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ABSTRACT
Background: Metabolic syndrome (MetS) is a prevalent disorder in pediatric age groups, 
described by a combination of genetic and environmental factors. Sterol regulatory element‑binding 
transcription factor 1 (SREBF‑1) induces the expression of a family of genes involved in fatty 
acid synthesis. Moreover, dysregulation of miR‑33b, which is located within the intron 17 of the 
SREBF‑1 gene, disrupts fatty acid oxidation and insulin signaling, thus leading to MetS. The aim of 
the present study was to investigate the association between SREBF‑1 rs8066560 polymorphism 
and MetS in Iranian children and adolescents.
Methods: This study includes 100 MetS and 100 normal individuals aged 9–19 years. 
Anthropological and biochemical indexes were measured. The ‑1099G > A polymorphism was 
genotyped by TaqMan real‑time polymerase chain reaction.
Results: Significant differences were observed in anthropometric measurements and lipid profiles 
between MetS and normal children. There were no differences in the genotype frequencies or 
allele distribution for ‑1099G > A polymorphism between MetS and control groups. High‑density 
lipoprotein cholesterol levels were significantly higher in the MetS GG group than in the A allele 
carrier group. The genotype AA controls had significantly increased cholesterol and low‑density 
lipoprotein cholesterol levels than AG genotypes. By logistic regression using different genetic 
models, no significant association was observed between SREBF‑1 rs8066560 polymorphism 
and the risk of MetS.

Conclusions: We conclude that the ‑1099G > A 
variant on SREBF‑1 gene associated with serum 
lipid profiles, however, it may not be a major 
risk factor for the MetS in Iranian children and 
adolescents.
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INTRODUCTION

Metabolic syndrome (MetS) is a complex disorder 
resulting from the interaction of both genetic and 
environmental factors.[1,2] The prevalence of the 
syndrome is 1–2% in Iranian children and adolescents 
much higher than that reported for other ethnicities.[3‑5] 
Individuals affected with MetS are most likely to develop 
heart attack and type 2 diabetes mellitus (T2DM), 
the two main causes of death worldwide.[6] Although 
the core components of the syndrome include 
central obesity, dyslipidemia, insulin resistance, and 
hypertension, there is no unique definition for the 
MetS.[6] In Iranian children and adolescents, MetS is 
being diagnosed by low levels of high‑density lipoprotein 
cholesterol (HDL‑C) and high triglyceride (TG).[3]

Lipotoxicity may result in T2DM, obesity, and insulin 
resistance.[7,8] Sterol regulatory element‑binding factors 
(SREBFs) are transcription factors playing central 
roles in the regulation of the carbohydrate and lipid 
metabolism.[9,10] This family consists of three isoforms, 
designated SREBF‑1a, SREBF‑1c, and SREBF‑2. 
SREBF‑1a and ‑1c are encoded by SREBF‑1 gene and 
SREBF‑2 isoform is encoded by the SREBF‑2 gene, 
which are located on human chromosomes 17p11.2 and 
22q13, respectively.[11]

SREBF‑1a and SREBF‑2 are expressed in all tissues 
and most cultured cell lines, whereas SREBF‑1c is the 
main isoform produced in the liver and adipocytes.[12,13] 
SREBF‑1a and ‑1c isoforms both regulate the genes 
involved in cholesterol, TG, and fatty acid synthesis.[13] 
SREBF‑2 isoform has a functional overlap with SREBF‑1 
proteins in a way that it mediates the activation of genes 
involved in the uptake and biosynthesis of cholesterol. As 
the SREBF‑1c expression is under the control of insulin, 
it can be, therefore, considered a main coordinator of 
insulin‑related regulation of lipid and carbohydrate 
biosynthesis.[13‑16]

Furthermore, SREBF‑1 and ‑2 are host genes for 
miR‑33b and miR‑33a, respectively.[17] These two 
microRNAs contribute to the regulation of cholesterol 
metabolism, β‑oxidation of fatty acids, and insulin 
signaling as well.[18]

Several studies have so far investigated the relationship 
between SREBF‑1 gene polymorphisms, glucose and lipid 
dysregulation in humans.[19‑35] In 2006, Harding et al.[22] 
genotyped six SREBF‑1 single nucleotide polymorphisms 
(SNPs) to test their association with type 2 diabetes. 
They reported a significant association between three 
SNPs (rs2236513, rs6502618, and rs1889018) and 
diabetes risk. As these three polymorphisms are located 
in the 5′ region of SREBF‑1 gene, 7.8–20.4 kb before 

the start of exon 1c, they concluded that these SNPs are 
probably too distant to be considered as promoter SNPs. 
Furthermore, another SNP (rs8066560) introduced by 
HapMap project, which is more probably located in the 
promoter region of the SREBF‑1 gene (‑1099G > A), 
was in high linkage disequilibrium with the above 
mentioned polymorphisms in the 5′ region. Due to the 
role of the SREBF‑1 gene in the biosynthesis of TG 
and cholesterol and linkage of ‑1099G > A variant with 
other studied 5′ region SNPs which have been shown 
a positive association with diabetes risk, we aimed to 
assess the association of rs8066560 and the risk of MetS 
and its components in Iranian children and adolescents.

