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Dendritic cells (DCs) are professional antigen-presenting 

cells that sample their environment and present antigens to 

naïve T lymphocytes for the subsequent antigen-specific 

immune responses. DCs exist in a range of distinct sub-

populations including plasmacytoid DCs (pDCs) and clas-

sical DCs (cDCs), with the latter consisting of the cDC1 

and cDC2 lineages. Although the roles of DC-specific 

transcription factors across the DC subsets have become 

understood, the posttranscriptional mechanisms that regu-

late DC development are yet to be elucidated. MicroRNAs 

(miRNAs) are pivotal posttranscriptional regulators of 

gene expression in a myriad of biological processes, but 

their contribution to the immune system is just beginning 

to surface. In this study, our in-house probe collection was 

screened to identify miRNAs possibly involved in DC de-

velopment and function by targeting the transcripts of rele-

vant mouse transcription factors. Examination of DC sub-

sets from the culture of mouse bone marrow with Flt3 li-

gand identified high expression of miR-124 which was 

able to target the transcript of TCF4, a transcription factor 

critical for the development and homeostasis of pDCs. 

Further expression profiling of mouse DC subsets isolated 

from in vitro culture as well as via ex vivo purification 

demonstrated that miR-124 was outstandingly expressed in 

CD24
＋
 cDC1 cells compared to in pDCs and CD172α

＋
 

cDC2 cells. These results imply that miR-124 is likely in-

volved in the processes of DC subset development by post-

transcriptional regulation of a transcription factor(s).

[Immune Network 2016;16(1):61-74]
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INTRODUCTION

Dendritic cells (DCs) are antigen-presenting cells found in 

lymphoid as well as non-lymphoid tissues and organs. 

They principally act as specialized sentinel cells that sam-

ple their local environment for antigens, migrate to lymph 

nodes, and present antigens to naïve T lymphocytes, which 

is essential for the subsequent antigen-specific T-cell acti-

vation and induction of immune responses (1). Many vari-

eties of DCs have been described in both humans and mice 

with each characterized by particular locations, phenotypic 

morphologies, and functions. In essence, DCs consist of 
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a range of functionally distinct subsets that can be identi-

fied by their differential expression of particular surface 

markers (1,2). The DC subsets prevalent in lymphoid tis-

sues include antigen-presenting classical DCs (cDCs) and 

type 1 interferon-producing plasmacytoid DCs (pDCs). 

The lymphoid tissue-resident cDCs are further divided into 

different subtypes including CD8α
＋
CD24

＋
 cDCs (cDC1), 

which efficiently cross-present antigens to CD8
＋
 T cells 

and principally produce IL-12; and CD8α
−
CD172α

＋
 

cDCs (cDC2), which present MHC Class II restricted anti-

gens to CD4
＋
 T cells. Also, more DC subtypes develop 

upon infection or inflammation such as the monocyte-de-

rived inflammatory DCs.

  The development of DCs to their respective subset coun-

terparts arise through a multistage process. Like all other 

immune cells, DCs develop from hematopoietic stem cells 

in the bone marrow (BM). Hematopoietic stem cells differ-

entiate into the myeloid progenitors, which subsequently 

differentiate into the macrophage-DC progenitor (MDP) 

cells and then into the common-DC progenitor (CDP) cells 

(3). CDPs develop into pre-DCs and then egress from the 

BM to the periphery, which seed peripheral secondary 

lymphoid tissues and non-hematopoietic tissues and ulti-

mately mature into either cDCs or pDCs. Development of 

DC subsets from their progenitor cells can be replicated 

in vitro with various culture conditions. Culture of DC pro-

genitors in BM with the growth factor Flt3 ligand (Flt3L) 

produces a heterogeneous population containing both cDCs 

and pDCs, which are equivalent to their in situ counter-

parts with respect to cell surface marker expression, tran-

scription factor reliance, cytokine production, receptor 

molecule expression, and antigen-presenting ability to T 

cells (4,5). Principally, DC subsets originated from Flt3L- 

cultured BM cells correspond to those of steady-state cDC 

populations. Beyond these mature DC subsets, relevant 

progenitor and precursor populations can also be identified 

and isolated from BM cells in steady state as well in cul-

ture with Flt3L (6,7). 

  In light of these investigatory advances, the roles of 

transcription factors in DC development and their dynamic 

profiles across the subsets have become well understood 

(8-10). For example, the transcription factor PU.1 has been 

described to play a role in the development of all DCs. 

Meanwhile, STAT5 is known to drive the development of 

cDCs over pDCs through the inhibition of transcription 

factor interferon regulatory factor 8 (Irf8), whereas im-

munoglobin transcription factor 2 (TCF4) is known to 

drive pDC development over cDCs by directly activating 

Irf8 and other pro-pDC transcription factors such as SpiB 

(9-11). As such, a comprehensive group of transcription 

factors and their involvement in the particular stages of 

DC development have been mapped. In contrast to these 

transcriptional mechanisms, posttranscriptional mechanisms 

that regulate DC development are less well understood. 

With the heterogeneity of subsets and wide-ranging func-

tion of DCs, the natural question arises on how DC differ-

entiation and development is regulated besides the orches-

tration of growth factors and transcription factors. Recently, 

increasing evidence has shown that microRNAs (miRNAs) 

play an important role in fine-tuning DC development and 

function.

  miRNAs are an evolutionarily conserved class of short, 

endogenous, non-coding RNAs about 19∼23 nucleotides 

long that regulate protein synthesis by targeting the com-

plementary 3’ untranslated region (UTR) of mRNAs for 

translational repression and degradation (12). miRNA bio-

genesis begins with the transcription of a miRNA gene to 

generate a primary miRNA (pri-miRNA) transcript, which 

is ultimately processed into a mature 19∼23 bp miRNA 

and incorporated into an RNA-induced silencing complex 

(13) for the translational repression or degradation of tar-

get mRNAs. A key characteristic of miRNAs is that each 

has the ability to inhibit a myriad of mRNAs, and each 

mRNA can be targeted by many miRNAs. This is sugges-

tive of a complex network of miRNAs surrounding DC 

development. 

  miRNAs have been shown to be vital in controlling 

many processes within the immune system. Their involve-

ment in regulating T- and B-lymphocyte development has 

been established of late and their wide-ranging roles in cell 

differentiation, homeostasis, cytokine responses, and inter-

actions with pathogens and tolerance induction among oth-

ers have been described (14). More recent progressions 

have attempted to describe the role of miRNAs in DC de-

velopment (15). Several miRNAs have been specifically 

attributed to the direct regulation of certain DC functions. 

