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Objective: This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) 
caused by ototoxic agents.
Background: SNHL primarily results from damage to the sensory organ within the inner ear or the 
vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, 
presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic 
damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen 
in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models 
of SNHL are commonly established using ototoxic agents.
Methods: A literature search of PubMed, Embase, and Web of Science was performed for research articles 
on hearing loss and ototoxic agents in animal models of hearing loss. 
Conclusions: Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum 
antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents 
in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of 
administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced 
SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the 
auditory system in humans.
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Introduction

Approximately 466 million people worldwide experience 
hearing loss (World Health Organization, Deafness and 
Hearing Loss, 2019). Sensorineural hearing loss (SNHL) 
is the most common form of hearing loss. Individuals with 
hearing loss may experience impaired language development 

and suffer from depression (1,2). Understanding the 
mechanism of SNHL can improve clinical diagnosis, 
treatment, and prevention. Animal models mimicking 
the auditory impairments of SNHL are important in 
understanding the mechanism of SNHL in humans.

Common etiological factors of SNHL include genetic 
diseases, presbycusis, noise exposure, inflammation, ototoxic 
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drugs, and chemicals. The pathological features of SNHL 
include damage to the cochlea, vestibulocochlear nerve 
(cranial nerve VIII), or the central processing center of the 
brain. The organ most regularly damaged by ototoxic drugs 
is the cochlea. The cochlea is a snail-shaped bony canal 
divided into three chambers known as the scala vestibuli, 
scala media, and scala tympani. The scala vestibuli and 
scala tympani are filled with perilymph, a solution rich in 
sodium (3). The scala media contains endolymph, a solution 
rich in potassium (4). The upper border of scala media 
is Reissner’s membrane, and the lateral wall is composed 
of the spiral ligament, the thickened periosteum, and the 
stria vascularis, the upper portion of the spiral ligament 
containing an abundance of blood vessels. And the stria 
vascularis is mainly composed of three layers of epithelial 
cells known as marginal cells, intermediate cells, and basal 
cells. The intercellular space of the stria vascularis contains a 
rich capillary network, which is a component of the cochlear 
blood labyrinth barrier. The lower wall of the scala media is 
composed of the spiral edge and basilar membrane formed 
by the thickening of the periosteum on the spiral plate of 
bone. The Corti organ is located on the basilar membrane 
and consists of hair cells, supporting cells, and the tectorial 
membrane (5). One row of inner hair cells (IHCs) is located 
near the modiolus, and 3 rows of outer hair cells (OHCs) are 
located near the lateral wall of the cochlea. Spiral ganglion 
neurons (SGNs) are classified into types I and II, most of 
which are type I. The spiral ganglion is located in the spiral 
canal of the modiolus. One end of the nerve fiber of the 
spiral ganglion functions to establish synaptic connections 
with hair cells, while the opposite end extends into the 
central canal of the cochlear modiolus to form an acoustic 
nerve tract. This extension continues into the brain through 
the internal acoustic meatus and further in to reach the 
cochlear nucleus of the brainstem. When sound vibrates the 
tympanic membrane, the vibrations travel to the oval window 
through the ossicular chain, causing the perilymph and 
endolymph vibration, leading to the vibration of the basilar 
membrane. The basilar membrane and tectum, attached to 
the spiral plate of bone, move up and down along different 
modiolus. A shearing motion occurs between the tectum and 
the reticular plate, which causes the stereocilium of hair cells 
to bend or deflect. At this time, the potassium channel of the 
hair cells is open so the potassium ions in the endolymph 
can flow into the hair cells and cause depolarization. This 
depolarization leads to the opening of intracellular calcium 
channels, which allows calcium ions to flow into cells and 
stimulates hair cells to release neurotransmitters, causing 

nerve impulses at the cochlear nerve endings, which are 
attached to the bottom of hair cells. These nerve impulses 
are transmitted to the auditory cortex through the central 
conduction pathway to produce the sensation of hearing.

A common method of establishing animal models of 
SNHL with different damage characteristics is through 
ototoxic drugs. There are over 150 ototoxic agents, with 
aminoglycoside antibiotics (AABs), loop diuretics, and 
antitumor drugs being the most frequently used (6). Due 
to the various effects of ototoxic agents, those that induce 
specific inner ears lesions are often chosen for use in 
hearing research.

