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Intraspecific host variation plays a key role in virus
community assembly
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Infection by multiple pathogens of the same host is ubiquitous in both natural and managed

habitats. While intraspecific variation in disease resistance is known to affect pathogen

occurrence, how differences among host genotypes affect the assembly of pathogen com-

munities remains untested. In our experiment using cloned replicates of naive Plantago lan-

ceolata plants as sentinels during a seasonal virus epidemic, we find non-random co-

occurrence patterns of five focal viruses. Using joint species distribution modelling, we

attribute the non-random virus occurrence patterns primarily to differences among host

genotypes and local population context. Our results show that intraspecific variation among

host genotypes may play a large, previously unquantified role in pathogen community

structure.
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Parasites constitute the majority of biological diversity on our
planet1–4, and they influence both the demography and
evolution of their host populations5–7. Host susceptibility,

pathogen infectivity, and environmental favourability have been
identified as the corner stones of disease within the disease tri-
angle framework8. However, it is becoming increasingly clear that
multiple infections within individuals are abundant3, and have
the potential to change the evolutionary and epidemiological
trajectories of pathogens9. Consequently, accounting for the
diversity of infection is necessary to understand and predict
disease dynamics and costs of infection for the host.

Understanding the determinants of the assembly and composi-
tion of pathogen communities is one of the key challenges in disease
biology today. As a challenge it is analogous to the long-standing
debate on the relative importance of biotic interactions versus
external drivers of community dynamics. While some theories
suggest species interactions to structure biological communities10,11,
others highlight the importance of environmental drivers, including
stress and disturbance on community dynamics12,13. To date, dis-
entangling biotic processes from the abiotic ones has remained
challenging14. In recent years, pathogens are increasingly studied
within a community ecological framework15–19. Environmental
variables and wider landscape context, such as human management,
are linked to infection load, parasite diversity, and coinfection
prevalence across multiple spatial scales18,20–26. The composition of
parasite communities has also been linked to pathogen transmission
mode, degree of host specialty, and life-cycle complexity27–29, as
well as host history, phylogeny, geographical range, longevity, and
growth strategy30–38. High parasite prevalence itself is a strong
predictor of coinfections9,39. For vector-borne diseases, positive co-
occurrence is common for pathogens that share a vector or trans-
mission site, or when vectors show preference for already infected
individuals15,40,41.

Co-occurrence of pathogens among host individuals is often
non-random and coinfections can reach unexpectedly high
levels15,20,23,42–44. One of the key challenges is to determine
how biotic interactions between hosts and their pathogens
themselves shape these distributions. Under the community
ecological framework, a host can be viewed as a resource patch
and its resistance as a local filter that determines the pathogen
community within that host18. Hosts are resistant against most
pathogen species they encounter45, and even for pathogens
capable of infecting a host species, there is often considerable
variation among individuals in their susceptibility7,46–50. The
effect of intraspecific variation in disease resistance on the
dynamics of individual pathogens is well described51–54.
However, the importance of intraspecific host resistance var-
iation for community assembly and diversity of species that
exploit the host is only beginning to gain attention55. Due to
allocation costs associated with genetically-based resistance, a
host resistant against a particular pathogen may be susceptible
to others56,57. On the other hand, limited evidence suggests that
the same resistance loci may provide protection against several
different pathogens58. Pathogens attacking the same host may
also compete for host resources (resource-mediated interac-
tion), or interact via elicited host immune responses59. Induced
immunity by a first arriving pathogen may change the resis-
tance phenotype, as immuno-suppression of the host by the
first arriving pathogen may facilitate establishment and repli-
cation of later arriving pathogens60–63. On the other hand,
cross-reactive immune responses elicited by the first parasite
have the potential to suppress the success of later arriving
parasites63,64. These biotic interactions could result in non-
random pathogen co-occurrence patterns across host geno-
types. Variation in host resistance may be spatially structured
with pronounced differences in resistance observed among host

populations53 and regions65. Such spatially structured resis-
tance variation may also drive spatially structured co-
occurrence patterns of pathogens exploiting the same host.
Whether the host genotype is indeed a strong determinant of
within-host parasite communities in the wild, and what the
consequences of these within-host parasite community assem-
bly processes are for host populations, remain unanswered18,66.

Here, we study the importance of the host genotype in deter-
mining the structure of within-host virus communities. Viruses are
in principle obligate parasites as they require a host for reproduction.
A growing body of evidence has demonstrated that consequences of
virus infection can shift along the pathogenic–mutualistic-con-
tinuum, even for the same interaction67,68, and visually asympto-
matic infections are common in wild plants3. Using cloned replicates
of naive Plantago lanceolata plants as sentinel traps placed in natural
populations during a seasonal epidemic of viruses, we can tease apart
the role of the host genotype from drivers that affect the distribution
of viruses within the local population context, which may include
environmental variation, the local disease pool, host population
structure and history, as well as local vector communities. Moreover,
we aim to understand how biotic interactions among the viruses59–64

influence their community assembly.
We characterize the establishing virus communities using PCR

detection69. We first test whether the viruses occur in the same
sentinel plant more often than would be expected based on their
frequencies alone. In other words, we test whether virus co-
occurrence patterns differ from expectations of a random dis-
tribution. We then employ a joint species distribution modelling
(JSDM) framework70, that allows us to tease apart the effect of local
population context (consisting of unmeasured environmental var-
iation as well as host population structure and history) on virus (co-
)occurrences from host plant characteristics and host genotype. We
can account for the shared environmental responses of the target
species, which makes the model a robust method also for sparse
data71. Using this approach, we are also able to capture signals of
possible biotic community assembly processes from virus‐to‐virus
association matrices after controlling for shared environmental
responses of the viruses. The performance of JSDMs in relation to
traditional, single-species distribution modelling (SDM) methods
has recently been validated72. The application of these kinds of
multivariate statistical tools— typically used in community ecolo-
gical analysis—to parasite data has the potential to reveal new
insights of the determinants of parasite community assembly and
composition73,74.