More have been identified by the comprehensive mapping 

of dynamic miRNA profiles across the subsets and tested 

to confirm their necessity in DC lineage commitment 

(15-21). In the present study, to identify miRNAs possibly 

involved in DC development and function, we screened for 

the expression of candidate miRNAs that target the 3’UTR 
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of relevant transcriptional factors using our in-house probe 

collection. Our screening results indicated that miR-124, 

able to target the 3’UTR of TCF4 transcript, was highly 

detected in mouse DC subsets. Further expression profiling 

of mouse DC subsets demonstrated that miR-124 was out-

standingly expressed in CD24
＋
 cDC1 cells compared to 

in pDCs and CD172α
＋
 cDC2 cells. Our findings imply 

that miR-124 is likely involved in the processes of DC 

subset development by posttranscriptional regulation of a 

transcription factor(s). 

MATERIALS AND METHODS

Animals 

Mice were maintained and bred in specific pathogen-free 

facilities of the Department of Laboratory Animal Resources 

at the Yonsei University College of Medicine. C57BL/6 

mice were purchased from Jackson Laboratory (Bar Harbor, 

ME, USA) and Orient Bio (Seongnam, Republic of Korea). 

Animal care and experiments were conducted according to 

the guidelines and protocols approved by the Institutional 

Animal Care and Use Committee (IACUC) of Yonsei 

University College of Medicine. Only healthy male mice 

at 6 to 12 weeks of age were used throughout this study. 

Cells, antibodies, and reagents 

Chinese hamster ovary (CHO) cells (CHO-S cells; Gibco, 

Life Technologies, Carlsbad, CA, USA) were cultured in 

DMC7 medium composed of DMEM containing L-gluta-

mine, high glucose, and pyruvate (HyClone, Logan, UT, 

USA) and 7% fetal calf serum (FCS; HyClone) supple-

mented with 1× solutions of non-essential amino acids and 

antibiotic-antimycotic (HyClone). The following conjugated 

antibodies were purchased from BioLegend (San Diego, CA, 

USA): APC-Cy
TM
7-conjugated anti-I-A/I-E, anti-CD11c, 

anti-B220/CD45R, anti-CD45, anti-Rat IgG2b κ Isotype Con-

trol; Alexa Fluor
Ⓡ
 647-conjugated anti-CD117; APC-con-

jugated anti-B220/ CD45R, anti-PDCA-1 (BST2, CD317), 

anti-CD135; PE- Cy
TM
7-conjugated anti-Ly6G, anti-CD3, 

anti-CD11c, anti-CD19, anti-Ter119, anti-DX5, anti-I-A/I-E, 

anti-NK1.1, anti-Gr-1, anti-Sca-1; PerCP-Cy
TM
5.5- con-

jugated anti-Ly6C, anti-CD11c, anti-CD24, anti-CD117, an-

ti-CD172α (Sirpα); PE-conjugated anti-SiglecH, anti- 

CD11c, anti-CD115, anti-CD117, anti-CD135, anti-Arme-

nian Hamster (AH) IgG Isotype Control; FITC-conjugated 

anti-CD172α; Alexa Fluor
Ⓡ
 488-conjugated anti-Ly6C, an-

ti-CD172α, anti- PDCA-1, anti-CD24, anti-CD45.2; Bril-

liant Violet
TM
 421 (BV421)-conjugated anti-CD11c, an-

ti-CD45.1, anti-CD45.2, anti-CD115, anti-AH IgG Isotype 

Control; biotin-conjugated anti-NK1.1, anti-DX5, anti 

Ter119, anti-Ly6G, anti-CD3, anti-CD19, anti-CD135. LIVE/ 

DEAD
Ⓡ
 fixable dead cell stain kit (Life Technologies) and 

propidium iodide (Roche, Indianapolis, IN, USA) were pur-

chased and used according to the manufacturers’ ins-

tructions.

Production of mouse Flt3L from CHO cells

The cDNA of mouse Flt3L was cloned by RT-PCR of total 

splenic RNA from C57BL/6 mice, and was used to gen-

erate a construct encoding soluble FLAG and OLLAS tag-

ged Flt3L, internal ribosomal entry site (IRES), and en-

hanced green fluorescence protein (EGFP), i.e., SFO.Flt3L- 

IRES-EGFP. The GenBank accession number for the se-

quence including the extracellular domain of mouse Flt3L 

is GU168042, and the IRES-EGFP sequence is from 

pIRES-EGFP plasmid (Clontech, Mountain View, CA, 

USA). CHO cells were then transfected using Lipofect-

amine 2000 (Life Technologies), with a mammalian ex-

pression vector plasmid encoding SFO.Flt3L-IRES-EGFP 

under CMV promoter and a neomycin resistance gene, 

constructed with the backbone of pEGFP-N1 (Clontech). 

CHO/Flt3L cells stably expressing the SFO.Flt3L-IRES- 

EGFP were produced by the following steps: (i) treatment 

of transfected CHO cells with G418 (1.5 mg/ml) for 1 

week; (ii) enrichment of EGFP-positive CHO cells with 

FACSAria II cell sorter (BD Biosciences, San Diego, CA, 

USA); (iii) generation of clonal cells by limiting dilutions 

of FACS-sorted EGFP- high CHO/Flt3L cells; and (iv) se-

lection of CHO/Flt3L clones after evaluating both levels 

of EGFP expression by FACS analysis and Flt3L secretion 

by anti-OLLAS Western blot analysis (22). Chosen 

CHO/Flt3L cells were cultured in cell culture flasks with 

DMC7 to produce CHO/ Flt3L-conditioned medium.

Western blot analysis

Different amounts of supernatant from CHO/Flt3L cell cul-

ture were mixed with an equal volume of 2×SDS PAGE 

sample buffer and boiled at 95
o
C for 5 min. The samples 

were then separated in 12% SDS-PAGE and transferred 

onto PVDF membranes (Thermo Fisher Scientific, Rock-

ford, IL, USA) before being incubated with anti-OLLAS 

monoclonal antibody (22). Anti-OLLAS antibody-reactive 
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bands on the blots were examined after incubation with 

peroxidase-conjugated anti-rat IgG antibody (Southern-

Biotech, Birmingham, AL, USA) and subsequent visual-

ization with SuperSignal
TM
 West Pico Chemiluminescent 

Substrate (Thermo Fisher Scientific) and ImageQuant
TM
 

LAS 4000 mini (GE Healthcare Life Sciences, Pittsburgh, 

PA, USA). Graded quantities (0∼160 ng) of purified 

OLLAS-tagged Gag p41 protein (2) were evaluated in par-

allel for quantification of OLLAS-tagged Flt3L bands. 

Preparation and culture of primary cells

Mice were sacrificed by asphyxiation in a CO2 chamber. 