Methods of auditory assessment are predominantly 
comprised of cochlear microphonics (CM), summating 
potential (SP), auditory brainstem response (ABR), 
distortion product otoacoustic emissions (DPOAEs), 
compound action potentials (CAPs), and histological 
evaluation. CM involves a current primarily generated 
by the receptor currents of OHCs and can mirror the 
condition of OHCs (7). SP is a direct potential generated 
by the movement of the hair cells and basilar membrane 
(8-10). CAPs originate from the synchronous discharge 
of many primary afferent fibers in the auditory nerve 
and represent the total discharge of many single auditory 
neurons. CAPs are the compound nerve action potential 
of the eighth pair of brain nerve terminals (11). The main 
source of otoacoustic emissions in mammals is OHCs. 
These otoacoustic emissions can reflect their survival 
and mirror their functional status (12). The ABR reflects 
the transmission of auditory impulses induced by sound 
stimulation through the brainstem auditory pathway (13). 
The effectiveness of these methods in rodents was tested in 
studies (11,14-20).

The animal models of drug-induced SNHL can not only 
be used to study the ototoxic mechanisms of these drugs, 
but can also be used to study the relevant pathophysiological 
mechanisms of the lesions of the cochlear structures. This 
review introduces the commonly used animal models of 
SNHL induced by ototoxic drugs.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-2508).

Methods

We conducted a search of the PubMed, Embase, and Web 
of Science databases using the keywords “sensorineural 
hearing loss”, “inner ear”, “cochlea*”, “animal model”, 
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“ototoxicity”, “ototoxic agents”, “ototoxic drugs”, 
“Aminoglycoside antibiotics”, “gentamicin”, “kanamycin”, 
“streptomycin”, “amikacin”, “tobramycin”, “neomycin”, 
“platinum”, “cisplatin”, “carboplatin”, “oxaliplatin”, 
“Doxorubicin”, “Adriamycin”, “aromatic solvent”, 
“toluene”, “ethylbenzene”, “ouabain”, “glutamic”, “kainic 
acid”, “2-hydroxypropyl-β-cyclodextrin”, “HPβCD”, “heavy 
metals”, “manganese”, “mercury”, “cobalt”, “cadmium”, 
and “lead”. By browsing the title and/or abstract, a total of 
4,565 original articles and review articles related to ototoxic 
agent-induced SNHL and published in English between 
January 1980 and February 2021 were collected. Articles 
that were not animal experiments that did not focus on 
cochlear lesions and lacked morphological and/or functional 
tests were excluded. Relevant information was extracted for 
this review from the 375 articles remaining after applying 
the exclusion criteria.

Ototoxic agents

AABs

AABs are widely used in clinical practice; and include 
kanamycin,  gentamicin,  amikacin,  neomycin,  and 
tobramycin. The ototoxicity of AABs has long been 
confirmed by many studies (21-23). Long-term clinical 
therapy using these ototoxic medications is associated with 
irreversible hearing loss at high frequencies (24). Previous 
research has reported that gentamicin, streptomycin, and 
tobramycin are mainly vestibulotoxic; while kanamycin, 
amikacin, and neomycin are mostly cochleotoxic (25,26). 
Studies have demonstrated that AABs can pass through 
the blood‑labyrinthine barrier (BLB) to the endolymph. 
The AABs subsequently enter hair cells through mechano-
electrical transducer (MET) channels or endocytosis (27-29). 
AABs can inhibit depolarization of the hair cells and alter 
the concentration of perilymph ions, resulting in damage 
to the hair cell bundles, which causes permanent hearing 
loss (30). Also, AABs can produce free radicals and reactive 
oxygen species, which ultimately cause caspase activation 
and apoptosis (31-33).

Animals play an important role in establishing models 
of SNHL. Different species may present with different 
lesions following identical treatment. For example, the 
given dose of aminoglycosides that induces cochlear 
hair cell loss in guinea pigs and chinchillas does not 
have the same effects on inducing cochlear hair cell loss 
in mature mice (34). Only a small amount of hair cell 