In this study, we ask: (1) Do we see more (or less, respectively)
co-occurrences between the viruses than what would be expected
solely based on their frequencies?; (2) Does the local population
context affect the virus community composition?; (3) Do host
genotypes differ in the virus communities they acquire, suggesting
genotype-level variation in overall sensitivity to infection?; (4)
After accounting for the aforementioned effects (2–3) of the local
population context and plant host characteristics (including the
host genotype), is there evidence of residual virus co-occurrence
patterns across the entire data indicative of competitive or facil-
itative virus interactions?; and (5) Do these residual co-
occurrence patterns vary among host genotypes indicating
genotype-specific resistance responses affecting virus community
structure? Our results indicate that while the population context
also drives virus community assembly, host genotypes vary in the
virus communities they acquire.

Results
Detection of viruses in the field experiment. Out of the
320 sentinel host plants, 68% were hosts to at least one virus
over the study period. Three viruses were clearly more common
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in the sentinel plants: closterovirus in 120 individuals, beta-
partitivirus in 102 individuals, and capulavirus in 84 indivi-
duals; while caulimovirus and enamovirus were rare: in 10 and
5 individuals, respectively (Figs. 1a and 2). Out of the 217
infected individuals, 49 (23%) hosted more than one virus, and
in total, we found 17 virus combinations, ranging from single
infections to four of the five viruses found in the same plant
(Fig. 2). Both overall virus prevalence and the composition of
virus communities varied among plant genotypes and plant
populations (Figs. 1a, b and 2).

Analysis of virus co-occurrence. We found significant non-
random positive co-occurrences between species pairs capulavirus
and caulimovirus as well as betapartitivirus and caulimovirus,
when we analysed the complete data set (Fig. 3). When we ana-
lysed the co-occurrences separately for each host plant genotype,
we found positive co-occurrences between betapartitivirus and
caulimovirus on genotype 609_19, as well as between betaparti-
tivirus and capulavirus on genotype 2818_6. We also found
negative co-occurrences between betapartitivirus and closter-
ovirus, as well as capulavirus and closterovirus on plant genotype
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Fig. 1 Virus infections in sentinel plants. Infections are plotted by population (a) and genotype (b), and the locations of the study populations in the field
experiment in the Åland Islands (c). The genotypes and populations are ordered from left to right according to decreasing overall number of infections. ‘Clo’
refers to Plantago closterovirus, ‘Be’ to Plantago betapartitivirus, ‘Cap’ to Plantago lanceolate latent virus, ‘Cau’ to Plantago latent caulimovirus, and ‘En’ refers to
Plantago enamovirus.
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Fig. 2 (Co-)infections in the original data (upper panel) and predicted coinfections (lower panel) based on the model variant 2, ordered by host
genotypes and population, as indicated by the X-axis. Both the genotypes and populations are ordered with respect to frequency, so that the bars on the
left-hand side show the population and genotype with the highest total amount of virus infection. ‘Clo’ refers to Plantago closterovirus, ‘Be’ to Plantago
betapartitivirus, ‘Cap’ to Plantago lanceolate latent virus, ‘Cau’ to Plantago latent caulimovirus, and ‘En’ refers to Plantago enamovirus. The total number of plants
in the upper panel is 20, whereas in the lower panel the total number is simulated plants is 20 (original number of plants) times 2000 (number of MCMC
iterations used for the simulation), resulting in 40,000 simulated plants.
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2818_6 (Fig. 3). When analysing co-occurrence patterns within
each population, we found a significant positive association
between capulavirus and closterovirus, and negative association
between closterovirus and betapartitivirus in plant population
433. The expected and observed numbers of co-occurrence, as
well as the exact probabilities for a greater or smaller number co-
occurrences than expected for these species pairs, are provided in
Supplementary Table 3.

Joint species distribution models of virus communities. The
model variants 2 and 3 performed almost equally well, as seen
from their performance (Table 1). Model variant 1, excluding
host plant genotype as a covariate, was clearly inferior. Model
variant 2 also resulted in the smallest WAIC value, implying best
predictive power. We did not detect any significant residual co-
occurrence patterns between viruses after accounting for the
effect of the local population context and host-related variables.

We looked into this with sentinel plant level latent variables that
are uniform across sentinel plant genotypes (model variant 2) as
well as sentinel plant level latent variables that covary with sen-
tinel plant genotype (model variant 3), and neither of these model
variants captured virus co-occurrences with strong statistical
support and their explanatory performances did not differ. Based
on these results, we decided to consider the simpler model variant
2 as our best model.

