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Introduction
Lung and colon cancers represent significant burdens on global 
health, in terms of both their prevalence and impact. Lung can-
cer is one of the most commonly diagnosed cancers in the 
world. It is often associated with high mortality rates owing to 
its aggressive nature and limited treatment options, particularly 
when diagnosed at advanced stages.1 Smoking, environmental 
pollutants, and genetic predispositions contribute to its preva-
lence.2 Conversely, colon cancer is among the most prevalent 
cancers globally, with incidence rates varying across regions.3 
Screening efforts have been instrumental in detecting colon 
cancer at earlier stages, significantly improving the survival 
rates. However, challenges persist in addressing lifestyle factors 
such as diet, physical activity, and genetic predispositions that 
influence its development. Both lung and colon cancers under-
score the importance of public health initiatives, early detec-
tion strategies, and ongoing research efforts to improve 
prevention, diagnosis, and treatment outcomes, and mitigate 
their substantial impact on individuals and healthcare systems 
worldwide.4

Early diagnosis plays a pivotal role in improving patient out-
comes across various medical conditions, particularly in cancer. 
Timely detection enables the implementation of prompt and 

appropriate treatment strategies, often leading to a better prog-
nosis and increased chances of successful treatment.5 For cancers 
such as lung and colon cancer, early diagnosis allows for inter-
vention at a stage when the disease may still be localized or mini-
mally invasive, thereby offering more treatment options and 
potentially curative outcomes.6 Moreover, early detection can 
reduce the need for aggressive treatment and decrease associated 
morbidity and mortality rates. Furthermore, it enables the initia-
tion of supportive care measures and counseling, promoting 
overall well-being and quality of life for patients and their fami-
lies. Therefore, prioritizing efforts toward early detection through 
screening programs, public awareness campaigns, and advance-
ments in diagnostic technologies is crucial for improving patient 
outcomes and mitigating the burden of disease.7

Importance of image-based diagnosis

Image-based diagnosis represents a promising approach in 
modern healthcare, leveraging cutting-edge technologies to 
enhance diagnostic accuracy and streamline patient care path-
ways. By harnessing various imaging modalities such as X-rays, 
CT, MRI, and PET, clinicians can visualize internal structures 
and detect abnormalities with unprecedented detail and 
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precision.8,9 This noninvasive method allows for the early 
detection of diseases, including cancers, cardiovascular condi-
tions, and neurological disorders, facilitating prompt interven-
tion and personalized treatment strategies.10,11 Advancements 
in AI and ML have further revolutionized image interpreta-
tion, enabling automated analysis, pattern recognition, predic-
tive modeling, augmenting diagnostic capabilities, and 
improving clinical decision making. As image-based diagnosis 
continues to evolve, it has immense potential to revolutionize 
healthcare delivery by optimizing resource utilization, reducing 
diagnostic errors, and ultimately, enhancing patient outcomes.

Overview of lung and colon cancer

Each subtype of lung cancer is characterized by a unique set of 
symptoms and treatment alternatives. The most prevalent sub-
types of lung cancer are non-small cell lung cancer (NSCLC) 
and small cell lung cancer (SCLC).12-14 Hereditary predisposi-
tions, tobacco use, and exposure to radon and asbestos are sig-
nificant risk factors.15,16 The symptoms include weight loss, 
chest pain, difficulty in inhalation, and persistent wheezing.17 
Precancerous polyps frequently serve as the initial metastatic 
site for colon cancer, an ailment characterized by aberrant cel-
lular proliferation in the colon or rectum. Risk factors include 
sedentary lifestyle, obesity, insufficient physical activity, smok-
ing, advanced age, and a prior medical history of inflammatory 
bowel disease.18 Indications included irregularities in bowel 
movements, diarrhea, abdominal discomfort, fatigue, and unan-
ticipated weight loss. Early detection and treatment can improve 
the prognosis of patients with both the malignancies. Surgical 
intervention, radiation therapy, chemotherapy, targeted therapy, 
and immunotherapy are all potential therapeutic components 
that are contingent on the cancer subtype and stage. This under-
scores the importance of comprehensive screening initiatives 
and interdisciplinary treatment strategies.19,20

Scope and objectives of the review

Lung and colon cancers differ significantly in terms of tissue 
structure, diagnostic procedures, biological origins, and treat-
ment approaches, and there are compelling reasons to include 
both types of cancer in a unified review. The rationale for this 
approach is outlined below.

