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Statistical features are widely used in radiology for tumor heterogeneity assessment using magnetic resonance (MR) imaging
technique. In this paper, feature selection based on decision tree is examined to determine the relevant subset of glioblastoma
(GBM) phenotypes in the statistical domain. To discriminate between active tumor (vAT) and edema/invasion (vE) phenotype, we
selected the significant features using analysis of variance (ANOVA) with p value < 0.01.Then, we implemented the decision tree to
define the optimal subset features of phenotype classifier. Näıve Bayes (NB), support vectormachine (SVM), and decision tree (DT)
classifier were considered to evaluate the performance of the feature based scheme in terms of its capability to discriminate vAT
from vE. Whole nine features were statistically significant to classify the vAT from vEwith p value < 0.01. Feature selection based on
decision tree showed the best performance by the comparative study using full feature set.The feature selected showed that the two
features Kurtosis and Skewness achieved a highest range value of 58.33–75.00% accuracy classifier and 73.88–92.50% AUC. This
study demonstrated the ability of statistical features to provide a quantitative, individualized measurement of glioblastoma patient
and assess the phenotype progression.

1. Introduction

Glioblastoma is themost common tumor andmost aggressive
primary brain malignancy in adults [1]. The inability to
perform complete surgical tumor resection and poor drug
delivery to the brain contribute notably to the limited
treatment options. Despite all efforts, the average of patient
survival with GBM currently is thereabouts 14.6 months
[2]. GBM consists of active tumor, peritumoral edema, and
necrosis parts, as designated by the combination of T1-
weighted (T1-WI) and Fluid-Attenuated Inversion Recovery
(FLAIR) images inMRI.The active tumor region is described
as the contrast-enhancing portion in T1-WI images and
peritumoral edema is defined as the hyperintense region of
FLAIR images, located outside the active area. The recent
improvements in MRI technology using the integration of
diffusion and perfusion weighted imaging have provided
deeper insights into the pathological behavior of tumors [3,
4].

Until now, radiologists have used MR imaging for rela-
tively gross disease detection. We hypothesize that radiomics
with the availability techniques in image processing applied
on the raw data derived from MRI can make radiological
examinations more effective. In this way, automatic data
computation could foster faster and effective readings of
numerous types of images and classify them as normal or
cancerous [5]. Such a system must have the ability to detect
and extract the abnormal areas from their surroundings by
automatic segmentation techniques such as multithreshold-
ing segmentation technique with the morphological image
processing [6]. In terms of tumor heterogeneity, technical
research has investigated this heterogeneity by quantifying
its texture using numerous functions. For instance, feature
extraction based on the gray level cooccurrence matrix
(GLCM) with Haralick features is a popular technique
used for texture analysis [7]. Then, GLCM computes the
neighborhood correlations around pixels where the GLCM
is calculated by the paired pixel in specific offset (distance)
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and phase (direction). Statistical (histogram) analysis has
been established for the pixel intensity or the map of pixel
orientations. In this context, the statistical approach used
has been the texture-based approach [8–12]. Previous studies
of GBM assessment have required registration of T1-WI
and FLAIR for identifying the phenotypes, and each of the
visible phenotypes is segmented manually by board certified
radiologists.

In this paper, a novel approach for analyzing GBM phe-
notypes using FLAIR images only is introduced. Histogram
based statistical features can offer a simpleway to characterize
GBM heterogeneity across the phenotypes, namely, VAT and
V𝐸. Reproducible quantifiable imaging features of GBM het-
erogeneity that explicitly examine links between the imaging
findings and the underlying GBM phenotypes characteristics
are identified. Introduced quantitative histogram features can
discriminate phenotype heterogeneity fromMRI images and
thereby strengthen personalized medicine in GBM [12].

2. Materials and Methods

To prove the hypothesis, we focused on the optimal subset
features from the statistical features which are derived from
GBM tumors using active GBM portion with high intensity
pixels VAT and peritumoral V𝐸 of GBMwithmiddle intensity
pixels. Two Gaussian distributions could clearly be observed
in the histogram data of GBM (Figure 1). To assist automated
recognition of the GBM phenotype based heterogeneity,
histogram statistical features and classifier techniques were
used for discriminating active tumor parts from edema
parts in FLAIR images. Decision tree was considered to
recognize the dominant statistical features which represented
the foremost characteristic of GBM heterogeneity [13]. The
proposed approach is presented in Figure 2.

