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Abstract: Necrotising enterocolitis (NEC) is a microbiome-dependent gut disease in preterm infants
in early life. Antibiotic treatment is a common intervention for NEC. How NEC lesions, with or
without antibiotics, affect plasma metabolome was explored in this study. Formula-fed preterm
pigs were used as a model for human NEC and treated with saline, parenteral or oral antibiotics
(n = 15–17) for four days after delivery. Gut tissues were collected for evaluation of NEC-like lesions
and plasma for metabolomic analysis by proton nuclear magnetic resonance spectroscopy (1H-NMR).
Metabolites were annotated, quantified and subjected to statistical modelling to delineate the effects
of NEC and antibiotic treatment. Presence of severe NEC lesions, not antibiotic treatment, was the
main drive for plasma metabolite changes. Relative to other pigs, pigs with severe NEC lesions had
higher levels of alanine, histidine and myo-inositol, and lower levels of 3-hydroxybutyric acid and
isobutyric acid. Across NEC lesion states (healthy, mild, severe), antibiotics directly affected only a
few metabolites (tryptophan, 3-phenyllactic acid). Together and independently, NEC and antibiotic
treatment affected circulating metabolites in preterm pigs. Amino acids and plasma metabolites,
partly related to the gut microbiome, may be helpful to monitor progression of NEC lesions after
proper validation.

Keywords: necrotising enterocolitis (NEC); antibiotics; metabolomics; amino acids; lipid metabolism

1. Introduction

Necrotising enterocolitis (NEC) is a serious gut inflammatory disease affecting 3-10%
of hospitalised preterm infants and has a high mortality and many co-morbidities [1]. Risk
factors for NEC include immature gut, excessive gut bacterial colonization and aggressive
feeding, especially when using formula [2,3]. Modulations of bacterial colonization of the
gut with pre-, pro- or antibiotics have therefore been tested as preventive or therapeutic
interventions for NEC. Whilst reports on human infants linked antibiotics to increased inci-
dence of NEC and neonatal sepsis [4,5], other earlier studies documented NEC-preventive
effects of oral [6,7] and systemic [8] antibiotic treatment. Concerns for increased antibiotic
resistance also limit the use of antibiotics for NEC prevention [9], and the most effective
regimen of antibiotic treatment against NEC remains elusive.

Both antibiotic treatment and NEC progression can alter the composition of the gut
microbiome and its metabolism [10,11], in turn affecting the host metabolism and circulat-
ing metabolites in preterm infants [12], including amino acid and lipid derivatives [13,14].
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Differences were found in plasma and urinary metabolites between control and antibiotics-
treated (NEC-protected) preterm pigs, although effects specific to antibiotic treatment or
NEC were difficult to determine [15]. In early life metabolites partly derived from the gut,
such as amino acids and short-chain fatty acids (SCFAs), may influence the development of
distant organs, such as the brain, or be important for overall body growth [16,17]. If such
plasma metabolites show changes in the early phase of NEC, they may serve as biomarkers
for prediction and early diagnosis of NEC [13,18]. Explorative studies on plasma metabolic
changes in response to NEC progression in infants are limited by the relatively rare and
variable clinical conditions of such infants and by the limited blood volume that can be
sampled from such vulnerable infants. In addition, widely differing antibiotic regimens,
potentially having effects on metabolites independent of the NEC effects, make the inter-
pretation of results difficult. Animal models of preterm birth, allowing different modes of
antibiotic treatment, with and without spontaneous NEC development, are required for
discovering such metabolites. Metabolites affected only when NEC lesions become severe
may help in the decision-making about continued medical treatment (antibiotics, enteral
food withdrawal) or surgical intervention.