• � Both lung and colon cancer share a common pathway by 
which chronic inflammation contributes to carcinogen-
esis. Inflammation plays a pivotal role in the development 
of both cancers, although through different mechanisms 
and stages. By reviewing both types of cancer, we highlight 
the broader role of inflammation in cancer development 
and progression, which can lead to a more comprehensive 
understanding of this critical factor.

• � There are common risk factors that affect both cancers, 
such as smoking, which is a significant risk factor for 

lung cancer and has been linked to an increased risk of 
colorectal cancer. Additionally, certain genetic muta-
tions, such as those involving KRAS, are relevant to both 
types of cancer.

• � Histopathological imaging plays a crucial role in the 
diagnosis and classification of both lung and colon can-
cers. Through microscopic examination of tissue sam-
ples, pathologists can identify the type and severity of 
cancer. This involves the analysis of cellular morphology, 
tissue architecture, and specific staining patterns that are 
vital for accurate diagnosis.

• � Combining information on lung and colon cancer can 
offer valuable cross-cancer insights. Understanding how 
similar mechanisms operate in different types of can-
cer can lead to novel research directions and therapeutic 
strategies. A holistic review can facilitate the identifi-
cation of universal principles and strategies that can be 
adapted to various cancer types.

In summary, although lung and colon cancers have distinct 
characteristics, the integration of these cancers in a single 
review provides a valuable opportunity to explore commonali-
ties, shared risk factors, and advancements in diagnostics and 
treatment. The inclusion of histopathological images further 
supports the identification and classification of cancer types 
and severity, thereby enhancing our understanding of cancer 
mechanisms. This approach not only enriches our understand-
ing of cancer biology but also supports the development of 
innovative strategies that could benefit research and clinical 
practice.

Methodology
To conduct a comprehensive review of the advances and chal-
lenges in image-based diagnosis for lung and colon cancer, inte-
grating deep learning, machine learning, image processing 
methodologies, and focusing on X-rays, CT scans, and histo-
pathological images, a systematic approach was meticulously 
adopted. The search strategy involved querying major academic 
databases such as PubMed, IEEE Xplore, and Google Scholar 
using a set of relevant keywords. These keywords included “lung 
cancer,” “colon cancer,” “deep learning,” “transformer,” “NLP,” 
“machine learning,” “chest,” “computed tomography,” “image 
processing,” “medical imaging,” “X-ray,” “CT scan,” and “histo-
pathological images.” Various combinations of these keywords 
were used, such as “Lung cancer + deep learning + image pro-
cessing + CT scan + diagnosis,” “Colon cancer + machine learn-
ing + histopathological images + chest X-ray + diagnosis,” 
“Lung cancer + deep learning + machine learning + histopatho-
logical images + diagnosis,” among others.

The search was not restricted by publication date to ensure 
an inclusive representation of the relevant literature across dif-
ferent time periods.

Upon the initial search, a substantial pool of articles was 
identified that underwent a rigorous screening process focusing 
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on titles, abstracts, and keywords to exclude irrelevant studies. 
Articles not directly related to the integration of deep learning, 
machine learning, and image processing techniques in con-
junction with X-rays, CT scans, and histopathological images 
for lung and colon cancer diagnosis were removed.