The variance partitioning conducted for the model variant 2
revealed sentinel plant genotype to be the most important
determinant for virus community composition (42% of
variance explained, averaged over species; Fig. 4), followed by
the local population context (29%; Fig. 4). The importance of
variables differed between the viruses. Plant genotype explained
most of the variation for capula- and caulimoviruses, while for
enamovirus the sentinel plant genotype and the population
context were almost equally important. For clostero- and

+

All genotypes
and

populations

Host 
genotype 
609_19

Host 
genotype 

4_13

Host 
genotype 
511_14

Host 
genotype 
2818_6

+

+

+

Wild 
population 

3302

Wild 
population 

433 

Wild 
population 

877 

Wild 
population 

9031

+

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

Cap

Cl
o

Cau

En

B
e

No occurrences

1 co-occurrence

> 8 co-occurrences

1–8 co-occurrences

Fig. 3 Co-occurrences between virus species. Co-occurrences are shown either in the whole data set (left, with total number of sentinel plants 320), or
per plant genotype (upper panels, 80 plants per genotype), or by population (lower panels, 80 plants per population) as denoted by the horizontal axis. The
genotypes and populations are ordered from left to right according to decreasing the overall frequency of disease. The plus (and minus) signs denote the
pairs, for which the observed values were higher (or lower, respectively) than what would be expected based on their overall frequencies, and for which the
probability of this difference was <0.1. The line colours denote the true numbers of co-occurrences between the species, as shown in the legend. ‘Clo’ refers
to Plantago closterovirus, ‘Be’ to Plantago betapartitivirus, ‘Cap’ to Plantago lanceolate latent virus, ‘Cau’ to Plantago latent caulimovirus, and ‘En’ refers to Plantago
enamovirus. The exact probabilities for the focal pairs are provided in the Supplementary Table 3.

Table 1 Joint species distribution model variants and their explanatory performance and predictive performance (based on
cross-validation), measured by the Tjur R2 coefficient of determination110 (see ‘Methods’ and Supplementary information).

Model
variant

Fixed explanatory variables Random effects
(latent variables)

Explanatory
performance

Predictive performance WAIC

1 Local population context, host size, signs of
herbivory

Host plant individual 0.072 0.041 2.00

2 Host genotype, local population context, host
size, signs of herbivory

Host plant individual 0.16 0.11 1.78

3 Host genotype, local population context, host
size, signs of herbivory

Genotype-
dependent
host plant individual

0.16 0.11 1.81
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betapartitiviruses the population context explained more
variation in the data than plant genotype.

The importance of the random effect at the level of sentinel
plant individuals differed between the viruses, but followed
roughly the same pattern: For capula-, caulimo- and enamovirus,
the sentinel plant individual random effect was minor, but for
clostero and betapartitivirus, its effect was slightly more
pronounced (resulting in a total average effect of 14%). However,
further inspection revealed that none of the residual correlations
between virus species gained strong statistical support. Hence, we
see no signal of potential biotic interactions between viruses after
taking into account the effects of fixed explanatory variables, i.e.
the sentinel plant genotype, size, signs of herbivory and local
population context.

As expected, the predicted coinfections based on model variant
2 show similar patterns to what we can see in the raw data
(Fig. 2). When examining both the coinfection profiles (Fig. 2),
and the posterior mean estimates for the regression coefficients
(Table 2), we see that capula- and caulimovirus are much more
likely to occur on sentinel plant genotype 609_19 (with posterior
mean estimate 2.47 for capula- and 0.67 for caulimovirus, Cap
and Cau in Table 2, respectively, that gained strong statistical
support based on the 90% central credible interval). Other
sentinel plant genotypes were more dominated by single
infections of closterovirus and betapartitivirus as well as their
co-occurrences. Thus, the overall structure of the virus

communities among plant genotypes was similar regarding the
two most prevalent species closterovirus and betapartitivirus, but
sentinel plant genotype 609_19 hosted significantly more
capulavirus, which consequently also increases the probability
of coinfections between capulavirus and other viruses. Regarding
caulimovirus, six out of the total ten of its occurrences were
together with capulavirus, and all of these co-occurrences were on
sentinel plant genotype 609_19. Closterovirus, betapartitivirus
and capulavirus are tenfold more prevalent in our data in
comparison to caulimovirus and enamovirus, which can be seen
in their dominance of the co-occurrence patterns in the
community.

Sentinel plant size had a more minor effect on the community
structure, as did signs of herbivory (Fig. 4), although both
sentinelt plant size and herbivory did have a minor positive effect
with strong statistical support on the probability of occurrence of
closterovirus (Table 2).

Our result for the same set of model variants fitted with less
conservative priors for the latent part of the model show
corresponding results to our main variants: model variant 1 is
clearly inferior, whereas there is no big difference between
variants 2 and 3. With model variants 2 and 3, we are able to
detect one association with strong statistical support, between
betapartitivirus and caulimovirus. For more details, see our
Supplementary information on the joint species distribution
modelling.