Whole splenocyte suspension was prepared by cutting and 

mincing extracted spleens followed by grinding with frosted 

glasses and cell strainers (BD Biosciences). Whole BM cell 

suspension was prepared by flushing out femurs and tibias 

excised from the hind legs of mice in sterile conditions 

as described previously (23). Then, the single cell suspen-

sion was cultured in either 48- or 24-well tissue culture 

plates at 1⨯10
6
 or 2⨯10

6
 cells per well, respectively, with 

DMC7 containing different doses of Flt3L, i.e., CHO/Flt3L 

conditioned medium described above. During the culture, 

half of the medium in each well was carefully removed 

and replenished with fresh DMC7 containing Flt3L every 

2 days until harvest for use in subsequent experiments. 

Flow cytometry

Single cell suspensions from the harvest of mouse organ 

tissues or cultures thereof were incubated with 2.4G2 (Fc 

blocker) hybridoma supernatant and washed with FACS 

buffer (2% FCS, 2 mM EDTA, 0.1% sodium azide). Then, 

each sample was incubated with the appropriate mixture 

of fluorochrome-conjugated monoclonal antibodies and 

live/dead staining dye for 30 min at 4
o
C and washed twice 

with FACS buffer. The samples were then analyzed with 

FACSVerse flow cytometer (BD Biosciences) or sorting 

with FACSAria II cell sorter (BD Biosciences). As for sort-

ing, the isolated cells with 90% or higher purity were uti-

lized for subsequent experiments. Gating criteria for re-

spective precursor and DC populations were as follows. 

With the lineage (Lin) markers of CD3, CD19, Ly6G, 

NK1.1, DX5, Ter119: for pDCs, Lin
−
CD11c

＋
B220

＋

PDCA-1
＋
SiglecH

＋
; for cDC1, Lin

−
CD11c

＋
MHCII

＋
B220

−

CD24
high

CD172α
−
; for cDC2, Lin

−
CD11c

＋
MHCII

＋
B220

−

CD24
int
CD172α

＋
. With the lineage markers of CD3, 

CD19, Ly6G, NK1.1, DX5, Ter119, MHCII, B220: for 

MDP, Lin
−
CD11c

−
CD115

＋
CD135

＋
CD117

high
; for CDP, 

Lin
−
CD11c

−
CD115

＋
CD135

＋
CD117

int
. Flow cytometric 

data were analyzed using FlowJo software (FlowJo, Ash-

land, OR, USA).

Isolation of RNA

Total RNA was isolated from sorted cells from cultured 

or uncultured mouse primary cells using TRIzol
Ⓡ
 Reagent 

(Life Technologies) following the manufacturer’s instruc-

tions.

Real-time RT-PCR of miRNA

For miRNA expression profiling, 100 ng of purified total 

RNA was used for reverse transcription using Taqman
Ⓡ
 

MicroRNA Reverse Transcriptase Kit (Applied Biosys-

tems, Foster City, CA, USA). The resultant cDNA was used 

in combination with Taqman
Ⓡ
 MicroRNA Assays (Applied 

Biosystems) for respective miRNA and U6 control tran-

scripts and Taqman
Ⓡ
 Universal Master Mix II (Applied 

Biosystems) for PCR according to the manufacturer’s 

instructions. The amplification and detection of products 

were performed in a Light Cycler 480 II (Roche) with an 

initial denaturation at 95
o
C for 10 min, followed by 40∼60 

cycles of amplification at 95
o
C for 15 sec and 60

o
C for 

60 sec, before cooling. The threshold cycle (Ct) of miR-124 

expression was automatically defined, located in the linear 

amplification phase of the PCR, and normalized to the con-

trol U6 (ΔCt value). The relative difference in expression 

levels of miR-124 in the sorted cells (ΔΔCt) was calcu-

lated and presented as the fold induction (2
−ΔΔCt

). 

Real-time RT-PCR of transcription factors and pri- 

miR-124

For pri-miR-124 profiling, 100 ng of purified total RNA 

was used for reverse transcription using PrimeScript
TM
 RT 

Reagent Kit (TaKaRa Bio Inc., Ohtsu, Japan). The re-

sultant cDNA was used in combination with primer oligo-

nucleotides designed for DC-related transcription factors 

(5) and pri-mmu-miR-124-1/-2/-3 (24) and SYBR
Ⓡ
 Pre-

mix Ex Taq II (TaKaRa) for PCR according to the manu-

facturer’s instructions. Sequences for the primer oligonu-

cleotides, synthesized by Cosmo Genetech (Seoul, Korea), 

are as follows: TCF4, 5’-TGAGATCAAATCCGACGA-3’ 

forward, 5’-CGTTATTGCTAGATCTTGACCT-3’ reverse; 

Batf3, 5’-AGACCCAGAAGGCTGACAA-3’ forward, 5’- 

CTGCACAAAGTTCATAGGACAC-3’ reverse; Irf8, 5’- 
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AAGGGCGTGTTCGTGAAG-3’ forward, 5’-GGTGGCG 

TAGAATTGCTG-3’ reverse; pri-miR-124-1, 5’-GCCTCT 

CTCTCCGTGT-3’ forward, 5’-CCATTCTTGGCATTCA- 

3’ reverse; pri-miR-124-2, 5’-AGAGACTCTGCTCTCCG 

TGT-3’ forward, 5’-CTCCGCTCTTGGCATTC-3’ reverse; 

pri-miR-124-3, 5’-GGCTGCGTGTTCACAG-3’ forward, 

5’-ATCCCGCGTGCCTTA-3’ reverse; GAPDH, 5’-ACA 

GTCCATGCCATCACTGCC-3’ forward, 5’-GCCTGCTT 

CACCACCTTCTTG-3’ reverse. The amplification and de-

tection of products were performed in a Light Cycler 480 

II (Roche) with an initial denaturation at 95
o
C for 5 min, 

followed by 40∼60 cycles of PCR at 95
o
C for 5 sec and 

50
o
C for 30 sec, before melting and cooling. The relative 

difference in expression levels for pri-miR-124-1/-2/-3 in 

the sorted cells was calculated and presented as described 

above but with normalization to the control GAPDH. 

Luciferase activity assay

The predicted target genes of miR-124 were identified us-

ing a public database (miRWalk2.0, http://www.umm.uni- 

heidelberg.de/apps/zmf/mirwalk). Sections containing the 

miR-124 binding site of the 3’UTR of TCF4 and Zbtb46 

were cloned into pmirGLO Dual-Luciferase miRNA Target 

Expression Vector (Promega, Fitchburg, WI, USA) in-

dependently. HeLa cells were seeded at 2.5×10
4
 cells per 

well in a 24-well plate. After 48 hrs, the pmirGLO vector 

containing the target mRNA binding site for the miR-124 

was co-transfected with mmu-miR-124 mimic (Applied 

Biosystems) or the negative control using Lipofectamine 

2000 (Life Technologies). Luciferase activity was meas-

ured after 48 hrs using Dual Luciferase Assay System 

(Promega) according to the manufacturer’s instructions on 

a luminometer (Promega). Renilla luciferase activity was 

used to normalize the transfection efficiency. Each assay 

was repeated at least 3 times.