In this study a preterm pig model of NEC was used to investigate the plasma metabo-
lites associated with NEC development and two different antibiotic protocols, oral or
systemic antibiotic treatment for four days after birth. It has been previously reported in
detail how such treatments, especially oral antibiotic treatment, reduced NEC sensitivity
and improved gut structure/function, together with delayed gut bacterial colonisation
and SCFA production [19], as well as the effects on systemic immunity [20] and plasma
proteins [21]. We hypothesized that NEC development, independently or together with
antibiotic treatment, would affect plasma metabolites. The plasma metabolome was pro-
filed by untargeted metabolomics based on one-dimensional proton nuclear magnetic
resonance spectroscopy (1D 1H-NMR), and metabolites were annotated and quantified
using an in-house software developed to process complex NMR metabolomics spectra,
Signature Mapping (SigMa) [22].

2. Results

In this study, formula-fed preterm pigs were used as a model for infant NEC and
treated with saline (CON, n = 15), parenteral (PAR, n = 17) or oral antibiotics (ORA, n
= 15). After four days of antibiotic treatment, gut tissue was collected for NEC evalu-
ation with the in-house scoring system at euthanisation, and plasma was collected for
metabolomic analysis.

2.1. Clinical Observations and NEC Lesions

As listed in Table S1, body weights (BW) were similar for the CON, PAR and ORA pigs
at birth (mean ± SEM: 894 ± 56, 916 ± 44 and 916 ± 56 g, respectively), but over the next
four days, the CON pigs grew slower than the PAR and ORA pigs (11.3 ± 2.4, 19.0 ± 1.3 and
16.2 ± 2.6 g/kg/d, respectively). Remaining values for clinical data, blood biochemistry
and haematology, and organ weights are available in our previous publication [19].

Overall, a lower incidence of NEC (NEC score ≥ 3 in any gut region) was observed in
the ORA pigs (0 out of 15), relative to the CON pigs (9 out of 15, p = 0.001, Fisher’s exact
test) or the PAR pigs (10 out of 17, p = 0.001, Fisher’s exact test). Distribution of the NEC
severity in the CON, PAR and ORA groups is shown in Figure S1, and the NEC scores
(median, interquartile range Q1 and 3) of the CON, PAR and ORA pigs were 4 (1.5–5),
3 (1–4) and 1 (1–2), respectively. Among the pigs with NEC (NEC score ≥ 3 in at least
one gut region), the PAR pigs tended to have more cases of Mild-NEC (score 3–4) than
the CON pigs (7 out of 10 vs. 2 out of 9, p = 0.07, Fisher’s exact test), and the incidences
of NEC lesions in different gut regions (stomach, prox, mid and distal small intestine or
colon) were not different (p = 0.21, Fisher’s exact test), as summarized in Table S2.
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2.2. Plasma Metabolites

A representative graph of NMR spectra acquired is shown in Figure 1. A PCA
score plot of all detected NMR features is shown in Figure S2. No clear effect of NEC or
antibiotic treatment on the overall metabolome was observed. A total of 27 metabolites
were annotated. Information of all annotated metabolites, including name, molecular
formula, chemical shift, abundance in different groups and effect size, is summarised in
Tables S3 and S4. Nine and five metabolites showing significant difference in abundance
among the NEC groups and antibiotic groups are listed in Tables 1 and 2, respectively.
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Figure 1. A representative one-dimensional proton (1H) NMR spectrum of pig blood plasma sample and SigMa-identified
signature signals of selected blood metabolites. Intensity is scaled to the maximum of 2.5 × 107.