damage was induced in the cochleae of adult mice and 
rats when administered conventional doses of gentamicin 
or kanamycin. Similar results were found when the same 
animals were administered high dosages that were close to 
a lethal concentration (35). The resistance to AABs in adult 
mice and rats may be attributed to the rapid clearance of the 
drugs in serum, suggesting the need to increase the dosage 
(36,37). The clearance half-life of kanamycin in 12-day-old  
rats was 2.5 times longer than in 25-day-old rats (36). Some 
experiments have attempted to use different dosages and 
frequencies of administration to induce auditory system 
lesions. One study administered a high dose (800 mg/kg) of 
kanamycin twice daily for 14 consecutive days and induced 
heavy hair cell loss in mice and rats (35). Concomitant 
administration of an additional ototoxic drug, such as a 
platinum anticancer drug, can enhance ototoxicity (38). 
Schweitzer et al. found that a combined cisplatin and 
kanamycin treatment resulted in more significant OHC 
loss and ABR threshold shifts than cisplatin treatment (38). 
In addition, concomitant loop diuretics have been shown 
to increase the ototoxic effect of AABs on the cochlea (39). 
A single subcutaneous injection of 1 mg/g body weight of 
kanamycin followed 40 minutes later by an intraperitoneal 
injection of 0.05 mg/g body weight of bumetanide resulted 
in almost the entire loss of OHCs within 48 hours (39). 
Loop diuretics include furosemide, ethacrynic acid, 
bumetanide, and torsemide (40). By blocking the capillaries 
on the lateral cochlear wall and inhibiting the arterial blood 
flow to the stria vascularis and spiral ligament, loop diuretics 
can cause ischemia and hypoxia in the stria vascularis 
epithelial cells and thus destruct the BLB (41). Combination 
therapy of AABs and loop diuretics can lead to irreversible 
deafness. For instance, a single dose of kanamycin  
(400–500 mg/kg) by subcutaneous injection accompanied 
by a dose of furosemide (100 mg/kg) by intraperitoneal 
injection can lead to permanent hearing loss in gerbils, 
with significant loss of both OHCs and IHCs as well as 
the injury of SGNs (42). In conclusion, animal species 
and dosage regimens are important factors in establishing 
AABs-induced animal models of SNHL, and selecting the 
appropriate animal species and adjusting dosage can obtain 
the expected model of specific lesions (Table 1) (39,43-54).

Platinum antitumor drugs

Cisplatin and carboplatin are robust antitumor drugs, but 
they can also be ototoxic or neurotoxic (55-64). Cisplatin 
enters hair cells mainly through copper transport channels 
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to induce oxidative stress, leading to increased reactive 
oxygen species and inner ear damage (65,66). Cisplatin also 
stimulates the cell death factor receptor, which is located on 
the surface of the hair cell membrane, to activate caspase-8 
and its downstream caspase-3 causing programmed death 
of hair cells (67). Experiments have indicated that cisplatin 

mainly injures cochlear hair cells, with OHCs being more 
susceptible than IHCs; while carboplatin chiefly affects 
cochlear IHCs, cochlear type I afferent neurons, and 
vestibular type I hair cells (56,68). Studies demonstrated 
that a single intraperitoneal dose (commonly 12–16 mg/kg) 
of cisplatin in rats, mice, or guinea pigs could cause time-

Table 1 Animal models of SNHL induced by aminoglycoside antibiotics

Drug Animal Route Dose Schedule Duration Ototoxicity Reference

Kana + bume Mouse s.c. + i.p. 1 mg/g + 0.05 mg/g Single-dose 1 day Loss of OHCs and 
delayed loss of IHCs

(39)

Kana Guinea pig s.c. 500 mg/kg 1× daily 7 days Loss of OHCs, IHCs, 
and SGNs

(43)

kana Mouse s.c. 800 mg/kg 2× daily 15 days Loss of OHCs. DPOAE 
thresholds shifted 
and ABR thresholds 
increased

(44,45)

Kana + furo Mouse s.c. + i.p. 1 g/kg + 300 mg/kg Single-dose 1 day Loss of OHCs and 
IHCs

(46)

Kana + furo Rat RWN 200 mg/mL + 50 mg/mL Single-dose 1 day ABR thresholds 
increased at 8–40 kHz

(47)

Kana + furo Guinea pig s.c. + RWN 200 mg/kg + 100 mg/kg Single-dose 1 day Loss of OHCs, IHCs, 
and SGNs. CAP 
thresholds shifted

(48)

Kana + furo Mouse i.p. 900 mg/kg + 50 mg/kg 2× daily 15 days Loss of OHCs and 
IHCs, and SGNs 
damaged. ABR 
thresholds increased to 
20 dB at 16 kHz,  
35 dB at 22 kHz, and 
to maximum at 32 kHz

(49)

Gent Mouse i.p. 200 mg/kg 3× per week 1 week ABR threshold 
increased

(50)

Gent + etha Chinchilla i.m. + i.v. 125 mg/kg + 40 mg/kg Single-dose 1 day Stereocilia and a 
cuticular plate of OHC 
and IHC damaged

(51)

Gent Guinea pig i.t. 0.1 mL Single-dose 1 day ABR thresholds 
increased

(52)

Neo Mongolian gerbil i.t. 40 mM Single-dose 1 day ABR average 
thresholds increased to 
40 dB

(53)

Amik Rat i.m. 600 mg/kg 1× daily 15 days Reduced amplitude of 
DPOAE

(54)