Statistical analysis

Experiments with multiplicated samples were presented as 

mean±SEM from at least three independent experiments. 

Statistical comparisons between different groups were ana-

lyzed using unpaired Student’s t-test using SigmaPlot (Systat 

Software, San Jose, CA). Statistical significance is denoted 

by the p values equal or below 0.05 (*), 0.01 (**), and 

0.001 (***). Data were plotted for graphs with SigmaPlot. 

RESULTS

Production of Flt3L and culture of bone marrow

We generated the extracellular domain sequence of mouse 

Flt3L fused with the sequences of signal peptide, FLAG 

tag, and OLLAS tag. This soluble FLAG and OLLAS tag-

ged Flt3L (SFO.Flt3L) sequence was devised to express 

with IRES and EGFP under CMV promoter (Fig. 1A) fol-

lowing transfection into CHO cells. CHO cells expressing 

high levels of Flt3L were enriched by sorting for EGFP, 

cloned, and named CHO/Flt3L cells (Fig. 1B). The con-

ditioned medium from CHO/Flt3L cells was produced in 

large volume, sterilized by filtration, and blotted with an-

ti-OLLAS antibody for the determination of Flt3L concen-

tration before being added into the culture of BM cells. 

According to the anti-OLLAS Western blot analysis, the 

CHO/Flt3L conditioned medium was evaluated to contain 

approximately 10 μg/ml of Flt3L (Fig. 1C). To verify the 

efficacy of Flt3L produced, graded doses of CHO/Flt3L 

conditioned medium were used to culture BM for the gen-

eration of DCs in vitro. Higher concentrations of Flt3L in 

BM culture induced DC differentiation more efficiently 

(Fig. 1D). Especially, when the culture media were com-

posed of 10% or higher amount of the Flt3L conditioned 

medium (up to 50%), the increase in number of DCs in 

BM culture became conspicuous (data not shown for BM 

cultures in media with 25% or 50% of the Flt3L con-

ditioned medium). As estimated by Western blot analysis 

above, 10% content of the Flt3L conditioned medium cor-

responds to 1 μg/ml of Flt3L in culture medium. The effi-

cacy to induce DCs in vivo by this Flt3L protein has also 

been demonstrated previously (25,26). 

Candidate miRNAs with potential to regulate DC 

development

To identify miRNAs possibly involved in DC develop-

ment, a Web-based miRNA-target interaction database 

miRWalk2.0 (27), which amalgamates data from a collec-

tion of miRNA-target prediction programs, was used. Ten 

gene targets that are prominent transcription factors known 

to have a pivotal role in DC development – TCF4, Bcl6, 

Irf2, Irf4, Irf8, Id2, SpiB, Batf3, Notch2, Zbtb46 – were 

picked for the prediction software to identify miRNAs that 

possibly regulate these genes by binding to their 3’UTR. 

From the provided list of miRNAs that have a high poten-

tial to bind to the 3’UTR of these transcription factors, 
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Figure 1. Culture of BM cells with CHO/Flt3L-conditioned 
medium produces DCs in vitro. (A) Diagram for the expression 
construct that encodes soluble FLAG and OLLAS tagged mouse 
Flt3L gene with IRES and EGFP (SFO.Flt3L-IRES-EGFP). (B) 
CHO cells stably transfected with SFO.Flt3L-IRES-EGFP 
(CHO/Flt3L cells) were selected and cloned for the high expres-
sion of EGFP. (C) Concentration of mouse Flt3L protein in the 
supernatant from CHO/Flt3L cell culture was titrated using 
anti-OLLAS monoclonal antibody. (D) Time-course quantifi-
cation of CD11c

＋
 DCs per well for each culture condition 

containing 0.1∼10% of Flt3L conditioned medium.

candidate miRNAs were selected dependent upon avail-

ability of detection reagents in our in-house miRNA probe 

collection. Overall, 20 candidate miRNAs were specified 

according to the analyses of 3’UTR sequences from the 

10 transcription factors (Supplemental Fig. 1).

Screening of candidate miRNA expression in DCs 

from BM cultured with Flt3L 

In preliminary efforts to reveal miRNAs that may play a 

role in DC development, expression profiles of the candi-

date miRNAs were assessed in Flt3L culture system of 

mouse BM cells. Using our in-house probe collection, the 

expressions of 20 candidate miRNAs were screened in 

CD11c
＋
 DCs derived from BM culture with Flt3L, which 

were further assorted into B220
−
 cDCs and B220

＋
 pDCs 

(Fig. 2A). Total RNAs isolated from these two subsets of 

cultured DCs were subjected to analysis of miRNA ex-

pression profile by real-time RT-PCR. When the ex-

pression of candidate miRNAs was normalized and their 

relative levels were compared, an exceedingly high ex-

pression of miR-124 was observed in the B220
−
 cDC pop-

ulation from BM culture with Flt3L (Fig. 2B). In the case 

of each individual candidate miRNA profile, all were ex-

pressed more in B220
−
 cDCs than in B220

＋
 pDCs except 

for miR-17 (Fig. 2C). Exceptionally high expression of 

miR-124 in cDCs and its contrasting expression between 

cDCs and pDCs in BM-derived DCs cultured with Flt3L 

suggest that miR-124 may also be differentially expressed 

during ontogeny of DCs in vivo and may play a role in 

their development.

Direct regulation of transcript containing 3’UTR of 

TCF4 by miR-124

According to the analysis of miRNA-target interactions 

above, miR-124 is predicted to bind to the 3’UTR of TCF4 

(Supplemental Fig. 1A). miR-124 is also expected to bind 

to Zbtb46 although the probability is low (i.e., the sum of 

prediction algorithms with significant scores is 1; Supple-

mental Fig. 1J). To see whether miR-124 actually binds 

to these genes and regulates their expression, a dual luci-

ferase reporter assay was performed using a pmirGLO vec-

tor (Fig. 3A). A section, 342 bps, of the 3’UTR of TCF4 

containing the predicted binding site of miR-124 was in-

serted into the multiple cloning site (MCS) of a pmirGLO 

vector (Fig. 3B). A 480 bp section of the 3’UTR of Zbtb46 

was cloned likewise into a pmirGLO vector (Fig. 3C). The 
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Figure 2. Preliminary expression profiles of candidate miRNAs in Flt3L-cultured DC subsets. (A) Gating strategies for pDCs and cDCs 
present in BM culture with Flt3L for 8 days. (B) Normalized expression levels of candidate miRNAs in DC subsets isolated from BM 
culture with Flt3L. (C) Relative expression of individual candidate miRNAs between pDCs and cDCs isolated from BM culture with 
Flt3L.

cloned vectors were co-transfected with miR-124 mimic or 

the negative control into HeLa cells and the luciferase ac-

tivity was measured. The assay showed that the over-

expression of miR-124 was able to down-regulate lucifer-

ase activity of the pmirGLO-TCF4 vector by ∼30% while 

not those of the pmirGLO-control or pmirGLO-Zbtb46 

(Fig. 3D). Besides, the sequences of miR-124 binding site 

found in 3’UTRs of both mouse and human TCF4 tran-

scripts are highly conserved (Fig. 3E). Therefore, it ap-

pears that miR-124 might directly bind to both 3’UTRs of 

mouse and human TCF4 and thus posttranscriptionally reg-

ulate their activity.