Environment
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Signs of herbivory 6% 

Host plant size 9%

Host plant genotype 42%

Local population context 29%Associations between viruses 14%

57%

14% 29%

Disease
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Fig. 4 Partitioning of the variance explained by model variant 2 (Table 1). The diagram overlays the average proportions (over species) of variance
explained by different groups of explanatory variables (out of the total variation explained by the model) and the concept of the disease triangle. The legend
labels denote the different variables for which the partitioning is calculated, and the percentages indicate the mean values for the whole community. The
barplot gives these results separately for each virus: the horizontal axis shows the focal five viruses (ordered from left to right according to their decreasing
overall infection rate) and the vertical axis shows the proportion of variance explained. ‘Clo’ refers to Plantago closterovirus, ‘Be’ to Plantago betapartitivirus,
‘Cap’ to Plantago lanceolate latent virus, ‘Cau’ to Plantago latent caulimovirus, and ‘En’ refers to Plantago enamovirus.

Table 2 Regression coefficients for model variant 2 for each virus species.

Clo Be Cap Cau En

(Intercept) −1.1 −1.2 −1.8 −1.9 −2.0
Host plant size 0.00094 0.00042 0.00056 0.00017 −0.00038
Signs of herbivory 0.48 0.30 −0.22 −0.29 −0.21
Population 9031 0.30 0.13 0.053 −0.47 0.27
Population 3302 −0.20 0.57 0.62 0.18 −0.084
Population 433 −0.0070 −0.091 −0.14 −0.26 −0.58
Genotype 609_19 0.12 0.12 2.47 0.67 0.067
Genotype 4_13 0.017 0.23 0.46 −0.011 0.35
Genotype 2818_6 −0.16 −0.081 0.23 −0.25 −0.57

Posterior mean estimates with statistical support based on the 90% central credible interval are denoted by bold font. ‘Clo’ refers to Plantago closterovirus, ‘Be’ to Plantago betapartitivirus, ‘Cap’ to Plantago
lanceolate latent virus, ‘Cau’ to Plantago latent caulimovirus, and ‘En’ refers to Plantago enamovirus.
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Discussion
Understanding how pathogen communities are formed is a key
challenge in understanding disease dynamics, as multiple infec-
tions can be significant drivers of epidemics as well as pathogen
virulence and evolution9,18,19,75. The host is expected to be a
strong determinant in the formation of pathogen communities, as
both theory and controlled experiments have demonstrated host
resistance to be a key determinant of disease dynamics76–80.
Indeed, diversity of resistance in host populations could partly
explain non-random co-occurrence patterns of pathogens detec-
ted in wild plants15,20,23,44,46. In our field experiment using
sentinel plants of four genotypes, we found that most of the
model-explained variation in virus occurrences was explained by
the local population context and sentinel genotype (Fig. 4). Some
viruses occurred significantly more or less together than would be
expected based on their frequencies in both the full data set as
well as when sentinel plant genotypes and local population con-
text were analysed separately.

However, the results of our JSDM modelling (Table 1) indicate
that the patterns evident in the co-occurrence analysis (Fig. 3) are
influenced more clearly by the local population context and host
genotype variation than by direct or indirect biotic interactions
among the viruses. While disentangling host genotypic effects
from other factors affecting pathogen communities has remained
challenging, we were able to uncover the roles of these determi-
nants of virus communities in wild hosts using naive sentinel
plants in wild plant populations.

Of the total amount of variation explained with our best model
variant, the population context explained within-host virus
communities to a large extent, although the proportion of
explained variation varied among the viruses (Fig. 4). Drivers that
could vary among our plant population include abiotic variables
which we did not explicitly record as many more plant popula-
tions would be needed to tease apart relevant variation in local
population context for virus communities. These drivers are often
found to filter parasites according to their niche preferences from
the regional disease pool into local populations, thereby playing a
major role in how within-population and -host-parasite com-
munities are formed20,22,26. In addition to abiotic variables, the
local P. lanceolata populations are likely to differ in biotic factors
including plant species community composition and abundance
of suitable vectors which may be linked to virus prevalence and
diversity15,20. The local population context further includes any
differences in population dynamics and trajectories, such as his-
torical pathogen pressure, which may vary among these popula-
tions81. Albeit non-significant, the effect of sentinel plant
individual on the (co-)occurrences of the viruses can be attributed
to some unmeasured abiotic or individual-related variables, which
may influence the (co-)occurrences of the viruses.

While there are multiple studies investigating within-host
parasite communities44,69,73,74,82, to our knowledge the effect of
host genotype on the assembly has rarely been tested experi-
mentally in wild systems, or with multiple parasites simulta-
neously. In our data, sentinel plant genotype accounted for most
of the variation in virus occurrences of the total variation
explained in the JSDM model. Indeed, both virus occurrence, and
the acquired virus communities varied among the four P. lan-
ceolata genotypes. In particular, sentinel plant genotype 609_19
had greater infection prevalence and diversity of viruses than the
other genotypes (Fig. 2). As our model controlled for the effect of
sentinel plant size and level of herbivore damage, such host
genotype-level differences may reflect variation in constitutive
resistance, such as resistance genes, among the plant genotypes.
The natural P. lanceolata populations in the Åland Islands con-
tain considerable phenotypic variation in resistance against
powdery mildew P. plantaginis83,84, and while resistance against

viruses in this system is not well understood, an exceptionally
diverse repertoire of candidate loci (Nucleotide-binding leucine-
rich repeat; NLRs) that confer resistance against a broad range of
pathogens, have been characterized in P. lanceolata (Laine, per-
sonal communication). Uncovering both phenotypic and mole-
cular level virus resistance in this system is an important avenue
of future research. Spatially structured variation in resistance is
characteristic of natural host-parasite systems53,85–87, and based
on our findings, intraspecific variation in disease resistance in a
host population may play a large, previously unquantified role, in
the non-random distribution of co-occurring pathogens that have
been detected in the previous studies15,20,23,44,46.