SNHL, sensorineural hearing loss; kana, kanamycin; amik, amikacin; gent, gentamycin; neo, neomycin; bume, bumetanide; furo, 
furosemide; etha, ethacrynic acid; i.v., intraveneous; i.m., intramuscular; s.c., subcutaneous; i.p., intraperitoneal; RWN, round window 
niche; RWM, round window membrane; i.t., intratympanic; OHCs, outer hair cells; IHCs, inner hair cells; SGNs, spiral ganglion neurons; 
DPOAE, distortion product otoacoustic emission; ABR, auditory brainstem response; CAP, compound action potential.
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dependent damage of OHCs and the stria vascularis (Table 2)  
(56-60). Some studies also adopted regimens of lower 
single-dose multiple-administrations which resulted in low 
mortality rates (69). Death rates were lower in CBA/CaJ 
mice and C57BL/6J mice exposed to 48 mg/kg cisplatin and 
treated in 3 cycles of two 8 mg/kg doses every 10 days or  
3 cycles of 4 mg/kg doses daily for 4 consecutive days, 
where each cycle was separated by 17 days than when 
exposed to three 16 mg/kg doses administered once per day, 
where each cycle was separated by 20 days (69).

Furthermore, the susceptibility to cisplatin ototoxicity 
in rats and mice can be affected by their circadian times, 
where the highest ABR threshold shift and the most severe 
OHC loss occur in the middle of the light circle (70,71). 
Additionally, concomitant administration of noise exposure 
or loop diuretics can enhance the ototoxicity of cisplatin 
(72,73). Cisplatin-treated rats were susceptible to noise 
exposure. Compared with cisplatin alone or noise exposure 
alone, a combination of the two resulted in rats showing 
greater threshold shifts and loss of OHCs (72). Guinea pigs 
treated with a co-administration of furosemide and cisplatin 
presented with more severe hearing loss and hair cell loss but 
lower mortality rates than those receiving cisplatin alone (73).

In contrast, carboplatin shows less ototoxicity to rodents, 
such as mice, than cisplatin (74). Gersten et al. treated 
mice with equimolar doses of cisplatin, oxaliplatin, and 
carboplatin; and found cisplatin-induced OHC-loss in only 
the middle and basal regions, elevated ABR thresholds 
across frequencies, and decreased DPOAE amplitudes (74). 
It is suggested that the lower ototoxicity of carboplatin and 
oxaliplatin is associated with a reduced uptake within the 
inner ear (74). Dose- and time-dependent oxidative damage 
of carboplatin to the cochlea in rats was reported (61,75). 
The high doses (192 or 256 mg/kg, intraperitoneal injection) 
of carboplatin led to increased cochlear lipid peroxidation 
and decreased antioxidant enzyme activity (75). Carboplatin 
caused elevated ABR threshold shifts, increased levels of 
nitric oxide, reactive oxygen species, increased manganese 
superoxide dismutase activity, and decreased antioxidant 
enzyme activity 4 days post-treatment in rats (61). A single 
intraperitoneal dose of carboplatin can induce selective 
damage of IHCs in chinchillas, providing an ideal IHC loss 
model (Table 2) (62-64,68,76-81). Additionally, studies have 
demonstrated that a low dose of carboplatin (38–125 mg/kg) 
selectively damages IHCs, while a high dose of carboplatin 
(≥200 mg/kg) causes extensive IHC loss and damage of 

Table 2 Animal models of SNHL induced by platinum antitumor drugs

Drug Animal Route Dose Schedule Duration Ototoxicity Reference

Cis C57BL/6 mouse i.p. 12 mg/kg Single-dose 1 day OHCs were significantly reduced at 72 h 
after treatment in the apical, middle, and 
basal turns. IHCs remained intact. ABR 
thresholds increased 4 h and 72 h after 
treatment

(56)

Cis Wistar rat i.p. 16 mg/kg Single-dose 1 day OHCs and IHCs damaged. DPOAE values 
decreased

(57)

Cis Guinea pig i.p. 12 mg/kg Single-dose 1 day OHCs partially lost throughout the cochlea. 
ABR threshold shifted

(58,59)

Cis Fischer 344/NHsd rat i.p. 12 mg/kg Single-dose 1 day OHC loss increased from the apex to the 
base. ABR thresholds increased

(60)

Carb Wistar rat i.p. 256 mg/kg Single-dose 1 day ABR thresholds increased 4 days after 
treatment

(61)

Carb Chinchilla i.v. 400 mg/m2 Single-dose 1 day ABR and CAP thresholds increased (62)

Carb Chinchilla i.v. 200 mg/m2 Single-dose 1 day Loss of IHCs. ABR thresholds increased (63)