Higher expression of miR-124 in cDC1 cells from BM 

culture with Flt3L

TCF4 is a critical transcription factor in the development 
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Figure 3. Regulation of gene expression by miR-124 via direct binding to 3’UTR of target transcript. Diagrams of the luciferase reporter 
vector pmirGLO constructs encoding (A) no insert, i.e., control, or 3’UTR from (B) TCF4 and (C) Zbtb46. (D) Histogram of normalized 
luciferase activities obtained from HeLa cells co-transfected with the respective reporter constructs and miR-124 mimic or negative 
control. Representative results are shown from 3 independent experiments. (E) Predicted binding site of miR-124 in the 3’UTRs of 
mouse and human TCF4.

and homeostasis of pDCs and is expressed at higher levels 

in pDCs and pDC precursors than in other DCs and pro-

genitors (5,28). Therefore, it seems developmentally rele-

vant that lower expression of miR-124 in pDCs than in 

cDCs was observed amongst BM-derived DCs cultured 

with Flt3L in our preliminary screening (Fig. 2). As pre-

viously demonstrated by others (7,29,30), we were able to 

culture BM cells in vitro with Flt3L for 6 to 12 days to 

efficiently produce three major DC subsets that respec-

tively correspond to pDC, cDC1, and cDC2 lineage cells 

in lymphoid tissues in vivo. These DC populations from 

Flt3L-cultured BM were identified and isolated as per their 

surface markers of CD11c
＋
B220

＋
 for pDCs, CD11c

＋

B220
−
CD24

＋
CD172α

−
 for cDC1, and CD11c

＋
B220

−

CD172α
＋
CD24

int
 for cDC2 (Fig. 4A). Then, these three 

DC populations purified from BM culture with Flt3L by 

flow cytometric sorting were subjected to RNA extraction 

and real-time RT-PCR. As mentioned above, the dynamic 

and differential expression of various transcription factors 

across the DC subsets is critical for DC development (10). 

Expressions of TCF4, Batf3, and Irf8 in the DC subsets 

isolated from BM culture with Flt3L (Fig. 4B) were paral-

lel to those previously reported in the DC subsets isolated 

from lymphoid tissues (9), indicating that the isolated DC 
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Figure 4. High expression of miR-124 in cDC1 cells from BM culture with Flt3L. (A) Gating and sorting strategies for pDC, cDC1, and 
cDC2 cells from BM culture with Flt3L. (B) Relative expression of 3 transcription factors critical to DC development is determined 
amongst different DC subsets by real-time RT-PCR. Representative results are shown from 2 independent experiments. (C) Relative 
expression of miR-124 is assessed amongst different DC subsets by real-time RT-PCR. Data from 3 independent experiments are 
presented in histogram. Error bars indicate mean±SEM across all samples from 3 independent experiments. *p≤0.05; **p≤0.01; ***p≤
0.001.

subsets were classified appropriately. Expression of miR- 

124, similar to the results of the preliminary screen (Fig. 2), 

was lower in pDCs than in cDCs, i.e., cDC1 and cDC2 

cells (Fig. 4C). Moreover, cDC1 cells were shown to ex-

press significantly higher levels of miR-124 than both 

pDCs and cDC2 cells.
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Figure 5. Prominent expression 
of miR-124 in cDC1 cells in BM. 
Gating strategies for (A) MDP, 
CDP, (B) pDC, (C) cDC1, and 
cDC2 cells in BM. (D) Relative 
expression of miR-124 is asses-
sed amongst different progenitors 
and DC subsets by real-time RT- 
PCR. Representative results are 
shown from 3 independent ex-
periments. ***p≤0.001.

Expression of miR-124 is higher in cDC1 cells than 

in other DCs, DC precursors, and progenitors in BM 

and spleen

To further verify the expression profiles of miR-124 

amongst DC subsets present in BM culture with Flt3L, we 

examined the expression of miR-124 from DC subsets and 

progenitors present in steady-state BM. MDP, CDP, pDC, 

cDC1, and cDC2 cells present in mouse BM were re-

spectively purified ex vivo by flow cytometric sorting ac-

cording to their surface makers (Fig. 5A-C). When the ex-

tracted RNAs of the respective DC subsets and progenitors 

isolated from BM were analyzed by real-time RT-PCR and 

compared, miR-124 expression was prominently found in 

cDC1 cells at a level much higher than those of MDP, 

CDP, and other DC subsets (Fig. 5D). In addition, we also 

had several BM populations of pre-DCs, including pre- 

cDCs and pre-pDCs (6,7,31), purified and analyzed for 

their expressions of miR-124, which were lower than that 

of cDC1 cells but similar to those of other DC subsets and 

progenitors (data not shown). Therefore, higher expression 

of miR-124 is consistently found in the cDC1 lineage from 

both BM cells and BM-derived cell cultures with Flt3L. 

Then, to observe the patterns of miR-124 expression in 

steady-state spleen, DC subsets and pre-DCs were sorted 

ex vivo from freshly prepared splenocytes according to 

their surface makers (Fig. 6A-C). Real-time RT-PCR of 

the extracted RNA from the sorted splenic cells also re-

vealed a relatively high expression of miR-124 in cDC1 

cells compared to other DC subsets and pre-DCs in spleen 

(Fig. 6D), therefore suggesting that the abundant expres-

sion of miR-124 might be important to the development 

of all cDC1 lineage cells in general. 

All three miR-124 precursor transcripts contribute to 

miR-124 expression in cDC1 cells

As depicted in Fig. 7A, there are three primary miRNA 

genes for miR-124: pri-miR-124-1, pri-miR-124-2, and 

pri-miR-124-3 (32,33). Three transcripts originate from 

these three different genes on separate chromosomes but 

all convert into the same mature miR-124 sequence. With 
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Figure 6. Elevated expression of 
miR-124 in cDC1 cells in spleen. 
Gating strategies for (A) pre-DC, 
(B) pDC, (C) cDC1, and cDC2 
cells in spleen. (D) Relative ex-
pression of miR-124 is evaluated 
amongst different DC precursor 
and subsets by real-time RT-PCR. 
Representative results are shown 
from 3 independent experiments. 
***p≤0.001.

oligonucleotide probes to distinguish and detect the three 

pri-miR-124 transcripts (24), real-time RT-PCR was per-

formed to determine which miR-124 precursors were ex-

pressed more in the cDC1 lineage. Expression profiling of 

pri-miR-124 in the cDC1 cells from steady-state BM (Fig. 