Intraspecific variation in traits other than resistance could also
generate the differences we observe. To confirm which traits are
involved, future studies should explore in more detail the ecolo-
gical outcomes of these interactions, and their molecular under-
pinning. It is highly plausible that the host genotype could
indirectly affect virus occurrences via their attractiveness or
resistance against vector herbivores88,89. Vector preference for
infected hosts41,90 could also influence virus co-occurrence pat-
terns. Transmission mode is often found to be critical for how
pathogen communities are formed15,40,91,92, and reciprocally, the
amount of genotypic variation within a host population may
explain the abundance and composition of herbivory community
present89.

A community of pathogens could be shaped by both direct and
indirect pathogen–pathogen associations: reaction triggered by an
earlier arrival could either induce or suppress resistance against
later arriving pathogens, or within-host competition could favour
one pathogen over the other. Evidence for both negative and
positive pathogen–pathogen interactions have been reported in
studies of multiple infections19,59,62,63,93,94. Although we find
both positive and negative co-occurrence patterns among the
viruses, these are largely explained by local population context
and host genotype. After controlling for these in our model, we
do not find strong statistical support for signals of associations
among the viruses, as would be expected if arrival by one would
decrease or increase the arrival probability of another. Hence, our
results do not support the hypothesis that virus–virus interactions
—either direct or those mediated by host immunity—would be
the key drivers of virus community assembly at the within-host
level in this system. However, our sample size could be insuffi-
cient to detect such interactions as some of our viruses are rare,
and their arrival probability to the sentinel plants is also subject to
random processes. In addition, we only accounted for a subset of
all possible pathogens infecting plants in this system, thereby
potentially missing some influential members of the community.
Furthermore, the effects of induced immunity triggered by a first
arriving pathogen may be short-lasting63,95 and, therefore,
undetectable with the timescale of this experiment. Induced
immunity could play a more important role among viruses of the
same genus or strains of the same virus species, where the famous
phenomenon of cross-protection is more often recorded63,96 and
as is predicted by theory75. Given that the variants with less
conservative priors detected a significant positive interaction
between betapartitivirus and caulimovirus, we conclude that our
study design was successful in capturing the effects of the host
genotype, but larger-scale investigations would be required to
detect signals of virus–virus interactions.

In our experimental design we kept the plants in their pots
which meant these plants experienced different rooting envir-
onments than the wild plants but allowed us to standardize some
factors (e.g., soil medium). However, this approached allowed us
to control for this level of variation in our data. Our approach
may have affected vector preferences as visual presentation of the
plants, in addition to other cues, is important for vector
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dynamics90. Nonetheless, transmission of all five focal viruses to
the sentinel plants did occur. Whether the virus prevalences we
detected with our approach are in line with infections of wild
plants is difficult to assess, given that virus prevalences vary
greatly among populations in the Åland Islands (0–64%)69.
Overall, our study does not only highlight the importance of the
host genotype, but also the need for further research on other
aspects of virus ecology. Although we have placed the current
work into a context of pathogens, viruses may also have neutral
or positive effects on the hosts despite their parasitic lifestyle67.
While knowledge of virus diversity and roles of viruses in wild
populations is increasing3,44,67, research at the community scale
remains scarce18.

Here, we have quantified the importance of intraspecific host
plant variation on how within-host virus communities assemble
by using sentinel plants in natural populations during a seasonal
epidemic, which allows teasing this factor apart from other dri-
vers of virus occurrence. Applying JSDMs to interpret the effects
of host genotype and local population context, we find that while
the population context has a strong influence on virus commu-
nities within individual hosts, not accounting for the host geno-
type might underestimate the role host genotypes have in
generating variation in pathogen communities. Such variation in
within-host pathogen diversity may have far reaching implica-
tions for all key aspects of disease: transmission, virulence suf-
fered by the host, and pathogen evolution. With these results, we
are one step closer to binding together the different spatial scales
and processes that underpin pathogen metacommunities.

Methods
Study species. Plantago lanceolata is a globally occurring perennial herbaceous
plant97. It is an obligate outcrosser with wind-dispersed pollen, also capable of
vegetative reproduction97. In the Åland Islands, SW of Finland, it typically grows
on dry meadows, forming a network of approximately 4000 small connected
populations81. The size and location of the populations have been monitored since
the early 1990s as a part of the metapopulation studies of the Glanville fritillary
butterfly and powdery mildew Podosphaera plantaginis81,98. In the Åland Islands,
P. lanceolata also hosts a diverse community of viruses that vary in their occur-
rence among P. lanceolata populations and among the individuals within popu-
lations69. We used five recently characterized viruses from the Åland Islands, to
study within-host viral communities69: Plantago lanceolata latent virus in genus
Capulavirus and Plantago lanceolata caulimovirus in genus Caulimovirus with
DNA-genomes, and Plantago betapartitivirus in genus Betapartitivirus, Plantago
enamovirus in genus Enamovirus, and Plantago closterovirus in genus Closterovirus
with RNA-genomes. The viruses are hereafter referred to by their genus for
understandability. These viruses were initially identified from P. lanceolata in the
Åland Islands by sequencing plant small RNAs69. Plants use RNA-silencing
mechanism and produce short interfering RNA (SiRNA) molecules in a defense
response against viral infection99. Hence, these viruses trigger an active defense
response in P. lanceolata. Also, although not directly demonstrating their patho-
genic nature, Susi et al.69 found that plants with virotic symptoms (necrotic spots/
yellow colour) are more likely to carry a virus infection. Currently, the detailed
transmission dynamics and vector species, as well as the viruses’ distribution
outside the Åland Islands remain unknown. More detailed information of the virus
families is compiled in Supplementary Table 1.