Carb Chinchilla i.p. 75 mg/kg Single-dose 1 day Loss of 40% of IHCs. The amplitude of SP 
and CAP declined

(64)

SNHL, sensorineural hearing loss; cis, cisplatin; carb, carboplatin; furo, furosemide i.v., intraveneous; i.p., intraperitoneal; OHCs, outer hair 
cells; IHCs, inner hair cells; ABR, auditory brainstem response; DPOAE, distortion product otoacoustic emission; CAP, compound action 
potential; SP, summating potential.
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OHCs in chinchillas (76).
Overall, cisplatin is more ototoxic than carboplatin and 

oxaliplatin; and platinum modeling is affected by dose, 
administration frequency, circadian rhythm, melanin, and 
drug combination.
Doxorubicin

DOXO is a common antitumor medication that intercalates 
into the DNA strand to interfere with DNA-directed 
mRNA synthesis (82). Studies have demonstrated that 
DOXO can cause demyelination secondary to Schwann 
cell degeneration (83), and thus utilized DOXO as an 
experimental demyelinating agent to create animal models 
of SGNs and auditory nerve demyelination (84). Intraneural 
injection of DOXO inside the internal auditory canal of 
chinchillas caused severe myelin injury in SGNs and in 
fibers of the Rosenthal’s canal; and reduced ABR, CAP 
amplitude, and inferior colliculus-evoked potentials after 
2 months. OHCs and IHCs were mostly intact, which 
was demonstrated by presenting regular cochleograms 
and the preservation of cubic DPOAEs and CMs (84). 
Hearing functional testing results of models demonstrating 
demyelination in SGNs and auditory nerve fibers (ANFs) 
exclusively resembled those of patients with auditory 
neuropathy, which is a type of SNHL resulting from 
auditory synaptopathy and neuropathy (85-87). Overall, 
the injection of DOXO through the internal auditory canal 
provides animal models demonstrating the demyelination of 
auditory nerves without damaging cochlear hair cells.

Aromatic solvents

Aromatic solvents are widely used in industries such as 
plastics, textiles, and pharmaceuticals (88). Exposure to 
aromatic solvents like toluene, ethylbenzene, and styrene 
is ototoxic to both animals and humans (89-92). Studies 
have shown that ototoxic aromatic solvents mainly damage 
OHCs, with different degrees of ototoxicity for OHCs and 
IHCs (90,93-96). Rats were exposed to 1,750–2,000 ppm  
toluene vapor for 6 consecutive weeks, resulting in OHC 
damage and preservation of IHCs (96). Studies have 
demonstrated that exposure to 2,500 ppm toluene or  
1,600 ppm styrene for 8 hours/day for 5 days in rats can lead 
to a significantly increased auditory threshold, matching the 
lesions of OHC loss (97).

Additionally, rats exposed to ethylbenzene at 400 ppm or 
550 ppm for 8 hours/day for 5 consecutive days exhibited 
reduced DPOAEs and high OHC loss after 3–6 weeks (98). 

Studies have shown that chinchillas are less susceptible to 
toluene than mice and rats, which may be due to the higher 
amount of hepatic cytochrome P-450s and glutathione 
in the cochleae of chinchillas compared to rats and mice 
(99,100). Although the underlying mechanism of ototoxicity 
is undetermined, findings suggest that aromatic solvents 
including toluene, ethylbenzene, and styrene are useful in 
inducing selective OHC loss. Moreover, mice and rats may 
be more suitable for models of toluene ototoxicity.

Ouabain

Ouabain is a kind of cardiac glycoside and can selectively 
inhibit the α subunit of the sodium-potassium adenosine 
triphosphatase (Na+/K+-ATPase) (101). The Na+/K+-
ATPase consists of the 3 subunits, α, β, and γ. Within the 
α subunit, the subunit α 3 is abundant in spiral ganglion 
somata, the type I afferent ending, and the medial efferent 
endings (102). Studies have found that an intraperitoneal 
dose of 50 mg/kg or 10 mM ouabain, or applying 5–40 μL  
of a 1 mM ouabain solution on round window niche (RWN) 
can selectively destroy cochlear type I spiral ganglion cells 
and their ANFs in experimental animals such as mice, 
gerbils, and rats (15,103-106). Experiments have shown that 
ouabain damages the spiral ganglion through mitochondrial 
apoptosis and by demyelination of ANFs (105). However, 
Hamada and Kimura found OHC degeneration, type 
I SGN loss, and edema of the stria vascularis in some 
severe cases after ouabain was applied on a round window 
membrane in guinea pigs (107).