7B) and spleen (Fig. 7C) showed similar patterns of miR- 

124 precursor expression. In both tissues, cDC1 cells showed 

that pri-miR-124-1 was expressed the least and pri-miR- 

124-3 was expressed the most but all three precursors were 

expressed within the ranges of no significant statistical 

difference. In addition, expression of the three pri-miR-124 

genes was measured in other DC subsets where transcripts 

of all three precursor genes were also detected sig-

nificantly (data not shown). In other words, the definitive 

expression of all three pri-miR-124 transcripts indicates 

that they all contribute significantly to the generation of 

mature miR-124 in cDC1 lineage cells.

DISCUSSION

MicroRNA-124 is known as the most abundant microRNA 

expressed in neuronal cells (34,35). Although many miRNAs 

are starting to be linked to immunological processes, miR- 

124 remains unmentioned. Therefore, our finding of the out-

standing and differential expression of miR-124 in BM-de-

rived DCs cultured with Flt3L is intriguing as they are paral-

leled with DC development in vivo. Since homeostasis of 

DCs in vivo is critically dependent on Flt3L, we aimed to 

critically define the dynamic profile of miR-124 in the DC 

subpopulations and delineate its interplay with relevant tran-

scription factors that influence the development and function 

of particular DC subsets. Analyzing the prediction algorithm 

software, TCF4 was shown to be a probable target of 

miR-124 while Zbtb46 was shown to be a less likely target. 

Although it would be important to show the levels of TCF4 

or Zbtb46 proteins following treatment with miR-124 mimic 

in naturally TCF4- or Zbtb46-expressing cells, we could 

not carry out those experiments in such cells as pDCs and 
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Figure 7. All three primary miR- 
124 genes are actively transcri-
bed in DCs. (A) Genomic map of 
three pri-miR-124 genes on three 
different chromosomal locations 
are illustrated with their seque-
nce information of GenBank 
accession numbers. (B) Relative 
expression of three pri-miR-124 
genes is determined from cDC1 
cells in BM by real-time RT- 
PCR. Results combined from 2 
independent experiments are 
shown. (C) Relative expression 
of three pri-miR-124 genes is 
assessed from cDC1 cells in 
spleen by real-time RT-PCR. 

pre-DCs but performed dual luciferase assays in HeLa cells 

instead. Symmetrical to the prediction software, the lucifer-

ase activity assay showed that miR-124 mimic can bind 

and regulate the transcript carrying a 3’UTR section of 

TCF4.

  Since TCF4 has been established to be a critical gene 

in the development and homeostasis of pDCs, this data 

suggested that miR-124 may play a role in this process. 

This led us to hypothesize that miR-124 would be least 

expressed in pDCs, as its high expression would more ef-

fectively target TCF4 mRNA for degradation and thus in-

hibit pDC development and function. The miR-124 ex-

pression profiles of Flt3L-cultured DC subsets correlated 

with this hypothesis so that miR-124 was least expressed 

in the pDC subset. Further expression profiling in steady- 

state BM and spleen, however, showed that miR-124 ex-

pression was conspicuously higher only in the cDC1 line-

age but lower in both pDCs and cDC2 cells as well as 

in precursors and progenitors. This hints that miR-124, like 

most other miRNAs, does not act on DC development 

one-dimensionally through single miRNA to single tar-

get/transcription factor mechanism, but instead acts through 

single miRNA to multiple targets/transcription factors me-

chanism. Therefore, we speculate that the differential ex-

pression of miR-124 in different subsets may influence DC 

development broadly and profoundly. 

  Vital role of several miRNAs in development of specific 

DC subsets has been characterized in the mice genetically 

deficient of such miRNA genes (16,19). Unlike those 

miRNAs, miR-124 has three precursor genes. Moreover, 

all three pri-miR-124 genes located on different chromo-

somes appear to significantly contribute to the expression 

of mature miR-124 in DC subsets. It would be quite diffi-

cult and unlikely that the triple knockout mice deficient 

of all three pri-miR-124 genes become available in the 

near future. Therefore, it is not currently possible to dem-
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onstrate the in vivo role of miR-124. Although the effect 

is transient and limited, transfection of its mimicking or 

inhibiting molecules into DC precursors and progenitors 

followed by culture with Flt3L will be able to validate the 

role of miR-124. All in all, the dynamic profiles of miR- 

124 expression are consistent within the in vitro-generated 

DC subsets and their in situ counterparts in lymphoid 

tissues. Highly dynamic activity of miR-124 during DC 

development requires elucidation of its purpose for such 

fluctuation.
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Bcl6 mmu-miR-1-2-as mmu-mir-1-2-as UACAUACUUCUUUACAUUCCA 0 0 1 1 0 1 3 
Bcl6 mmu-miR-26b mmu-mir-26b UUCAAGUAAUUCAGGAUAGGU  0 0 1 1 0 1 3 

Only binding sites of miRNA with SUM ≥ 3 shown. 
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Mouse Irf4 - 3’UTR 

3260bp 

0kb 1kb 2kb 

mmu-miR-125a-5p 
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3kb 

mmu-miR-125a-5p 

mmu-miR-9 
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mmu-let-7b 

mmu-miR-23a/b 

mmu-miR-17 

mmu-miR-92b 

mmu-miR-130b 

mmu-miR-125a-3p 

mmu-miR-181a/b/c/d 

mmu-miR-23a/b 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 Targetscan SUM 