METHODS

Study population
The experimental design conformed to the Code of 
Ethics of the World Medical Association (Declaration 
of Helsinki) and was approved by the Ethics Committee 
of Isfahan University of Medical Sciences. Oral assent 
was obtained from participants and written informed 
consent from their parents. This case–control study 
consisted of 100 healthy and 100 MetS subjects with 
an age range of 9–19 years. MetS was defined according 
to the modified adult treatment panel III criteria.[3] 
Accordingly, an individual was considered as a MetS 
case if she/he had at least three of the following criteria: 
(a) Fasting TG ≥100 mg/dl; (b) HDL‑C <50 mg/dl; 
(c) waist circumference >75th percentile for age and 
gender in the studied population; (d) systolic blood 
pressure/diastolic blood pressure >90th percentile for 
gender, age, and height,[36] and (e) fasting blood sugar 
≥100 mg/dl. Control individuals were examined to have 
normal weight without any signs of MetS, cardiovascular 
disorders, and diabetes. Peripheral blood samples were 
collected in ethylenediaminete‑traacetic acid‑treated 
tubes and stored at −20°C for genetic analyses.

Laboratory analyses
After at least 10 h overnight fasting, 5 mL of venous 
blood were obtained for laboratory analyses from all 
the children. Plasma was then separated by immediate 
centrifugation. Lipid profiles and fasting glucose 
concentration were measured enzymatically using a 
Hitachi 7070 analyzer (Diamond Diagnostics, USA) 
with reagents from Pars Azmoon (Pars Azmoon, 
Iran). Fasting insulin concentration was measured by 
a chemiluminescent assay (DiaSorin, Italy) on the 
LIAISON® analyzer (DiaSorin, Italy).

Detection of the polymorphism
Genomic DNA was extracted from peripheral blood 
mononuclear cells using diatome kit according to the 
manufacturer’s instruction (Isogen Laboratory, Russia). 
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Quantity and quality of the genomic DNA were assessed 
by a spectrophotometer (Biochrom Ltd, UK) and agarose 
gel electrophoresis, respectively. Allelic discrimination for 
rs8066560 was performed using TaqMan® SNP genotyping 
assay on the Applied Biosystems StepOnePlus™ real‑time 
polymerase chain reaction (PCR) system. TaqMan 
Genotyping Master Mix (number 4351379) and TaqMan 
SNP genotyping assay (number 4027774) were obtained 
from Applied Biosystems (Grand Island, USA). Each 
reaction was 10 µL consisting of 4.5 µL of 20 ng DNA, 
5 µL of 2X TaqMan Genotyping Master Mix, and 0.5 µL 
of 20X TaqMan SNP genotyping assay (diluted by 1X TE 
buffer, pH = 8). PCR cycling conditions were as follows: 
60°C for 30 s; 95°C for 10 min; followed by 40 cycles of 
95°C for 15 s, 60°C for 1 min. The fluorescence intensity 
in the VIC and FAM channels was measured at the end 
of each cycle. Results were analyzed by StepOnePlus 
software (Applied Biosystems, Grand Island, USA). 
Hardy–Weinberg equilibrium (HWE) was evaluated by 
Chi‑square test.

Statistical methods
All statistical analysis was performed using the Statistical 
Package for Social Sciences (SPSS) version 16.0 (SPSS 
Inc., Chicago, IL, USA) and reported as means ± 
standard error of the mean. Comparison of continuous 
variables was examined by Student’s t‑test or ANOVA. 
Following ANOVA, post‑hoc analysis was performed with 
Least Significant Difference test. Statistical analysis of 
categorical variables was performed using the Chi‑squared 
test. Simple and multivariable adjusted odds ratios (ORs) 
and 95% confidence intervals (CI) were computed using 
the logistic regression. In the multivariable model, the 
adjustment was performed for age (continuous) and 
gender. P < 0.05 was considered statistically significant.

RESULTS

Different genotypes for rs8066560 was determined using 
TaqMan® SNP genotyping assay on the Applied Biosystems 
StepOnePlus™ real‑time PCR system. Different genotypes 
including AA, GG, and AG were easily detectable in the 
allele discrimination plot [Figure 1].

The anthropometric and biochemical characteristics of 
the MetS and control groups are listed in Table 1. No 
statistically significant differences were found in the 
mean age (P = 0.096) and sex (P = 0.335) between 
the groups. Body mass index (BMI), serum levels of 
TG, total cholesterol (TC), and low‑density lipoprotein 
cholesterol (LDL‑C) were significantly higher in MetS 
cases than controls. The HDL‑C serum levels were lower 
in MetS cases (P < 0.001).