Field experiment with sentinel plants of different genotypes. To study the
effect of plant host genotype on the variation of within-host virus communities, we
set up an experiment using sentinel trap plants in natural populations of P. lan-
ceolata in the Åland Islands. To obtain genetically uniform plant material, we
cloned four greenhouse-grown maternal P. lanceolata plants into 80 replicates
each. The maternal plants originate from natural P. lanceolata populations in the
Åland Islands, and were grown from seeds in an insect free greenhouse at the
University of Helsinki. The plants are expected to represent four different geno-
types (ID:s 609_19, 4_13, 511_14, 2929_6), as their maternal plants originated from
distant populations 7–40 kilometres apart. Their resistance against viruses is cur-
rently unknown, but they represent different mildew resistance phenotypes as has
been confirmed during laboratory maintenance of P. plantaginis. The maternal
plant individuals used in the experiment were confirmed to be free of target viruses,
that would have been the result of seed-borne infection, by PCR-testing using
specific primers. Each maternal plant was cloned into 80 replicates by placing
maternal plants on pots containing vermiculate and kept on a tray containing
fertilized water.

After one month, the roots grown from the maternal plant’s pot through to the
vermiculate were cut. After another month, new plants shooting from the cut roots
in the vermiculate were separated and individually planted into 10 cm × 10 cm pots
containing an equal amount of sand and potting soil. After two additional months
in the greenhouse, during the last week of May 2017, the plants were taken to the
Åland Islands and placed into four P. lanceolata populations (ID:s 877, 9031, 433,
3302; Fig. 1c). The populations were selected for the study as they represent
different parts of the Åland Islands, were remote to humans, and large enough to
host a field-experiment. These populations were different from the ones the
maternal plants used for cloning originated from. These four populations were
included in the analyses as a categorical variable to capture ‘local population
context’ (local temperature, vectors, plant communities, etc.) that may influence
virus distributions among P. lanceolata populations in the Åland Islands.

Twenty replicates of each sentinel plant genotype were placed into each of the
four P. lanceolata populations resulting in 80 plants per population, and 320 plants
altogether. The plants were kept in their pots for the duration of the experiment,
and they were placed in a random order among natural vegetation and reshuffled
three times per week to avoid within-population spatial effects. The plants were
kept separated from the local soil on plastic freezer boxes and watered when
necessary. Signs of herbivory (holes, bitemarks, and thrip damage) were recorded
after two weeks of exposure, and again after seven weeks of exposure. Plant size was
measured during the first week of exposure by counting the number of leaves, and
by measuring the length and width of the longest leaf. Based on these
measurements we calculated plant size by using the equation n × A, where n is the
number of leaves, and leaf area A is calculated using the equation of ellipse area: A
= πab, where a is a half axis of the width of the longest leaf, and b is the half axis of
the length of the longest leaf. For those 13 plants missing measurement data, an
average over all recorded values for all plants was used, in order to not to lose any
virus occurrence data from the analysis.

Nucleic acid extractions and virus detections with PCR. To detect the viruses
infecting plants during the growing season, leaf samples were collected for nuclear
acid extractions after two weeks and again after 7 weeks of exposure to the natural
virus and vector communities. Samples were collected from a single leaf of similar
age (young but large enough for sampling) from each plant. For DNA extraction,
we collected a 1 cm² piece of leaf from each plant. Samples were stored in −20 °C
until DNA extraction with E.Z.N.A. Plant Kit (Omega Biotek, USA) at the Institute
of Biotechnology at University of Helsinki. For RNA extractions, 3 cm² leaf samples
were collected, immediately deep-frozen in liquid nitrogen, and stored in −80 °C
before RNA-extraction. Total RNA was extracted using phenol-chloroform
extraction with a modified method from Chang et al.100. Two additional phenol
cleaning steps prior chloroform cleaning of the RNA were performed. In the
additional cleaning steps, we used 800 ml of equal volumes of phenol solution (pH
4.5) and chloroform-isoamylalcohol, mixed with isolation buffer containing the
sample, vortexed, and centrifuged for phase-separation in 14 800 rpm for 15 min.
For the PCR detection of the RNA viruses, RNA was translated into cDNA. For
reverse transcription, we used 2 ng of total RNA, mixed with 2 μl random hexamer
primers (Promega) and sterile nuclease free water in 17,125 μL volume incubated
for 5 min in 70 °C. Subsequently, 1 μL Moloney Murine Leukemia Virus Reverse
Transcriptase (M-MLV RT; Promega Corporation, USA), 5 μL M-MLV RT buffer,
1.25 μL of dNTP (10 mM) mix, and 0.625 μL of RiboLock RNaseinhibitor were
added and the 37.41 μL reaction mix was incubated in 37 °C for 60 min. For virus
detection PCR, we used specific primers69,101 as well as two additional primer pairs
for capulavirus (PiLVi2_forward_1 5′-GTGTTTAACAATGAAGT
GAGCC-3′ and PiLVi2_reverse_4 5′-AATCCATCCACACATCCAATC-3′) and
caulimovirus (forward primer 5′-AGGAGATGCCCATACTTTACC-3′ and reverse
primer 5′-GACTTGCCAGAACCTGATTTAC-3′). PCR reactions to detect viruses
were performed in final volume of 10 μL containing of 1–3 μL of DNA or cDNA,
and GoTaq Green® polymerase 5x Mastermix (Promega Corporation, USA)
according to manufacturer’s instructions. Samples were subjected to initial dena-
turation in 95 °C for 2 min, following 35 cycles of denaturation in 95 °C for 40 s,
annealing 53–60 °C for 40 s, and extension 72 °C for 1 min with a final extension
step of 72 °C for 5 min. The full protocol with virus specific PCR conditions is
described in the Supplement (section ‘PCR-detection of viruses’). The amplicons
were resolved on a 1.2–1.5% agarose gel and visualized using Gel Doc XR System
(Bio-Rad Laboratories, Inc., USA).