No metabolites differed between the Mild-NEC and No-NEC (score 1–2) groups, whilst
seven differed between the Severe-NEC (score 5–6) and No-NEC pigs (p < 0.05 and |effect
size| ≥ 0.8). Five metabolites differed between the Severe-NEC and Mild-NEC groups.
The observed metabolites with differential abundance are involved in physiological aspects
including metabolisms of amino acids, fatty acids, carbohydrates and energy. For plasma
cholesterol, levels detected by NMR correlated well with previous data from bioassays
(Pearson’s r = 0.89, p < 0.05) [19]. Levels of tyrosine, 3-isobutyric acid and cholesterol
were lower and myo-inositol higher in the Severe-NEC relative to No-NEC pigs with large
effect size (> 1.00 in absolute value). Levels of histidine and formic acid were significantly
higher in the Severe-NEC, compared with Mild-NEC pigs (p < 0.05, |effect size| > 1.00).
Tryptophan, 3-phenyllactic acid and ethanol were only affected by the antibiotic treatment,
not by NEC. Levels of tryptophan were significantly higher in the ORA pigs than in the
CON pigs. Levels of 3-phenyllactic acid increased from the CON and PAR to the ORA
pigs. The PAR pigs had higher levels of ethanol, significantly different from the other two
groups (both p < 0.05).
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Table 1. Metabolites with differential abundance associated with NEC severity.

Metabolite Molecular
Formula

Chemical
Shift

(δ, ppm)
Multiplicity Grouping

Abundance by NEC Severity
(Mean ± SEM, mM) Effect Size 1

No-NEC
(n = 28)

Mild-NEC
(n = 9)

Severe-NEC
(n = 10)

Mild-
NEC vs.
No-NEC

Severe-NEC vs.
No-NEC

Severe-NEC vs.
Mild-NEC

Alanine C3H7NO2 1.51 d Amino acid 0.92 ± 0.05 0.93 ± 0.09 1.40 ± 0.42 −0.16 0.85 # 1.01 #

Histidine C6H9N3O2 7.08 s Amino acid 0.16 ± 0.01 0.15 ± 0.01 0.21 ± 0.04 −0.35 0.75 1.10 *
Tyrosine 2 C9H11NO3 3.93 dd Amino acid 3.84 ± 0.17 3.84 ± 0.35 2.73 ± 0.45 0.15 −1.07 * −1.22 *

Pyruvate C3H4O3 2.39 s Energy
metabolism 0.13 ± 0.01 0.13 ± 0.02 0.20 ± 0.04 −0.12 0.86 # 0.99 #

Creatine 2 C4H9N3O2 3.05 s Energy
metabolism 0.24 ± 0.03 0.21 ± 0.02 0.15 ± 0.03 0.02 −0.84 # −0.85

3-Hydroxybutyric acid C4H8O3 1.23 d Ketone 0.05 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 −0.76 −1.11 * −0.35
Formic acid 2 HCOOH 8.48 s SCFA 0.13 ± 0.04 0.10 ± 0.01 0.35 ± 0.14 −0.37 0.73 1.10 *
Isobutyric acid 2 C4H7O2H 1.10 d SCFA 0.10 ± 0.00 0.10 ± 0.01 0.08 ± 0.01 −0.17 −1.10 * −0.93 #

Glucose 2 C6H12O6 5.26 d Carbohydrate
metabolism 4.64 ± 0.24 4.39 ± 0.52 3.67 ± 0.55 −0.15 −0.97 * −0.82

Cholesterol C27H46O 0.68 m Lipid
metabolism 3.91 ± 0.13 4.00 ± 0.36 3.04 ± 0.44 0.09 −1.01 * −1.10 *

myo-Inositol C6H12O6 3.31 d Carbohydrate
metabolism 8.37 ± 0.72 8.93 ± 1.05 14.40 ± 1.93 0.12 1.24 ** 1.11 **

Methanol CH3OH 3.38 s Carbohydrate
metabolism 0.10 ± 0.01 0.12 ± 0.01 0.14 ± 0.01 0.64 1.02 * 0.38

SCFA, short-chain fatty acid. 1 Effect size was calculated for pairwise comparisons in the mixed effects analysis; Tukey test was used to calculate p value for pairwise comparison. ** p < 0.01; * p < 0.05; # p < 0.1. 2

Log2-transformed data were used.
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Table 2. Metabolites with differential abundance associated with antibiotic treatment.