2.1. Patient Information, Data Acquisition, and Segmentation.
After excluding samples with incomplete data, a set of 30
patients was randomly selected from The Cancer Imaging
Archive (TCIA, http://www.cancerimagingarchive.net/) pub-
licly available database for a preliminary study. To obtain full
imaging sets, 30 other GBM patients’ data (age 50–68 years;
15 males, 15 females) were additionally chosen randomly
from the TCIA database. Image pixels of the tumor regions
were independently normalized on a scale from 0 to 1 (e.g.,
Figure 1(b) where the x-axis represents the normalized tumor
pixels). The images were transformed into gray scale (using
Matlab 2013 software) before further processing. Only FLAIR
sequences were considered in this study. All the images
were reconstructed to 512 × 512 matrices by segmenting
the appropriate area of GBM by board certified radiologists,
using the 3D slicer tool (Figure 3) [14]. Moreover, V𝐸 and
VAT phenotypes were segmented manually slice-by-slice and
organized in order to extract the statistical features. Statistical
features of edema and active tumor parts were extracted then
from raw FLAIR images.

2.2. Statistical Features Extraction. Features were extracted
from the histogram shape, which is an area of the variable
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Figure 1: Histogram of the GBM tumor. (a) Raw image of FLAIR
sequence; (b) two Gaussian distributions represent V𝐸 and VAT and
necrosis parts which are located inside the VAT with lower intensity
values.

description based on the shape, and provided the frequency
of values from different ranges of the variable. These features
were applied previously in cervical cancer diagnosis using
histogram based analyses of diffusion-weighted MR and its
relation to histological features, subtype, and grade of cervical
cancer [15, 16]. We quantified the two GBM phenotypes by
nine statistical functions (Table 1).

All GBM patient data were plotted as histograms show-
ing individual GBM data and their respective frequencies
(Figure 1(b)). Features describing major statistical charac-
teristics of these distributions were extracted according to
Table 1 [15]. All features were extracted from histograms of
GBM, according to
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where𝑚 is the number of VAT samples, for each patient’s one
feature vector included nine features:
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Figure 2: Block diagram of the proposed approach.
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Figure 3: Example of phenotype segmentation. (a) Raw image of FLAIR sequence, (b) edema part V𝐸, and (c) active tumor VAT.

where 𝑘 is the number of V𝐸, for each sample, and is similar
in size to the nine features.

Note that the feature value represents the average of
corresponding values of all slices in each patient.

One matrix vector 𝑅 is organized according to

𝑅 = {𝑅VAT, 𝑅V𝐸} . (3)

For the GBM heterogeneity analysis, the aforementioned
histogram features were extracted from the FLAIR MR
images corresponding to the heterogeneity of VAT and V𝐸.
Therefore, the length of the resulting feature vector was nine.
This statistical feature vector was taken asGBMheterogeneity
based on VAT and V𝐸, for the classification task at hand.

2.3. Statistical Analysis. Features were normalized using 𝑍-
scores which convert each of the feature vectors to have
zero mean and unit variance. Moreover, an ANOVA test was
used to assess the statistical significance between features
and phenotypes [17]. This test was used to select the feature
where 𝑝 value < 0.01 was considered significant. Note that the
total statistical features were found to be significant which are
reported in Table 2.

2.4. Classifier Setting and Performance Metrics. Supervised
technique such as the support vector machine (SVM) [18],
näıve Bayes (NB) [19], and decision trees (DT) classifier
[20] has become a popular learning algorithm for data
mining applications, as employed to classify VAT from V𝐸. A
leave-one-out cross-validation was applied to obtain closely
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Table 1: Statistical features description.

Symbol Features
𝑓
1 Geometric mean, indicates the central tendency
𝑓
2 Harmonic mean, calculates the average sample

𝑓
3

Mean excluding outliers, measures the
probability distribution

𝑓
4 Mean (average)
𝑓
5 Standard deviation (absolute deviation)

𝑓
6

75th percentile, splits off the highest 25% of
pixels from the lowest 75%

𝑓
7 Quantile

𝑓
8

Skewness, assesses the asymmetry of the
distribution

𝑓
9

Kurtosis, measures the degree of peakedness of
a distribution

Features vector 𝐹 = {𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
5
, 𝑓
6
, 𝑓
7
, 𝑓
8
, 𝑓
9
}

Table 2: Mean ± standard deviation of VAT and V𝐸.

Features VAT V𝐸 𝑝 value
𝑓
1

473.02 ± 345.65 461.15 ± 341.98 <0.01
𝑓
2

466.49 ± 344.81 453.57 ± 342.15 <0.01
𝑓
3

478.88 ± 347.18 468.25 ± 342.53 <0.01
𝑓
4

47.50 ± 31.33 53.69 ± 31.15 <0.01
𝑓
5

37.92 ± 25.98 44.19 ± 25.18 <0.01
𝑓
6

327.31 ± 294.16 321.74 ± 302.46 <0.01
𝑓
7

519.27 ± 367.27 516.73 ± 359.66 <0.01
𝑓
8

−0.20 ± 0.29 −0.09 ± 0.40 <0.01
𝑓
9

3.58 ± 0.85 2.93 ± 0.59 <0.01

unbiased estimates of classification error rates. Additionally,
receiver operating characteristics (ROC) curves and the
corresponding areas under the ROC curve (AUC, with a cut-
off value of 0.5), classifier accuracy, and confusion matrix
were calculated to determine the performance of statistical
feature for predicting the two GBM phenotypes.