Subsequently, a final selection process was carried out to 
curate a diverse collection of articles that addressed the amal-
gamation of advanced image analysis techniques with X-rays, 
CT scans, and histopathological images in the domain of lung 
and colon cancer diagnosis. This meticulous selection proce-
dure ensures comprehensive exploration of the advancements 
and complexities in utilizing these diagnostic modalities for 
improved cancer detection and diagnosis.

Brief Overview of the Biology and Pathology of Lung 
and Colon Cancer
The key clinical features of lung cancer include persistent 
cough, chest pain, shortness of breath, blood collection, fatigue, 
and unintentional weight loss.21 However, lung cancer often 
presents asymptomatically or with nonspecific symptoms until 
it reaches an advanced stage, which complicates early detection. 
Diagnostic challenges include the absence of specific symp-
toms in the early stages, leading to delayed diagnosis and the 
overlap of symptoms with other respiratory conditions.22,23 
The notable clinical features of colon cancer include changes in 
bowel habits, rectal bleeding, abdominal discomfort, fatigue, 
and unintended weight loss. Despite the availability of screen-
ing methods such as colonoscopy and fecal occult blood tests, 
challenges persist in achieving widespread participation in 
screening programs owing to discomfort, invasiveness, and lack 
of awareness.24,25 Moreover, the asymptomatic nature of early 
stage colon cancer can result in missed opportunities for timely 
diagnosis, highlighting the importance of enhancing screening 
efforts and public education to address these diagnostic chal-
lenges for both lung and colon cancers.

Current diagnostic methods for lung cancer include imag-
ing techniques such as X-rays, CT scans, positron emission 
tomography (PET) scans, and tissue biopsy for confirma-
tion.24,25 Although these methods are valuable for detecting 
lung nodules and assessing tumor characteristics, they have 
limitations such as radiation exposure, false positives, and dif-
ficulty distinguishing between benign and malignant nod-
ules.26-28 Additionally, sputum cytology can be used to identify 
cancer cells in the respiratory tract; however, its sensitivity is 
relatively low. Colonoscopy remains the gold standard for 
colon cancer detection, allowing the direct visualization and 
removal of precancerous polyps.29 However, colonoscopy is 
invasive, uncomfortable, and carries a low risk of complica-
tions. Other diagnostic methods include fecal occult blood 
tests, stool DNA tests, and virtual colonoscopy, each with 
limitations such as false positives, false negatives, and the 
inability to detect small polyps. Despite these advances, cur-
rent diagnostic methods for both lung and colon cancers still 

face challenges regarding accuracy, invasiveness, and patient 
acceptance, highlighting the ongoing need for improved 
screening techniques and technologies.30,31

Overview of Various Imaging Modalities Used in 
Lung and Colon Cancer Diagnosis
Various imaging modalities play crucial roles in the diagnosis 
and management of lung and colon cancer. X-ray imaging pro-
vides quick and low-cost initial assessments for lung cancer, 
although it lacks specificity and sensitivity.28,32 CT scans offer 
detailed cross-sectional images, aiding in detecting and charac-
terizing lung nodules and colon tumors with high resolution 
and speed.33 MRI provides excellent soft tissue contrast with-
out ionizing radiation, which is beneficial for assessing the 
extent of tumor invasion and metastasis in both lung and colon 
cancer.34,35 PET scans are valuable for evaluating metabolic 
activity and staging cancer, and are particularly useful for 
detecting distant metastases. Colonoscopy remains the gold 
standard for colon cancer screening, offering direct visualiza-
tion and biopsy capabilities for polyps and tumors.36-38 Each 
modality has its advantages and limitations; for instance, while 
CT and MRI offer high-resolution images, they may require 
contrast agents and expose patients to radiation (in the case of 
CT) or longer scan times (in the case of MRI).39 PET scans 
provide functional information, but can be costly and have lim-
ited spatial resolution. Additionally, image processing and 
analysis techniques, such as CAD and DL, are increasingly 
being utilized to enhance diagnostic accuracy and efficiency 
across these imaging modalities, aiding in the early detection, 
characterization, and treatment planning for lung and colon 
cancer patients.40,41 Generally, 2 types of images are used for 
lung and color cancer diagnosis, that is, radiological and histo-
pathological images. Samples of radiological images of lung 
and colon cancers are illustrated in Figures 1 and 2, respec-
tively. A sample of the histopathological images is illustrated in 
Figure 3.