Metabolite Molecular
Formula

Chemical
Shift

(δ, ppm)
Multiplicity Grouping

Abundance by Antibiotic Treatment
(Mean ± SEM, mM)

Effect Size 1

CON
(n = 15)

PAR
(n = 17)

ORA
(n = 15)

PAR
vs. CON ORA vs. CON ORA vs. PAR

Tryptophan C11H12N2O2 7.21 m Amino acid 0.29 ± 0.03 0.41 ± 0.07 0.53 ± 0.09 0.46 0.99 * 0.54
Phenylalanine C9H11NO2 7.35 m Amino acid 0.19 ± 0.02 0.24 ± 0.02 0.22 ± 0.01 0.80 # 0.64 −0.16

3-Phenyllactic acid C9H10O3 4.53 dd Amino acid
derivative 0.38 ± 0.04 1.32 ± 0.03 1.70 ± 0.06 1.66 ** 2.33 ** 0.68 **

3-Hydroxybutyric acid C4H8O3 1.23 d Ketone 0.04 ± 0.01 0.05 ± 0.02 0.03 ± 0.01 0.21 −0.68 −0.89 *
Formic acid 2 HCOOH 8.48 s SCFA 0.26 ± 0.11 0.18 ± 0.04 0.07 ± 0.01 0.44 −0.50 −0.94 *

Ethanol C2H5OH 1.20 t Carbohydrate
metabolism 0.45 ± 0.05 0.57 ± 0.03 0.46 ± 0.03 0.76 * −0.23 −0.99 **

Citrate C6H8O7 2.55 d Carbohydrate
metabolism 0.41 ± 0.04 0.54 ± 0.06 0.46 ± 0.03 0.71 # −0.15 −0.86 #

SCFA, short-chain fatty acid. 1 Effect size was calculated for pairwise comparisons in the mixed effects analysis; Tukey test was used to calculate p value for pairwise comparison. ** p < 0.01; * p < 0.05; # p < 0.1. 2

Log2-transformed data were used.
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3. Discussion

Based on our statistical modelling, the presence of NEC lesions on day 5 of life,
rather than the antibiotic treatment during the previous days, was the key driver of the
metabolomic changes in plasma revealed by NMR. These effects on metabolites were mainly
found in the pigs with severe NEC lesions, indicating that plasma metabolite changes did
not appear until the NEC lesions were relatively advanced, at least according to our NEC
scoring system. These scores may or may not closely associate with the clinical scoring
systems for infants, such as Bell’s NEC stages. Regardless, the metabolites associated with
clearly visible NEC lesions at autopsy reflect how NEC influences the metabolism of amino
acids, fatty acids, carbohydrate and energy. Several of these metabolite changes may have
occurred via changes to the gut microbiome in these pigs, following NEC development
or the antibiotic treatment [19], which remains to be investigated in more detail. The
metabolite changes did not result from differential growth rates, as no close correlation
was found between the metabolite changes and growth rates of the pigs (all Spearman’s
r < 0.5, data not shown).

The levels of three amino acids in plasma, namely alanine, histidine and tyrosine, were
associated with NEC, as shown by the statistical modelling. Given the identical nutritional
regimen for all pigs, changes of these amino acids can be attributed to the NEC itself.
The increased levels of alanine found in this study were in line with a previous report on
the urinary metabolome of NEC human patients [23], but unlike in that study, the alanine:
histidine ratio was not changed in our study. Similar to findings from infants [14], tyrosine
levels were the lowest in the pigs with severe NEC, whereas the levels of phenylalanine, its
precursor, were unaffected. Increased phenylalanine levels and phenylalanine: tyrosine
ratio have been observed in NEC infants and linked to NEC-induced limitation in hepatic
conversion of phenylalanine to tyrosine, related to oxidative stress [13]. In this manner,
other blood amino acids are also dynamically affected by both nutrition (parenteral vs.
enteral nutrition) and endogenous metabolism, potentially making longitudinal patterns
of multiple amino acids more sensitive in reflecting NEC-related metabolic changes, rather
than amino acid levels at a single time-point.