Classifier accuracy measures the new sample correctly
classified. It can be determined by the following expression:

Classifier accuracy

=

VAT and V𝐸 samples correctly classified
Total number of samples

=

TP + TN
TP + FP + TN + FN

,

(4)

where the true positive (TP) and the true negative (TN)
are the number of VAT and V𝐸 samples correctly classified
into positive and negative classes. The false positive (FP) and
false negative (FN) are those samples which are incorrectly
classified.Then, TP+FN are the total number of test samples
of the considered class.

The results of the performancemetrics reflect the value of
this study in which the histogram (statistical) based features
could be promising in discriminating between both types

Table 3: Metrics (%) of VAT and V𝐸 discrimination.

Features DT SVM NB
Accuracy AUC Accuracy AUC Accuracy AUC

Full feature
set (𝐹) 68.33 96.05 68.33 80.22 53.33 77.66

Subset
feature 75 92.5 58.33 73.88 58.33 76.44

Table 4: Confusion matrix based on selected features.

Features DT SVM NB
VAT V𝐸 VAT V𝐸 VAT V𝐸

30 VAT 20 10 15 15 13 17
30 V𝐸 5 25 10 20 8 22

of GBM heterogeneity (VAT and V𝐸). Due to this limited
accuracy based on a full feature set, DT to find the optimal
subset features was considered in order to improve the
classifier accuracy. Simulation results were reported in Tables
3 and 4.

2.5. Features Selection Based on Decision Tree. Dominant
features can be obtained using the decision structure “tree”
model based on the general minimizing error. This model
was proposed from various inducers, some comprising two
conceptual phases “growing” and “pruning” (C4.5 [21] and
CART [13]). The most important aspect of a decision tree
induction strategy is the split criteria, which is the method
of selecting an attribute that determines the distribution
of training objects into subsets upon which subtrees are
consequently built.The dominant features can be determined
when subtrees are constructed. The choice for best attribute
splitting was based on several techniques. This study used
the Gini index (𝐼

𝐺(𝑡)
) as a more effective technique for

splitting data and to detect the optimal subset features. 𝐼
𝐺(𝑡)

is an impurity-based criterion that measures the divergences
between the probability distributions of the attribute’s values.
It is expressed as

𝐼
𝐺(𝑡)
= ∑

𝑖

𝑝
𝑖
(1 − 𝑝

𝑖
) , (5)

where 𝑝
𝑖
is the relative frequency of class 𝑖 at node 𝑡 and node

𝑡 represents any node at which a given split is performed. 𝑝
𝑖
is

determined by dividing the total number of observations in
the class by the total number of observations.

DT was applied on the given dataset using a built-in
Matlab function from the decision trees for regression and
classification toolbox. Comparative results were reported in
Tables 3 and 4.

3. Experimental Results

GBM phenotypes (VAT and vE) were segmented by board
certified radiologists using a manual technique of 3D slicer
tools. 30 VAT and 30 vE areas from raw MRI data of 30
patients were analyzed.
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3.1. Feature Analysis. An ANOVA test showed that the
nine statistical features were significant with 𝑝 value < 0.01
(Table 2). Then, except for features 𝑓

4
, 𝑓
5
, and 𝑓

8
, features 𝑓

1
,

𝑓
2
, 𝑓
3
, 𝑓
6
, 𝑓
7
, and 𝑓

9
in VATwere significantly higher than the

corresponding vE features.This is indicating that VAT ismore
pronounced statistically than vE.

3.2. Feature Selection. Feature selection was performed by
decision treemodel to determine the dominant statistical fea-
tures, which would provide reliable discrimination between
VAT and V𝐸. Figure 4 shows the resulting decision tree.
We observed that Kurtosis (𝑓

9
) and Skewness (𝑓

8
) play a

dominant role as they appear towards the top of the tree
structure. However, the other features have been identified
as irrelevant attributes for the classification problem at hand
since they do not appear in the tree.

3.3. Classification and Performance Comparison. A compar-
ative study was done using the three-classifier model based
on full feature set and subset feature. Table 3 shows 53.33–
68.33% range of accuracy classification using full features
set and 58.33–75.00% for the subset feature with a highest
value achieved using a decision tree classifier. Note that the
SVMandNB classifier were not promising for discrimination
between VAT and V𝐸.

Moreover, AUC value shows a range of 77.66–96.05%
for full feature set and 73.88–92.50% for subset feature with
a highest value achieved using the decision tree classifier
(Figure 5). This demonstrates the feasibility to discriminate
between VAT and V𝐸 using the feature selection extracted
from the FLAIR sequence.