Image-Based Diagnostic Approaches for Lung and 
Colon Cancer
In the past 4 decades, the disciplines of medicine and health-
care have made significant progress. During this timeframe, the 
true causes of several diseases were revealed, innovative diag-
nostic techniques were developed, and revolutionary medica-
tions were devised. Despite numerous accomplishments, 
diseases such as cancer persistently affect humans because of 
their ongoing susceptibility to them. Cancer is the second most 
prevalent cause of mortality worldwide, with approximately 1 
in 6 individuals succumbing to the disease. Among the differ-
ent types of malignancies, lung and colon cancer are the most 
prevalent and lethal, respectively. These cancers account for 
more than a quarter of all cancer cases. Nevertheless, the early 
detection of the illness greatly enhances the likelihood of sur-
vival. Many cancer diagnosis approaches utilize AI, enabling 
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Figure 1.  Radiological images of lung cancer: (a) Xray, (b) CT scan, (c) PET, and (d) MRI.

Figure 2.  Radiological image of colon cancer: (a) Xray, (b) CT scan, (c) PET, and (d) MRI.
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the evaluation of a greater number of cases within a shorter 
timeframe at a reduced cost. Cancer has a notably high mortal-
ity rate owing to its aggressive nature, strong tendency to spread 
to other parts of the body, and diverse characteristics. Lung and 
colon cancer are prevalent forms of cancer that can affect indi-
viduals of any sex and occur globally. Early and accurate iden-
tification of these tumors enhances the survival rate and 
improves the treatment efficacy. Al-Mamun et al.42 presented a 
highly precise and computationally efficient model that is an 
alternative to existing cancer detection techniques. This model 
enables the rapid and accurate identification of malignancies in 
the lung and colon regions. The LC25000 dataset was used for 
the training, validation, and testing of this project. A cyclic 
learning rate was implemented to enhance the accuracy and 
improve the computational efficiency of the proposed tech-
nique. This approach is characterized by its simplicity and effi-
ciency, which promotes faster model convergence. Various 
pre-trained TL models were utilized and compared with the 
CNN model developed from scratch. The study revealed that 
the proposed model demonstrated enhanced accuracy by miti-
gating the influence of inter-class variances between LDC and 
LSCC. The proposed method achieved a total accuracy of 97% 
and demonstrated superior computing efficiency compared 
with existing methods. According to Lakshmanaprabu et al.,43 
lung cancer is a highly lethal disease that contributes signifi-
cantly to cancer-related deaths worldwide. It is impossible to 
improve patient survival without the early detection of lung 
cancer. A CT scan is used to accurately localize a lesion and 
determine the extent of malignancy across the entire body. A 
novel automated diagnostic classification method for lung CT 
scan images is introduced in this study. LDA and ODNN were 