The levels of two short-chain fatty acids (SCFAs), formic acid and isobutyric acid,
and a fatty acid metabolite, 3-hydroxybutyric acid, were associated with NEC lesions.
A significant correlation was also found between the levels of isobutyric acid and valine
(r = 0.72), suggesting that the change in isobutyric acid levels is attributed to valine, the
precursor of isobutyric acid, as previously reported [24]. In a quail model of NEC high
caecal levels of isobutyric acid correlated with NEC, potentially via increased activity of
Clostridia [25]. Consistent with this, Clostridia was the dominating genus in the CON pigs
that suffered most NEC, as previously reported [19].

The levels of 3-hydroxybutyric acid, a ketone body, were lower in severe NEC pigs,
relative to other pigs, and correlated with the levels of its precursor, acetoacetic acid
(Spearman’s r = 0.49). Ketone bodies are generated by β-oxidation of free fatty acids,
including SCFAs, in hepatocytes and enterocytes [26]. Reduced ketogenesis is potentially
related to increased systemic inflammation in the NEC pigs, as indicated by our earlier
studies [20], reducing the hepatic uptake of free fatty acids to generate 3-hydroxybutyric
acid [27]. In addition, local NEC lesions, especially in the colon region, might have affected
the colonic conversion of butyric acid into 3-hydroxybutyric acid.

Disturbed carbohydrate metabolism has been repeatedly observed in the gut tissues
of NEC-sensitive pigs [28], and the resultant changes in plasma metabolites may be highly
time-dependent during the disease progression. In this study the levels of central glycolytic
metabolites (myo-inositol, pyruvate) were elevated, together with reduced glucose levels, in
pigs with severe NEC lesions. Increased plasma levels of myo-inositol were also observed
in septic pigs [29] and infants [30], and are consistent with the hypothesis that newborns
with low energy stores rely on aerobic glycolysis to mount immune responses [31]. In hu-
man adults an increase in myo-inositol levels has been linked to insulin resistance and
hyperglycaemia [32]. Hyperglycaemia is common in infants with NEC [33], at least in its
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early phase, and has been associated with an increase in late mortality [34], without notable
effects of insulin on NEC or other morbidities [35]. The tendency to lower glucose levels in
pigs with severe NEC indicates that glucose stores are depleted and gluconeogenesis fails
to restore its levels.

Pyruvate, an intermediate of energy metabolism, was found as a marker of tissue
hypoxia [36], a process associated with NEC [37]. In our previous study tissue expression
of HIF1A increased in pigs with NEC [38]. Hypoxia-inducible factor-1α (HIF-1α) mediates
the adaptation to hypoxia by suppressing the tricarboxylic acid cycle (TCA), resulting in
pyruvate accumulation [39]. Pyruvate is then metabolised into lactate and alanine [39].
Correspondingly, pyruvate levels in the preterm pigs in this study were highly correlated
with lactate (Spearman’s r = 0.90) and alanine levels (r = 0.83).

As revealed by statistical modelling, the PAR and ORA groups had different metabo-
lites affected, relative to the controls, potentially resulting from their differential effects
on the gut microbiome [19]. Conversely, the higher tryptophan levels in the ORA pigs are
supported by a previous study [40] and may involve the AB suppression of tryptophan-
catabolising bacteria, such as the Clostridium and Bacteroides genera [41]. Likewise, higher
levels of 3-phenyllactic acid (PLA), a bacterial catabolite of phenylalanine [42], in AB-
treated pigs may result from a higher activity of the phenylalanine-catabolising bacterial
genera, including Lactobacilli and Staphylococci [43,44], as previously indicated in preterm
pigs [19]. Higher plasma PLA levels were also found in patients with septic shock [45],
who may have a distorted gut microbiome. On the other hand, PLA levels did not increase
in a previous study on AB treatment of preterm pigs [15], indicating that microbiota-
dependent plasma metabolite levels may depend on the type, dose and treatment regimen
of antibiotics, in turn affecting the gut microbiome composition and activity.