Statistical analysis. For all the statistical analysis, we pooled the detected
occurrences of the five focal viruses over the two timepoints of sampling by col-
lapsing the occurrence data so that each sentinel plant had one observed virus
community. Only when a sentinel plant had not been infected by a certain virus in
either of the timepoints accounted as an absence of the virus while infection in one
or both timepoints was accounted for as virus presence. To understand whether the
co-occurrence of viruses differs from expected co-occurrences calculated solely
from the prevalences of these viruses, we first analysed the co-occurrence patterns
both in the full data set as well as separately for each sentinel host genotype and
plant population (Fig. 3). We used the R package ‘cooccur’102 and its identically
named function, and applied a probabilistic model103 which calculates expected
frequencies of species co-occurrences based on a distribution of random, inde-
pendent species. By comparing the expected and observed co-occurrences the
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applied algorithm gives the probabilities of co-occurrence greater than or less than
what is observed in the data analytically, without relying on randomisations or test
statistics, under the condition that the probability of occurrence for a species at
each sentinel plant is equal to its observed frequency among all the sentinel plants,
i.e. in this case the prevalence of the virus103.

For addressing our study questions about the effects of host genotype and
characteristics as well as local population context on the (co-)occurrence patterns
of the viruses, as well as the possible signals of biotic interactions between the
viruses on virus community assembly, we applied a joint species distribution
modelling (JSDM) framework ‘Hierarchical Modelling of Species Communities’
(HMSC104), which is a multivariate Bayesian hierarchical generalised linear latent
variable model. Essentially, HMSC is a multivariate generalised linear model,
enabling the modelling of the whole community of viruses as opposed to fitting
individual single-species distribution models105. In addition, HMSC is a latent
variable model70. Latent variable models include unobserved, i.e. latent predictors,
which are typically included to model correlation, or to account for missing
predictors70. Hence, in this context, the latent variables are random effects that
model the co-occurrences between species due to either biotic interactions or some
other effects not included in the fixed part of the model, such as unmeasured effects
of the environment. For a more detailed description of JSDMs and latent variable
models, please see the comprehensive review by Warton et al.70.

The structure of the HMSC modelling framework is described in detail by
Ovaskainen et al.104,106, with connections to community ecological theory and case
studies. In our study, we modelled the virus community, denoted by the n × ns
matrix Y of virus occurrences, comprising of individual components yij, denoting
virus j= 1 ,…, ns, where ns= 5, on host plant i = 1 ,…, n, where n= 320, with
probit regression

yij ¼ 1Lijþεij>0

Lij ¼ LFij þ LRij

where εij∼N(0,1), Lij is the linear predictor for the occurrence of virus j on sentinel
plant i, which is further divided to fixed (LFij) and random (LRij ) parts. The fixed
effects F model the influence of the local population context and the influence of
the sentinel plant characteristics. The random effect R models the residual variation
in virus occurrences at the level of individual sentinel plants, that cannot be
attributed to the above-described responses of the viruses to the fixed covariates.
For exact formulation how the different components are modelled, with
corresponding notation, please see Ovaskainen et al.106.

Briefly, following the compact matrix notation of Chapter 7.3.2 in Ovaskainen
et al.106, we model the n × ns community matrix of viruses Y with a n × ns matrix L
of all linear predictors Lij for all species and sentinel plants, as L= LF+ LR. The
matrix of fixed effects can be further decomposed as LF=XB, where X is the n × nc
matrix of environmental covariates, and B is the nc × ns matrix of regression
coefficients, i.e. species responses to the covariates, and nc is the total amount of
covariates included in the model. Because the environmental covariates X are
known and given as input for the model (Table 1), only the species responses B are
estimated. Analogously, the matrix of random effects can be decomposed as LR=
HΛ. Here, H is the n × nf matrix of latent factors, or site loadings, and Λ is the nf ×
ns matrix of latent factor loadings, or, where nf is the number of latent factors. Both
the site H and Λ are estimated, as is the number of latent factors nf. The species
loadings Λ can then be translated into residual associations between virus species
by transforming them into covariation between species as Ω=ΛTΛ, and further
into correlations.