The genotype and allele frequencies distribution of 
SREBF‑1 rs8066560 are indicated in Table 2. No 
significant differences were found between the MetS 

and control groups in genotype or allele frequencies. The 
genotype frequencies in both MetS and control groups 
were in HWE.

Stratification of the laboratory parameters of the control 
and MetS subjects according to different genotypes of 
the rs8066560 (A/G) are given in Tables 3 and 4. There 
was no statistically significant difference in mean age, 
BMI, TG, TC, and LDL‑C between the three genotypes; 
however, the HDL‑C levels of the GG group were 
significantly higher than the AA (P = 0.017) and AG 
(P = 0.023) carriers in MetS groups.

In the control group, there was no significant difference 
in BMI, TG, HDL‑C, and LDL‑C between different 
genotypes [Table 4]. However, post‑hoc analysis showed 
that subjects with the AA genotype had higher cholesterol 
(P = 0. 016) and LDL‑C levels (P = 0.034) than AG 
genotypes.

The ORs were calculated for allelic (G vs. A), additive 
1 (AG vs. AA), additive 2 (GG vs. AA), dominant 
(GG + AG vs. AA), and recessive (GG vs. AA + AG) 
models [Table 5]. Overall, no association was observed 
between SREBF‑1 rs8066560 polymorphism and the 
risk of MetS in any of genetic models before and after 
adjustment.

DISCUSSION

As a master regulator of genes encoding for central 
rate‑limiting enzymes of cholesterol and lipid metabolism, 
SREBF‑1 appears to be a biological principle with clinical 
implications.[37] Among the SNPs in the promoter region 
of this gene, there is no study assessing the association of 
rs8066560 (‑1099G > A) with MetS. The current study is 
the first investigating the correlation of a SREBF‑1 variant 
with MetS. In the control group, SREBF‑1 ‑1099G > A 
polymorphism had the same frequencies as what reported 

Figure 1: Allelic discrimination plot of rs8066560 (-1099G>A). Red 
dots show the homozygous AA, green dots show heterozygous GA, 
and the blue dot shows a person with homozygous GG genotype
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by 1000 genomes project.[38] Furthermore, there was no 
significant difference between the MetS and control 
groups in genotype and allele frequencies. We found 
that in MetS group, the HDL‑C levels were significantly 
higher in GG individuals. Moreover, control subjects with 
the AA genotype had higher TC and LDL‑C levels. This 
finding is in agreement with findings of Lu et al.[35] which 
showed rs8066560 is significantly associated with TC 
levels. Previous studies have shown a reverse correlation 
between miR‑33a and miR‑33b expressions and HDL‑C 
levels and a direct association with TC.[18,39,40] Thus, we 
may hypothesize that having two copies of G allele in 
the ‑1099 location, may have a negative regulatory effect 
on miR‑33b transcription and consequently increasing 

the HDL‑C and decreasing TC and LDL‑C levels. 
Further studies to analyze the promoter of the human 
sterol regulatory element‑binding protein 1 to test this 
hypothesis is demanding. So far, numerous studies have 
investigated the associations between other SREBF‑1 
genetic polymorphisms and lipid profiles. A significant 
correlation of ‑36del‑G variant of the SREBF‑1 gene with 
TC and LDL‑C has been indicated in a study by Vedie et 
al.[34] but other studies did not observe such a correlation.
[25,33] Previous studies analyzing 54 G/C polymorphism 
(rs2297508) in SREBF‑1 gene reported a significant 
association with LDL‑C[21,30,32] but not with TC, HDL‑C, 
and TG levels.[21,24,29,30] Although Eberle et al. reported a 
correlation of this SNP with TG only in male subjects.[24] 
Rs11868035 variant in the SREBF‑1 gene has also shown 
a correlation with LDL‑C and TC.[28‑30,32] By logistic 
regression using different genetic models, we found 
no evidence for a statistically significant association 
between the SREBF‑1 rs8066560 polymorphism and 
the risk of MetS. Currently, data on the association of 
polymorphisms in the promoter/coding regions of the 
SREBF‑1 gene and MetS, as an entity, are lacking.

CONCLUSIONS

Our study is the first exploring the association between a 
SREBF‑1 variant and MetS. Our results showed that the 
rs8066560 of the SREBF‑1 gene may not be a major risk 
factor for the MetS in Iranian children and adolescents. 