4. Materials and Methods
4.1. Animal Procedure, NEC and Antibiotic Treatment

Delivery, rearing, feeding of preterm pigs and their antibiotic treatment were carried
out as previously described [19] upon ethical approval (the Danish National Animal
Experimentation Board, Copenhagen, Denmark, No. 2014-15-0201-00418). Briefly, pigs
were delivered by caesarean section on day 106 of gestation (90% gestation) from three
sows (Large White × Danish Landrace × Duroc). Immediately after birth, the pigs were
weighed and fitted with umbilical arterial catheters and orogastric feeding tubes and
immunised with maternal plasma. Based on birth weight (BW) and sex, a total of 47 pigs
were block-randomized into three groups: pigs receiving parenteral (PAR, n = 17) or oral
(ORA, n = 15) antibiotics or receiving saline orally (CON, n = 15) as controls. Ampicillin
(30 mg/kg birth weight, three times daily), gentamicin (2.5 mg/kg BW, two times daily)
and metronidazole (10 mg/kg BW, three times daily), formulated for parenteral or oral use,
were adopted as previously reported [15] and listed in Table S5.

Parenteral nutrition (PN) was provided as 4 mL/kg/h in the first 24 h, gradually
increasing to 6–8 mL/kg/h. Minimal enteral nutrition (MEN) was given as a bolus of
3 mL/kg BW every 3 h, initiating within 5 h after delivery. PN plus MEN in the first two
days transited to total enteral nutrition (15 mL/kg every 3 h) on day 3, and this was kept
until the euthanasia on day 5. The nutritional compositions of PN and the formula used
are listed in Table S6.

On day 5, intracardial blood samples were collected from pigs under anaesthesia.
EDTA-treated plasma samples were separated and stored at −80 ◦C for further analysis.
The collected gastrointestinal tracts were divided into five regions (stomach, proximal, mid-
dle and distal small intestine, and colon) for macroscopic scoring of NEC lesions using our
previously validated scoring system [19], where score 1 represents absence of macroscopic
haemorrhage, oedema or mucosal abnormality; score 2 represents local hyperaemia; score
3 represents hyperaemia, extensive oedema and local haemorrhage; score 4 represents
extensive haemorrhage; score 5 represents local necrosis and pneumatosis intestinalis; and
score 6 represents extensive transmural necrosis and pneumatosis intestinalis. Representa-
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tive pictures of the gut tissues can be seen in our previous publication [21]. The maximal
NEC score across the five regions was used to classify the pigs into No-NEC (NEC score
1–2, n = 28), Mild-NEC (NEC score 3–4, n = 9) and Severe-NEC (NEC score 5–6, n = 10)
groups for statistical analysis.

4.2. H-NMR Based Metabolomics

All 47 plasma samples and 4 extra pooled plasma samples, generated by pooling
aliquots of all samples, were subjected to 1H-NMR analysis, as previously described [46].
Thawed plasma samples were mixed with phosphate buffer solution of the same volume
(pH 7.4, 50 mM) [47], then transferred into SampleJet tubes (103.5 mm × 5 mm). NMR
spectra were recorded on a Bruker Avance III 600 MHz NMR spectrometer (Bruker Biospin,
Rheinstetten, Germany) equipped with a 5 mm broadband inverse RT (BBI) probe, auto-
mated tuning and matching accessory (ATMA), a cooling unit BCU-05 and an automated
sampler (SampleJet, Bruker Biospin, Rheinstetten, Germany). Spectra were acquired us-
ing a standard pulse sequence with water suppression (Bruker pulse program library
noesygppr1d). Thirty-two free induction decays (FIDs) were collected into 98,304 data points
in a spectral width of 30 ppm. Prior to Fourier transformation, FIDs were subjected to
apodization using an exponential function corresponding to a 0.3 Hz line-broadening.
Spectra were automatically phase- and baseline-corrected using TOPSPIN 3.5 PL6 (Bruker
BioSpin, Rheinstetten, Germany). The NMR spectra were processed using our in-house
software, Signature Mapping (SigMa) [22], which facilitates direct identification and quan-
tification of metabolites. Abundances of signature signals of metabolites were used to
calculate absolute concentrations using the Electronic REference To access In vivo Concen-
trations (ERETIC) method, as described previously [48].