Confusion matrix of the phenotypes discrimination
showed that the 20 VAT and 25 V𝐸 samples are correctly
classified from 30 phenotype samples based on DT classifier
(Table 4). High rate of misclassification samples was in VAT
samples where 10 of 30 samples were incorrectly classified as
V𝐸 phenotype.

4. Discussion

In this study, we used statistical features extraction to assess
VAT and V𝐸 phenotypes based on FLAIR sequence. The
classifier accuracy of 75.00% was achieved using 30 patients
and two features selected based on decision tree model.
Among the nine features, Kurtosis (𝑓

9
) and Skewness (𝑓

8
) val-

ues might reflect the appropriate features which represented
less correlation with other features. In this context, Figure 6
shows the heat map of the correlation coefficients between
the nine features. We observed that the lowest correlation
coefficients were achieved by two features Kurtosis (𝑓

9
) and

Skewness (𝑓
8
). Note that the higher correlation coefficients

represent the common characters between V𝐸 and VAT, as
shown in the statistical features (𝑓

1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
5
, 𝑓
6
, and

𝑓
7
). These two selected features can be associated with the

phenotype heterogeneity.
In this context, multiple studies have suggested that

increasing heterogeneity is associated with cancer [22]. The
results demonstrated that building features and biological

Root
Node
Leaf

f9 < 2.61 f9 ≥ 2.61

f8 ≥ 0.28f8 < 0.28
vE

vEvAT

Figure 4: Decision tree grown using 9 statistical features extracted
from 30 VAT and 30 V𝐸 parts.
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Figure 5: Receiver operating characteristic curves for distinguish-
ing between VAT and V𝐸. FFS denotes full feature set, and FS is the
feature selection.

significance are promising for noninvasive detection of GBM
heterogeneity based on VAT and V𝐸.

Moreover, recent efforts concluded that future research
will be most productive by focusing on genetics, clinical data,
and imaging features [23].Thus, characterizing themolecular
properties of GBM and making them publicly available are
goals of the Cancer Genome Atlas (TCGA) [24].

Traditionally, the feature extraction applied to medical
imaging was limited to the whole tumor and normal brain
[23]; however, current advances in medical image processing
like the findings presented in this study allow for high-
throughput extraction of characteristic imaging features to
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Figure 6: Heat map with correlation coefficients between statistical
features.

measure complex and very subtle differences across patient
MRIs. Thus, these findings provide strong evidence that
feature extraction can identify and discriminate between
GBM heterogeneity types.

Previous study was done to apply texture analysis for
assessment of the traumatic brain injury [25] and also to
discriminate between the GBM phenotypes; however, two
MRI sequences were used, features of necrosis and active
tumor parts fromT1-WI images and edema parts fromFLAIR
sequence. The texture feature extracted from GLCM was
considered, and the simulation results for 13 patients show
the highest accuracy of 67% [26].

Obviously, neuroradiologists are becoming increasingly
important players for early diagnosis of GBM. Our vision is
to integrate engineering based methods as described in daily
practice to enhance radiologists’ performance beyond their
routine “vision.” Particularly, in utterly devastating disease
like GBM, improvements in any medical specialty involved
are of the utmost essence. Note that numerous factors may
have led to varying results between this study and previously
published studies potentially due to the following reasons.

In this work, the whole GBM tumor was assessed. Only
FLAIR sequence was considered and only two phenotypes
were addressed based on the data distribution (Figure 1).
It would have been preferable to include more patients
to strengthen the GBM heterogeneity analysis. However,
the number of patients included in this study can provide
preliminary information about GBM heterogeneity.

5. Conclusions

This paper analyzed and implemented GBM VAT and V𝐸
discrimination based on the statistical features extracted
from MRI raw data. For the analysis of GBM heterogeneity,
feature extraction was more effective as it could characterize
each phenotype by a specific set of features to robustly

identify them. By automatic recognition, this identification
subsequently provided a more accurate assessment of the
patient prognosis and underlying genomic composition.
Improved classifier accuracy was achieved using the decision
tree model. Feature extraction, selection, learning, and clas-
sification were applied on 30 VAT and 30 V𝐸 phenotypes.

The experimental results were confirmed by higher accu-
racy classifier of appropriate features based on two features
Kurtosis and Skewness. The drop in average correct classi-
fication rate resulted from difficulty in classifying based on
histogram and subset feature. Histogram feature extracted
from GBM phenotypes yields a promising technique for dif-
ferentiating VAT from V𝐸 indicating the oncological level of
aggressiveness of a tumor. Extending this work by increasing
the number of patients would enhance the accuracy of GBM
heterogeneity prediction in the future.
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