Additionally, Schomann et al. applied ouabain on a round 
window niche and observed OHC loss in a dose-dependent 
manner, without edema in the stria vascularis (108). High 
doses of ouabain damaged type I spiral ganglion cells and 
their ANFs and hair cells, whereas low or medium doses did 
not damage cochlear hair cells. It is assumed that ouabain 
directly affects Na+/K+-ATPase in OHCs, and indirectly 
affects OHCs by changing the endolymph content; 
however, the mechanisms remain undetermined (109,110). 
The selective damage to SGNs caused by low or medium 
dosages of ouabain suggests that the ouabain model is an 
effective model for research into of SGN death and SGN 
protection (111).

Glutamic acid and Glutamate analogs

Glutamate is released excessively in cochlear tissues during 
ischemia and noise injury (112). Excess glutamate can cause 
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excitotoxicity. The mechanism of excitotoxicity involves 
increased activity in neurons, the maintenance of neurons’ 
depolarization, and increased concentration of chloride ions 
in cells, which causes more calcium ions to flow in, thus 
increasing the osmotic pressure in cells. As water enters 
the cell, the tension of the cell membrane increases, and 
the cell lyses (113). The ionotropic receptors of glutamate 
are classified as N-methyl-d-aspartate (NMDA), α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), 
and kainite. AMPA receptors mainly mediate the rapid 
excitatory neurotransmission between IHCs and AFNs, 
and the late component of neurotransmission is mediated 
by NMDA and kainite (114). AMPA/kainite receptors are 
activated first and may play a role in synaptic transmission 
at low and moderate intensity. The NMDA receptor is 
activated by high-intensity sound (112). In cultured spiral 
ganglion explants, a high glutamate concentration in the 
synaptic cleft can cause swelling and collapse of the afferent 
nerve endings and damage to type I SGNs (115).

The glutamate toxicity-induced apoptosis in SGNs 
is initiated by apoptosis-inducing factors rather than  
caspase-3 (116). Kainic acid, a glutamate agonist, has been 
used to damage type I afferent nerve endings in animals. 
The swelling of afferent synapses was rapidly induced by 
low concentrations of kainic acid and high concentrations of 
kainic acid in the perilymph of chicken cochlea (117). The 
swelling of synapses damaged by the low concentrations 
of kainic acid disappeared, and the synaptic area returned 
to normal within 1 day, while the synapses damaged by 
the high concentrations of kainic acid were irreversibly 
damaged, and the number of spiral ganglion cells decreased. 
The morphology and function of hair cells in both groups 
were normal. Low doses of kainic acid applied to the round 
window of chinchillas also caused reversible damage to the 
postsynaptic terminals of the auditory nerve. Three-5 days  
after treatment, the nerve endings underwent swelling, 
degeneration, and recovery (118) .  However,  high 
concentrations of kainic acid-induced the loss of 34% 
of SGNs, with no toxic effect on cochlear hair cells or 
supporting cells (119). Henry et al. demonstrated that kainic 
acid caused a decrease in wave I amplitude of ABR, with 
waves II-V unaffected or slightly changed; suggesting that 
kainic acid can selectively damage the afferent neurons of 
the auditory nerve (120).

The glutamate analogs of SGNs can induce selective 
SGN loss in animal models to explore the causes of initial 
excitotoxic injury to the postsynaptic neuron of SNHL and 
the regeneration of afferent nerve terminals (118).

2-Hydroxypropyl-β-cyclodextrin

HPβCD is a cholesterol-chelating agent used to solubilize 
lipophilic drugs and is employed to treat Parkinson’s 
disease, atherosclerosis, and Niemann-Pick disease type 
C (121-124). It is reported to cause ototoxicity in cats and 
patients undergoing long-term therapies (125,126). A single 
subcutaneous dose of HPβCD (8,000 mg/kg) in mice led 
to elevated ABR, the elimination of DPOAEs, and loss of 
OHCs in the basal half of the cochlea; without affecting 
IHCs after 1 week (127). In another study, HPβCD was 
subcutaneously administered to rats at high doses of 2,000 
or 4,000 mg/kg, leading to remarkably reduced DPOAE 
amplitudes and loss of OHCs (128). Studies also indicated 
that when using a high dosage, the IHC loss and lesions in 
other cochlear tissues occurred 4-8weeks post-treatment 
(129,130). The mechanisms of the selective damage to 
OHCs remain undetermined. One factor at plays may 
be that prestin, the OHC motor protein and the main 
component of the OHC lateral membrane, is sensitive 
to changes in cholesterol levels (131-133). Compared to 
AABs’ protocols, HPβCD seems to be a more effective 
agent to induce loss of OHCs selectively. HPβCD requires 
only a single systemic administration to induce OHC loss 
in mice, and its systemic toxicity is low (121). A greater 
understanding of the pharmacokinetics and mechanism 
of HPβCD can lead to its improved application in 
experimental hair cell ablation in research animals. Based 
on this research, HPβCD can induce OHC loss quickly and 
affect other cochlear sensory cells after weeks.

