expression of numerous genes, e.g., when it occurs in a
transcription factor, epigenetic regulator, or a crucialmember
of a signaling pathway. Therefore, genome, exome, methy-
lome sequencing, or targeted resequencing is often combined
with RNA-seq. In some cases transcriptome analyses helped
to define which mutation was the driver one. It must be
remembered that a disease is not limited to leukemic blasts.
Recent studies on BMmicroenvironment underlined its role
in AML initiation, progression, and relapse. Recognition of
molecular interplay between LSCs and BM niche not only
is necessary to understand the AML biology but also opens
novel AML treatment directions.

Many reports proved the power of global transcriptome
profiling and proposed application of GEP for AML diag-
nosis and prognosis. A single microarray-based test usually
classified AML subgroups properly without any a priori
knowledge. The following studies utilized more advanced
generations of microarrays, composed of an increasing num-
ber of probes, and included more numerous cohorts of
patients. Of note, the results obtained by different groups
were largely overlapping. As gene expression-based predic-
tion of the major cytogenetic subgroups was efficient in both,
pediatric and adult, AMLs, GEP appears as an attractive
alternative to classical cytogenetics which is laborious and
time-consuming. On the other hand, there is no need to
harness high-throughput technology when simple, e.g., PCR-
based, diagnostic tests can easily confirm the presence of the
fusion genes.

Because some genes are significantly overexpressed in
AML, not only in leukemic blasts but also in BM microen-
vironment, and their expression affects treatment response,
transcript measurement at the time of diagnosis should
be obligatory in AML diagnostics. In my opinion, reliable
quantitative PCR techniques, e.g., ddPCR, have currently
the highest potential to be routinely applied in clinical
practice to analyze selected transcript levels. To analyze
higher number of transcripts, gene expression arrays or RNA-
seq may be applied instead. Although both high-throughput
GEP approaches demand specialized, expensive equipment,
and well-trained staff, RNA-seq seems to be a superior
technology, offering more information at a comparable cost.
Within the last few years, small personal, relatively cheap,
and portable sequencers started to appear which makes
NGS-based tests more available. Moreover, alternative, third-
generation sequencing technologies are becoming more and
more popular. I believe that future clinical diagnostic lab-
oratories will offer NGS services, not limited to mutation

detection, as a standard. Even if accepting GEP as the only
diagnostic test would be difficult, it could at least serve as a
first screening or a complementary tool.

Summarizing, although gene expression studies were
not directly translated into clinical practice up to date,
they helped us to understand the biology of tumors and
undoubtedly contributed to the improvement of classification
of hematological malignancies and risk estimation, which is
crucial for optimal treatment decision and directs us towards
personalized medicine.
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