Irf4 mmu-miR-125a-5p mmu-mir-125a UCCCUGAGACCCUUUAACCUGUGA 1 1 1 1 1 1 6 
Irf4 mmu-miR-181c mmu-mir-181c AACAUUCAACCUGUCGGUGAGU 1 1 0 1 1 1 5 
Irf4 mmu-miR-1-2-as mmu-mir-1-2-as UACAUACUUCUUUACAUUCCA 1 1 1 0 1 1 5 
Irf4 mmu-miR-181d mmu-mir-181d AACAUUCAUUGUUGUCGGUGGGU  1 1 0 1 1 1 5 
Irf4 mmu-miR-23a mmu-mir-23a AUCACAUUGCCAGGGAUUUCC  1 1 0 1 1 1 5 
Irf4 mmu-miR-92b mmu-mir-92b UAUUGCACUCGUCCCGGCCUCC  1 1 0 1 1 1 5 
Irf4 mmu-miR-23b mmu-mir-23b AUCACAUUGCCAGGGAUUACC  1 1 0 1 1 1 5 
Irf4 mmu-miR-181a mmu-mir-181a-1 AACAUUCAACGCUGUCGGUGAGU 1 1 0 1 1 1 5 
Irf4 mmu-miR-130b mmu-mir-130b CAGUGCAAUGAUGAAAGGGCAU  1 1 0 1 1 1 5 
Irf4 mmu-miR-181b mmu-mir-181b-1 AACAUUCAUUGCUGUCGGUGGGU 1 1 0 1 1 1 5 
Irf4 mmu-miR-17 mmu-mir-17 CAAAGUGCUUACAGUGCAGGUAG  1 0 0 1 1 1 4 
Irf4 mmu-miR-101a mmu-mir-101a UACAGUACUGUGAUAACUGAA  1 1 0 0 1 1 4 
Irf4 mmu-let-7b mmu-let-7b UGAGGUAGUAGGUUGUGUGGUU  1 0 0 1 1 1 4 
Irf4 mmu-miR-9 mmu-mir-9-1 UCUUUGGUUAUCUAGCUGUAUGA  1 0 0 1 1 1 4 
Irf4 mmu-miR-146a mmu-mir-146a UGAGAACUGAAUUCCAUGGGUU 1 0 0 1 1 0 3 
Irf4 mmu-miR-125a-3p mmu-mir-125a ACAGGUGAGGUUCUUGGGAGCC 0 0 0 1 1 1 3 
Irf4 mmu-miR-146b mmu-mir-146b UGAGAACUGAAUUCCAUAGGCU  1 0 0 1 1 0 3 

Only binding sites of miRNA with SUM ≥ 3 shown. 

Shaded area indicates overlapping binding sites of two distinct miRNAs 
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Mouse Irf2 - 3’UTR 

1236bp 

0.25kb 0.5kb 0.75kb 

mmu-miR-133a mmu-miR-221 

0kb 1kb 

mmu-miR-23a/b 

mmu-miR-15a/b 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 Targetscan SUM 

Irf2 mmu-miR-23a mmu-mir-23a AUCACAUUGCCAGGGAUUUCC  1 1 1 1 0 1 5 

Irf2 mmu-miR-23b mmu-mir-23b AUCACAUUGCCAGGGAUUACC  1 1 1 1 0 1 5 

Irf2 mmu-miR-221 mmu-mir-221 AGCUACAUUGUCUGCUGGGUUUC  1 1 1 1 0 1 5 

Irf2 mmu-miR-133a mmu-mir-133a-2 UUUGGUCCCCUUCAACCAGCUG  1 1 0 1 0 1 4 

Irf2 mmu-miR-15a mmu-miR-15a UAGCAGCACAUAAUGGUUUGUG 1 0 0 1 1 0 3 

Irf2 mmu-miR-15b mmu-miR-15b UAGCAGCACAUCAUGGUUUACA 1 0 0 1 1 0 3 

Only binding sites of miRNA with SUM ≥ 3 shown 
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Mouse Irf8 - 3’UTR 

1517bp 

0.5kb 1kb 1.5kb 

mmu-miR-181a/b mmu-miR-17 

0kb 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 Targetscan SUM 

Irf8 mmu-miR-17 mmu-mir-17 CAAAGUGCUUACAGUGCAGGUAG 1 1 0 0 1 1 4 
Irf8 mmu-miR-181b mmu-mir-181b-2 AACAUUCAUUGCUGUCGGUGGGU 1 1 0 0 1 1 4 
Irf8 mmu-miR-181a mmu-mir-181a-1 AACAUUCAACGCUGUCGGUGAGU 1 1 0 0 0 1 3 

Only binding sites of miRNA with SUM ≥ 3 shown 
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Mouse SpiB - 3’UTR 

0.5kb 0kb 1kb 1.5kb 
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Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 Targetscan SUM 

Spib mmu-miR-221 mmu-mir-221 AGCUACAUUGUCUGCUGGGUUUC  1 1 0 1 1 1 5 
Spib mmu-miR-146b mmu-mir-146b UGAGAACUGAAUUCCAUAGGCU  1 1 0 1 0 1 4 
Spib mmu-miR-146a mmu-mir-146a UGAGAACUGAAUUCCAUGGGUU  1 1 0 1 0 1 4 
Spib mmu-miR-124 mmu-mir-124-2 UAAGGCACGCGGUGAAUGCC  1 1 0 1 0 1 4 
Spib mmu-miR-140 mmu-mir-140 CAGUGGUUUUACCCUAUGGUAG 0 0 0 1 1 1 3 
Spib mmu-miR-125a-3p mmu-mir-125a ACAGGUGAGGUUCUUGGGAGCC  1 0 0 1 1 0 3 
Spib mmu-miR-125a-5p mmu-mir-125a UCCCUGAGACCCUUUAACCUGUGA 1 0 0 1 1 0 3 

Only binding sites of miRNA with SUM ≥ 3 shown 

Mouse Id2 - 3’UTR 

785bp 

0.25kb 0.5kb 0.75kb 

mmu-miR-142-5p mmu-miR-181a/b/c/d 

0kb 

mmu-miR-155 

Only binding sites of miRNA with SUM ≥ 3 shown 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 Targetscan SUM 

Id2 mmu-miR-181a mmu-mir-181a-1 AACAUUCAACGCUGUCGGUGAGU 1 1 0 1 1 1 5 
Id2 mmu-miR-181d mmu-mir-181d AACAUUCAUUGUUGUCGGUGGGU 1 1 0 1 1 1 5 
Id2 mmu-miR-181b mmu-mir-181b-2 AACAUUCAUUGCUGUCGGUGGGU  1 1 0 1 0 1 4 
Id2 mmu-miR-181c mmu-mir-181c AACAUUCAACCUGUCGGUGAGU  1 1 1 0 0 1 4 
Id2 mmu-miR-142-5p mmu-mir-142 CAUAAAGUAGAAAGCACUACU 0 0 0 1 1 1 3 
Id2 mmu-miR-155 mmu-mir-155 UUAAUGCUAAUUGUGAUAGGGGU  1 0 0 1 0 1 3 

Supplemental Figure 1 



Mouse Batf3 - 3’UTR 

310bp 

0.1kb 0.2kb 0.3kb 

mmu-miR-125a-3p mmu-miR-17 

0kb 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 Targetscan SUM 

Batf3 mmu-miR-125a-3p mmu-mir-125a ACAGGUGAGGUUCUUGGGAGCC  1 1 0 1 1 0 4 

Batf3 mmu-miR-17 mmu-mir-17 CAAAGUGCUUACAGUGCAGGUAG  1 1 0 1 1 0 4 

Only binding sites of miRNA with SUM ≥ 3 shown 

H 

I 

Mouse Notch2 - 3’UTR 
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Only binding sites of miRNA with SUM ≥ 3 shown 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB PITA RNA22 
Target 
scan 