Heavy metals

In daily life, excess exposure to heavy metals such as 
manganese (Mn), mercury (Hg), cobalt (Co), cadmium (Cd), 
and lead (Pb) in food or air can cause various organ toxicity 
effects. Studies found that heavy metals can damage cochlear 
structures and lead to SNHL (134-139). Research has 
demonstrated that heavy metals enter cells, including cochlea 
cells, through divalent metal transporter 1 (DMT1), zinc 
transporter ZIP8, and ZIP14 (140-145). Heavy metals mainly 
affect mitochondrion by inhibiting calcium uptake and 
enhancing calcium release, thus altering the mitochondrial 
permeability and causing a release of cytochrome c. 
Consequently, heavy metals can induce oxidative stress 
leading to cell death (146-148). In research into cochlear 
organotypic cultures, Cd can induce apoptosis in the OHCs 
and IHCs of rats in a time-dependent manner (135); Mn 
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can induce time- and dose-dependent OHC, IHC, SGN, 
and ANF damage (149), where ANFs are more vulnerable 
to Mn than hair cells and IHCs are more susceptible to Mn 
than OHCs (138); Hg tends to affect sensory epithelium 
in the apical regions of the cochlea and seldom damages 
the basal regions (150); there is an increase in the damage 
caused by Co to OHCs, IHCs, and SGNs from the base 
to the apex of the cochlea as dose and time increase, 
and the OHCs are more vulnerable to Co damage than  
IHCs (139); and Pb primarily injures cochlear nerve fibers 
and SGNs, rather than hair cells (151). Experimental animals 
have been successfully used to investigate the ototoxicity of 
heavy metals. Rats co-administered 5 mg/kg CdCl2 (i.p.) and 
200 mg/kg furosemide (i.p.) showed damaged OHCs in the 
apical and middle cochlear regions, extensive loss of IHCs 
and OHCs in the basal turn, and significantly increased ABR 
thresholds after 1 week (152). However, oral administration 
of 30 to 300 μM Cd in adult CBA/CaJ mice for 11 weeks 
presented normal ABR thresholds (153). Rats exposed to 
10 mg Manganese chloride (MnCl2)/liter water for 90 days 
showed no significant threshold shifts of DOPAE, CAP, and 
ABR; while rats exposed to noise simultaneously presented 
threshold shifts (154). Mice treated with 1.0 mg/kg mercuric 
sulfide per day through gastric gavage for 7 consecutive 
days demonstrated in an elevation of ABR threshold and 
prolongation of interwave latencies I–V (155). C57BL/6 
mice given 2 mM Pb in water for 28 days presented 8–12 dB 
shifts in ABR thresholds (156). Rats subjected to 4.0 mg/kg 
Pb acetate by gavage for 30 days demonstrated prolonged 
latencies of waves I–V and increased wave amplitudes, 
implying the deterioration of the neural reflex and damaged 
hearing (157). In another experiment, guinea pigs treated 
with Pb (20 mg/mL, i.p.) exhibited in OHC damage and 
elevated ABR thresholds (158). In conclusion, the animal 
models of SNHL induced by heavy metals were established 
using gavage, drinking water exposure, and intraperitoneal 
injection. Drinking water exposure required a long period.

Discussion

The hearing loss induced by ototoxic drugs can be avoided 
in the clinic. By establishing the animal model of drug-
induced hearing loss, we can not only study the damage 
mechanism of drugs but also improve treatment and 
prevent the occurrence of ototoxic deafness. In addition, 
animal models can also be used to explore the molecular 
mechanism of deafness, hair cell regeneration, and cochlear 
cell replantation.

We searched the literature for 8 kinds of toxic cochlear 
drugs and ototoxic chemicals that have been studied in 
auditory diseases. These included AABs, platinum antitumor 
drugs, doxorubicin (DOXO), aromatic solvent, ouabain, 
glutamic acid, and Glutamate analogs, 2-Hydroxypropyl-β-
cyclodextrin (HPβCD), and heavy metals. The tendency of 
these ototoxic agents to damage the cochlea can be divided 
into 3 types: the types which included those which tend to 
damage auditory hair cells, those which tend to damage 
SGNs and nerve fibers, and those which tend to damage 
auditory hair cells and neurons.