Table 4: The SREBF‑1 rs8066560 genotypes and their 
correlation with anthropometric and biochemical 
parameters in the control group

AA (n=27) AG (n=45) GG (n=28) t P

Mean SEM Mean SEM Mean SEM

Age (years) 13.44 0.51 13.24 0.39 13.29 0.52 0.22 0.47
BMI (kg/m2) 20.12 1.10 20.86 0.93 18.88 0.85 1.11 0.10
TG (mg/dl) 80.93 5.49 81.84 5.22 72.37 4.22 0.967 0.198
TC (mg/dl) 170.67 19.96 138.51 5.43 143.54 5.09 1.58 0.043
HDL‑C (mg/dl) 52.37 3.08 48.73 1.40 48.11 2.13 1.02 0.177
LDL‑C (mg/dl) 93.89 14.04 75.64 2.62 82.86 3.46 1.3 0.095
BMI=Body mass index, TG=Triglyceride, TC=Total cholesterol, HDL‑C=High‑density 
lipoprotein cholesterol, LDL‑C=Low‑density lipoprotein cholesterol, SEM=Standard 
error of the mean, SREBF‑1=Sterol regulatory element‑binding transcription factor 1

Table 5: Logistic regression analyzes of association 
between SREBF‑1 rs8066560 and risk of MetS

Allele/genotype Crude OR 
(95% CI)

P Adjusteda 
OR (95% CI)

P

G versus A 1.326 (0.894‑1.967) 0.161 1.338 (0.900‑1.991) 0.150
AG versus AA 1.229 (0.606‑2.492) 0.568 1.242 (0.607‑2.543) 0.552
GG versus AA 1.653 (0.777‑3.315) 0.192 1.680 (0.779‑3.619) 0.186
GG + AG versus AA 1.391 (0.724‑2.673) 0.322 1.403 (0.726‑2.711) 0.314
GG versus AA + AG 1.446 (0.796‑2.630) 0.226 1.468 (0.805‑2.680) 0.211
aAdjusted for age and sex. OR=Odds ratio, CI=Confidence interval, MetS=Metabolic 
syndrome, SREBF‑1=Sterol regulatory element‑binding transcription factor 1

Table 1: Anthropometric and biochemical data in case 
and control groups

Case group 
(n=100)

Control group 
(n=100)

t P

Mean SEM Mean SEM

Age (years) 12.86 0.22 13.31 0.26 1.30 0.096

Boys/girls 46/54 49/51 0.18 (χ2) 0.335
BMI (kg/m2) 26.63 0.39 19.91 0.55 10.21 <0.001
TG (mg/dl) 112.42 4.914 78.93 3.02 5.80 <0.001
TC (mg/dl) 162.79 3.24 148.60 6.16 2.03 0.021
HDL‑C (mg/dl) 43.62 0.54 49.54 1.20 4.48 <0.001
LDL‑C (mg/dl) 90.52 2.11 82.59 4.10 1.71 0.043
Values are expressed as mean±SEM. BMI=Body mass index, TG=Triglyceride, TC=Total 
cholesterol, HDL‑C=High‑density lipoprotein cholesterol, LDL‑C=Low‑density 
lipoprotein cholesterol, SEM=Standard error of the mean

Table 2: Genotype and allele frequencies for rs8066560 
in MetS and control groups

Group Genotype frequency Allele frequency

Total 
(n)

A/A 
(n)

A/G 
(n)

G/G 
(n)

χ2 P Total 
(n)

A 
n (%)

G 
n (%)

χ2 P

Case 100 21 43 36 1.79 0.20 200 85 (42) 115 (58) 1.97 0.8
Control 100 27 45 28 200 99 (49) 101 (51)
MetS=Metabolic syndrome

Table 3: The SREBF‑1 rs8066560 genotypes and their 
correlation with anthropometric and biochemical 
parameters in the MetS group

AA (n=21) AG (n=43) GG (n=36) t P

Mean SEM Mean SEM Mean SEM

Age (years) 12.24 0.37 12.95 0.36 13.11 0.37 1.04 0.168
BMI (kg/m2) 26.06 0.79 26.86 0.60 26.72 0.67 0.56 0.347
TG (mg/dl) 108.71 8.87 120.93 8.74 104.42 7.02 1.08 0.155
TC (mg/dl) 165.38 9.84 162.44 4.16 161.69 5.05 5.05 0.458
HDL‑C (mg/dl) 42.19 1.37 42.91 0.767 45.31 0.81 1.73 0.027
LDL‑C (mg/dl) 90.10 5.64 91.93 3.06 89.08 3.30 0.42 0.418
BMI=Body mass index, TG=Triglyceride, TC=Total cholesterol, HDL‑C=High‑density 
lipoprotein cholesterol, LDL‑C=Low‑density lipoprotein cholesterol, SEM=Standard 
error of the mean, MetS=Metabolic syndrome, SREBF‑1=Sterol regulatory 
element‑binding transcription factor 1
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However, our preliminary results obtained from a small 
population sample should be interpreted with caution 
and will require confirmation in larger populations.
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