4.3. Statistical Analysis

The data matrix, containing metabolite identities and concentrations, was combined
with other grouping information, such as litter (sow identity), NEC severity and sex,
and exported into R (version 3.6.3, R Core Team, Vienna, Austria) [49], interfaced with
R Studio [50], for subsequent analysis. Abundance of a metabolite was fitted to a linear
mixed-effect model using the package nlme [51], with the NEC severity and antibiotic
treatment groups as the fixed-effect factors. Litter was included as a random-effect factor.
The factor of variance inflation (vif) was calculated to test possible variance inflation of each
model fitted. Any model with a vif < 2 was regarded as acceptable. Pair-wise comparison
was further conducted to test the difference between the NEC groups (No-NEC, Mild-NEC
and Severe-NEC) or antibiotic treatment groups (CON, PAR and ORA) using the package
multcomp [52]. With regard to the explorative nature of this study, leaving the lowering
of the type I error a priority, the p value adjustment was not conducted, as advocated
against by Feise [53]. Instead, the effect size (the magnitude of effect), calculated using
the equation below [54], was included as a selection criterium [53], based on Cohen’s
suggestion [55]. Any metabolite with P value < 0.05 between any two levels of either NEC
severity or antibiotic treatment and an effect size (in absolute value) ≥ 0.8 was included for
a functional assignment below. Principal component analysis (PCA), Fisher’s exact test
and Spearman’s correlation were also performed in R.

E f f ect size =
Di f f erence between the least squared means√

varintercept + varslope + varresidual
(1)

5. Conclusions

In this study, the clinical conditions with antibiotic treatments to preterm infants
during (suspected/confirmed) NEC were mimicked in our pig model, and a range of
both NEC- and antibiotic-related metabolite changes were found, aided by statistical
modelling to separate the effects of NEC and the antibiotic treatment. Metabolites involved
in the metabolism of fatty acids, such as isobutyric acid and 3-hydroxybutyric acid, are of
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potential as putative biomarkers for NEC, as they are involved in NEC pathogenesis, such
as ischemia. The plasma metabolites affected by severe NEC found in preterm pigs may or
may not reflect the metabolites affected in preterm infants during the later phase of NEC
progression. It is not possible to directly translate the spontaneous development of NEC
in preterm pigs into the conditions in infants. Nevertheless, the results provide a proof
of concept for the independent and interacting effects of NEC progression and antibiotic
treatment on the levels of plasma metabolites. Specifically, most plasma metabolites are
not affected until NEC lesions become relatively severe, potentially reflecting a need for
surgical intervention. More studies are required to verify our findings in human infants
to better understand the roles of such plasma metabolites in the early and later phases of
NEC in preterm infants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11050283/s1, Figure S1: Distribution of NEC severity in the antibiotic treatment
groups, Figure S2: PCA score plots of the metabolomic data, Table S1: Body weight and plasma
hepatic enzyme levels of pigs included in the NMR analysis, Table S2: NEC scores and the most
affected gut regions of pigs, Table S3: All metabolites annotated with abundance in the antibiotic
treatment groups, Table S4: All metabolites annotated with abundance in NEC severity groups,
Table S5: Antibiotic regimens used, Table S6: Nutritional composition of the parenteral and enteral
nutrition used.
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