Among them, AABs damage both hair cells and SGNs. 
Cisplatin tends to damage cochlear hair cells, particularly 
OHCs; and carboplatin tends to damage IHCs and SGNs. 
DOXO can damage the myelin. Aromatic solvents and 
cyclodextrin can cause more damage to OHCs than IHCs. 
Ouabain tends to damage SGNs and auditory nerve myelin. 
Glutamate analogs damage afferent nerve endings. Heavy 
metals mostly damage nerves but also damage auditory hair 
cells.

The establishment of animal models of drug-induced 
hearing loss may be affected by animal selection, route of 
drug administration, and dosage regimen.

Animal selection is an important aspect of the study 
of drug-induced deafness. Animals most commonly used 
in hearing research include rodents, such as guinea pigs, 
mice, rats, chinchillas, and gerbils. The auditory anatomy 
of rodents, including cochlear turns, sensory hair cells, 
and central auditory system, is similar to humans (159,160). 
Different animals have different auditory physiology and 
anatomical structure, thus providing different advantages 
in auditory research. The hearing frequency of mice, 
rats, and guinea pigs is 100 kHz, 250 Hz to 80 kHz, and  
150 Hz to 50 kHz. In chinchillas and gerbils, their hearing 
frequencies are ~50 Hz to 33 kHz and 100 Hz to 50 kHz, 
respectively; which demonstrates that the hearing range of 
chinchillas is closer to humans (who have a range of 20 to 
20 kHz) (161-164).

Moreover, guinea pigs, chinchillas, and rats have bigger 
ear bulla, allowing for greater efficiency of procedures such 
as injection through the tympanic membrane, retroauricular 
sulcus, or semicircular canal. Additionally, animals 
showed different susceptibilities to ototoxic drugs, which 
affected the dosage regimen. For example, guinea pigs and 
chinchillas showed higher susceptibility to AABs, while 
adult rats and mice showed lower susceptibility. Although 
adult mice and rats are resistant to some ototoxic drugs, 
they are still widely used in studies of drug-induced hearing 
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loss. Particularly mice, which possess various strains such 
as C57BL/6 mice, BALB/c mice, and CBA/CaJ mice, and 
gene knockout varieties, allow research into hearing loss 
with certain lesions. C57BL/6J mice are also widely used as 
models of presbycusis due to their Ahl/Ahl2 genes which 
accelerate age-related hearing loss (20,165-171).

CBA/CaJ mice show stable hearing thresholds in advanced 
age (12–18 months), so they are suitable for experiments 
involving chronic exposure to ototoxic agents (172). Solute 
Carrier Family 19 Member 2 (SLC19A2)-deficient mice 
showed selective loss of both IHCs and intact supporting 
cells around IHCs (173). Aside from rodents, zebrafish 
are increasingly used in hearing research, such as hair cell 
regeneration studies, due to the susceptibility of their sensory 
epithelial cells along the lateral line to toxic agents (174-176).

The route of drug administration is another important 
factor affecting the establishment of animal models. The 
majority of the drugs were delivered to the cochlea by 
systemic administration, including subcutaneous injection 
and intraperitoneal injection, local administration involving 
transtympanic injections, cochleostomy with perilymphatic 
perfusion, and the round window niche technique. The 
direct methods of cochlear medication can avoid systemic 
toxicity such as nephrotoxicity and peripheral neuropathy; 
and can avoid the BLB, which is conducive to a faster and 
greater accumulation of drugs that do not easily cross the 
BLB in the inner ear (177,178). Nevertheless, local delivery 
requiring perforations of the tympanic membrane, or 
incisions behind the ear or on the retroauricular groove, 
need to be performed on large rodents such as rats, guinea 
pigs, chinchillas or gerbils; and may increase the risk of 
infection. the perforation of the tympanic membrane may 
affect the detection of auditory function in animals (179). 
Moreover, additional training is required to perform these 
operations.

Various drug dosage regimens are adopted to induce 
SNHL. These include increasing the dosages, which may 
increase the mortality rate of animals; prolonging the 
treatment duration by multiple administrations; combining 
administration of loop diuretics, such as furosemide and 
ethacrynic acid, which can open the BLB; combining 
administration with noise or another ototoxic drug.

Conclusions

Over 150 ototoxic agents have been reported to date. 
Common ototoxic medications such as AABs and platinum 
antitumor drugs are extensively used to induce SNHL 

in experimental animals. The effect of ototoxic agents in 
vivo is generally influenced by the chemical mechanisms 
of the agents themselves, type of anima, routes of drug 
administration, and drug dosage levels. Studies involving 
experimental animal models of SNHL explore the 
underlying mechanisms involved in drug-induced hearing 
loss to discover effective interventions for clinical practice.
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