SUM 

Notch2 mmu-miR-9 mmu-mir-9-1 UCUUUGGUUAUCUAGCUGUAUGA 1 1 1 1 1 1 6 
Notch2 mmu-miR-181c mmu-mir-181c AACAUUCAACCUGUCGGUGAGU  1 1 0 1 1 1 5 
Notch2 mmu-miR-181a mmu-mir-181a-1 AACAUUCAACGCUGUCGGUGAGU 1 1 0 1 1 1 5 
Notch2 mmu-miR-21 mmu-mir-21a UAGCUUAUCAGACUGAUGUUGA 1 1 0 1 1 1 5 
Notch2 mmu-miR-142-5p mmu-mir-142 CAUAAAGUAGAAAGCACUACU 1 1 0 1 1 1 5 
Notch2 mmu-miR-125a-3p mmu-mir-125a ACAGGUGAGGUUCUUGGGAGCC 1 1 0 1 1 1 5 
Notch2 mmu-let-7e mmu-let-7e UGAGGUAGGAGGUUGUAUAGUU 1 0 0 1 1 1 4 
Notch2 mmu-miR-101a mmu-mir-101a UACAGUACUGUGAUAACUGAA  1 1 0 1 0 1 4 
Notch2 mmu-let-7a mmu-let-7a-1 UGAGGUAGUAGGUUGUAUAGUU 1 0 0 1 1 1 4 
Notch2 mmu-miR-132 mmu-mir-132 UAACAGUCUACAGCCAUGGUCG 1 1 0 1 0 1 4 
Notch2 mmu-let-7f mmu-let-7f-1 UGAGGUAGUAGAUUGUAUAGUU 1 0 0 1 1 1 4 
Notch2 mmu-miR-1 mmu-mir-1a-1 UGGAAUGUAAAGAAGUAUGUAU 1 1 0 1 0 1 4 
Notch2 mmu-let-7b mmu-let-7b UGAGGUAGUAGGUUGUGUGGUU  1 0 0 1 1 1 4 
Notch2 mmu-miR-26a mmu-mir-26a-1 UUCAAGUAAUCCAGGAUAGGCU 1 0 0 1 1 1 4 
Notch2 mmu-let-7g mmu-let-7g UGAGGUAGUAGUUUGUACAGUU 1 0 0 1 1 1 4 
Notch2 mmu-miR-146a mmu-mir-146a UGAGAACUGAAUUCCAUGGGUU  1 0 0 1 1 1 4 
Notch2 mmu-let-7c mmu-let-7c UGAGGUAGUAGGUUGUAUGGUU 1 0 0 1 1 1 4 
Notch2 mmu-miR-181b mmu-mir-181b-1 AACAUUCAUUGCUGUCGGUGGGU  0 1 0 1 1 1 4 
Notch2 mmu-let-7i mmu-let-7i UGAGGUAGUAGUUUGUGCUGUU 1 0 0 1 1 1 4 
Notch2 mmu-let-7d mmu-let-7d CUAUACGACCUGCUGCCUUUCU 0 0 0 1 1 1 3 
Notch2 mmu-miR-181d mmu-mir-181d AACAUUCAUUGUUGUCGGUGGGU 0 1 0 1 0 1 3 
Notch2 mmu-miR-17 mmu-mir-17 CAAAGUGCUUACAGUGCAGGUAG  1 0 0 1 1 0 3 
Notch2 mmu-miR-23a mmu-mir-23a AUCACAUUGCCAGGGAUUUCC  0 0 0 1 1 1 3 
Notch2 mmu-miR-29b mmu-mir-29b-2 CUGGUUUCACAUGGUGGCUUAGAUU  1 0 0 1 1 0 3 
Notch2 mmu-miR-23b mmu-mir-23b AUCACAUUGCCAGGGAUUACC  0 0 0 1 1 1 3 
Notch2 mmu-miR-26b mmu-mir-26b UUCAAGUAAUUCAGGAUAGGU  1 0 0 1 0 1 3 
Notch2 mmu-miR-29c mmu-mir-29c UAGCACCAUUUGAAAUCGGUUA  1 0 0 1 1 0 3 
Notch2 mmu-miR-146b mmu-mir-146b UGAGAACUGAAUUCCAUAGGCU  1 0 0 1 0 1 3 
Notch2 mmu-miR-125a-5p mmu-mir-125a UCCCUGAGACCCUUUAACCUGUGA 1 0 0 1 1 0 3 
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Mouse Zbtb46 - 3’UTR 

Gene MicroRNA StemLoop ID Sequence (5’  3’)  miRWalk miRanda miRDB RNA22 Targetscan SUM 

Zbtb46 mmu-miR-9 mmu-mir-9-1 UCUUUGGUUAUCUAGCUGUAUGA 1 1 0 1 1 4 

Zbtb46 mmu-miR-1-2-as mmu-mir-1-2-as UACAUACUUCUUUACAUUCCA 1 1 0 1 1 4 

Zbtb46 mmu-miR-133b mmu-mir-133b UUUGGUCCCCUUCAACCAGCUA 1 0 0 1 1 3 

Zbtb46 mmu-miR-15a mmu-miR-15a UAGCAGCACAUAAUGGUUUGUG 1 0 0 1 1 3 

Zbtb46 mmu-miR-15b mmu-miR-15b UAGCAGCACAUCAUGGUUUACA 1 0 0 1 1 3 

Zbtb46 mmu-miR-133a mmu-mir-133a-2 UUUGGUCCCCUUCAACCAGCUG  1 0 0 1 1 3 

PITA omitted because Zbtb46 not registered 

Only binding sites of miRNA with SUM ≥ 3 shown  

Shaded area indicates overlapping binding sites of two distinct miRNAs 

*mmu-miR-124 not in chart because SUM = 1 
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Supplemental Figure 1. Identification of candidate miRNAs that potentially 

target the transcript of transcription factors in DC development.  miRWalk2.0 

was used to identify miRNAs with high probability to bind to the 3’UTR of the listed 

transcription factors.  miRanda, miRWalk, miRDB, PITA, RNA22, and TargetScan 

prediction algorithms were used and miRNAs with significant scores from at least 3 

of the algorithms were listed (SUM ≥ 3).  (A) Candidate list of miRNAs that target 

TCF4 and the map of 3’UTR diagram for TCF4 with the predicted binding sites of 

the candidates.  The same is shown for (B) Bcl6, (C) Irf2, (D) Irf4, (E) Irf8, (F) Id2, 

(G) SpiB, (H) Batf3, (I) Notch2, and (J) Zbtb46. 