We fitted three JSDM variants to the data by varying the way the sentinelt plant
genotype was included in the model (Table 1). As explanatory variables (denoted
by matrix X in ref. 71) we used the local plant population context (categorical
variable with four classes), which is a proxy for the plant population-level effects,
such as variation in abiotic conditions, vector communities, and disease pool
(categorical variable with four classes); and at the level of the sentinel host plants,
we include the plant size (a continuous variable), signs of herbivory (a categorical
variable with two classes; yes/no), as well the genotype of the sentinel host plant (a
categorical variable with four classes). To examine the residual co-occurrence
patterns among hosts, we also included the sentinel plant individual as a latent
variable random effect.

First, we fitted a model with only the local population context, plant size and
signs of herbivory (variant 1) as fixed explanatory variables X. Then, we fitted a
model including also the sentinel plant genotype, i.e. the full set of fixed
explanatory variables (variant 2). With both of these model variants (1 and 2), we
included random effects at the level of sentinel plants individuals. Finally, we fitted
a model with the same full set of fixed explanatory variables X as with model
variant 2, but we modified the random effects by allowing these residual patterns to
covary with the sentinel plant genotype (variant 3), details of which are explained
by Tikhonov et al.107. In this case, the latent factor loadings Λ are furthermore
modelled as a linear regression of the selected fixed explanatory variables, which in
this case was the sentinel plant genotype. Hence, as a summary, our model variants
vary in terms of what is included in the matrix X of explanatory variables, namely if
sentinel plant genotype is included (variant 2) or not (variant 1), and do we allow
the residual associations between viruses to covary among the sentinel genotype
(variant 3) or not (variant 2).

We used the default priors of the package ‘Hmsc’108, except that for the
parameter Λ of species loadings, of the random part of the model. While the
HMSC framework is usually not very sensitive to the choices of priors, when data is
sufficient, they can be sensitive to the prior chosen for Λ. The multiplicative
gamma process shrinking prior109 for the species loadings Λ has several prior
parameters, but out of those, the user is advised to pay attention to the choice of α,
a vector of two values, which can be used to adjust the level of shrinkage that the
prior implies for the matrix Ω of species associations106. Hence, we used two
alternative priors. First, we used the default of α= (50, 50), which imposes a lot of
shrinkage. We refer to this group of model variants as our main model variants.
Second, we used α= (3,3), which imposes much less shrinkage, but as a trade-off,
also increases the risk of overfitting.

The model variant comparison approach allows us to examine the relevance of
sentinel plant genotype as a predictor of virus community composition
(comparison of model variants 1 and 2), as well as to see whether the residual co-
occurrences between the viruses differ between the sentinel plant genotypes
(variant 3). The comparison of different priors enables us to examine how sensitive
our models were for these choices. We compared the model variants in terms of
their explanatory and predictive performance, where the first tells us how well the
model predicts the data used to fit it, whereas the latter illustrates how well the
model predicts independent data which has not been used for model fitting. We
calculated the Tjur R2 coefficient of determination, a statistic that has been
recommended to be used as a standard measure of explanatory power for binary
outcomes110. The coefficient is obtained by calculating the mean of the predicted
probabilities of presences and absences, and then taking the difference between
those two means. Hence, a high coefficient value implies high predicted
probabilities for presences and low probabilities for absences. When interpreting it,
it is good to note that with sparse data, the probabilities of presence tend to be low
in the first place, and thus the Tjur R2 coefficient can remain rather low as well.
Nevertheless, if the model is completely uninformative and predicts a 50%
probability for both presence and absence, the coefficient value will be zero, thus
revealing a poor model fit. For examining explanatory power, we fit the model to
the full data set and base our comparison on predictions made for the same data.
To examine the predictive power of the model, we conducted a 10-fold cross-
validation and compared the model variants based on the same Tjur R2 coefficient
as with explanatory power, but calculated from the predictions made to new,
unknown host plants. To complement our comparison based on model accuracy,
we calculated the widely applicable information criterion (WAIC)111 for all the
variants.

We also conducted a partitioning of the variance explained by the best-
performing model variant, to assess how different (groups of) variables are
contributing to the overall variance explained by the model at the level of the linear
predictor. Finally, we used the best-performing model variant to simulate predicted
coinfections profiles.

We implemented our analyses with the R package ‘Hmsc’ (version 3.0-7108).
The performance comparison, variance partitioning and predictions were
conducted with the tools provided in the package. For a full formal description of
the structure of the modelling framework, please see Ovaskainen et al.104,106, and
for the covariate-dependent latent variables used in model variant 3, please see
Tikhonov et al.107. The analytical pipeline and an R package along with the data
used is available in Zenodo (https://doi.org/10.5281/zenodo.4117739). For all the
statistical analysis, we used R version 4.0.0112. For more details on the statistical
analysis, please see Supplementary information (section ‘Supplementary
information on the joint species distribution modelling’).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting our results along with the analytical pipeline implemented as an R
package are archived in Zenodo (https://doi.org/10.5281/zenodo.4117739).
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