utilized in this study to evaluate CT scans of lung images. The 
CT lung images were processed to extract significant features, 
which were then downsized in dimensionality using LDR. The 
objective of this dimensionality reduction was to determine the 
malignant or benign nature of lung nodules. The ODNN was 
initially employed to analyze CT images; this approach was 
subsequently enhanced through the implementation of MGSA 
to classify lung cancer. The results of the comparisons demon-
strated that the proposed classifier achieved a sensitivity of 
96.2%, specificity of 94.2%, and accuracy of 94.56%. According 
to Lanjewar et al.,44 lung cancer is an exceptionally dangerous 
disease that poses a significant threat to human life globally. 
Therefore, the early identification of this condition is critical. 
Lung cancer was classified into 4 distinct categories using the 
Kaggle chest CT scan image dataset: adenocarcinoma, large-
cell carcinoma, squamous cell carcinoma, and normal cells. An 
innovative approach utilizing DL was proposed for lung cancer 
detection by augmenting the DenseNet201 model with addi-
tional layers within the initial DenseNet framework. Two dis-
tinct methodologies for feature selection were employed to 
determine the most appropriate features to be extracted from 
DenseNet201. Next, several classifiers based on ML were 
implemented using these attributes. The confusion matrix, 
AUC, MCC, kappa score, 5-fold cross-validation procedure, 
and p-value were used to assess the performance of the system. 
After the proposed system adopted a 5-fold approach, it dem-
onstrated exceptional performance, attaining a perfect accuracy 
rate of 100%, an average accuracy rate of 95%, and a P-value 
below .001, which was deemed to indicate statistical signifi-
cance. This study emphasizes the application of ML algorithms 
to enhance the precision of lung cancer detection using CT 

Figure 3.  Histopathological images of lung and colon cancer.
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images. Owing to its significant influence on patient prognosis, 
the AJCC employs tumor size as a criterion for classifying vari-
ous solid tumors into the “T” stage. However, the extent of the 
tumor was not considered in the staging method for colon can-
cer. In contrast, emphasis is placed on metastasis (M), nodal 
status (T), and tumor status (N). As a result, the National 
Cancer Database was used to ascertain the correlation between 
survival, tumor size, and TNM stage. A cohort of 300 386 
patients was analyzed, with tumor size being the determining 
factor in the following classifications: S1 (approximately 
0-2 cm), S2 (greater than 2-4 cm), S3 (greater than 4-6 cm), 
and S4 (greater than 6 cm). Statistical analyses were performed 
to examine the relationships between TNM stage, grade, nodal 
status, and tumor size. Survival analysis for each “S” stage was 
conducted using the Kaplan–Meier technique. A total of 13%, 
39%, and 18% of the 300, 386 patients were categorized as S1, 
S2, S3, and S4, respectively. The most prevalent site was the 
right colon, accounting for 48% of the cases. Positive correla-
tions were observed between the extent of the tumor and its T 
stage, nodal stage, and grade. Survival was inversely propor-
tional to the magnitude of the tumor. Vital prognostic factors 
are strongly correlated with the magnitude of malignancy, 
which is also associated with a decreased likelihood of 
survival.44

Gowda et al.45 aimed to enhance the precision of colon can-
cer diagnosis by employing DL algorithms instead of the tradi-
tional ML techniques. This technique entails preprocessing CT 
colonography images to eliminate noise and segmenting the 
colon into separate blocks. A pre-trained CNN was used to cat-
egorize these blocks into different types of colons and to iden-
tify irregular structures, such as polyps. The findings indicate 
that the CNN-based method attains superior accuracy (87% for 
colon segmentation and 88% for polyp detection) compared 
with the RF and KNN algorithms. This underscores the effi-
cacy of DL in automating the diagnosis of colon cancer.45 
Sharma et al.46 suggested a 2-step method for early lung cancer 
diagnosis using high-resolution CT images. The procedure 
involved extracting a patch from the center of the nodule and 
accurately segmenting the region of the lung nodule using the 
Otsu method and morphological procedures. This segmenta-
tion was achieved without relying on the complete contour 
information. In the second stage, a DCNN is employed to 
enhance the classification accuracy of the segmented patch (dis-
tinguishing between malignant and benign images). 
Experiments conducted on 6306 CT scans from the LIDC-
IDRI database demonstrated a test accuracy of 84.13%. The 
sensitivity and specificity achieved were 91.69% and 73.16%, 
respectively, surpassing the performance of current cutting-edge 
algorithms.46 Kumar et al. (2022) conducted a study focusing on 
lung and colon cancer classification utilizing 2 approaches: 
handcrafted feature extraction and deep feature extraction via 
transfer learning. They employed 6 manually designed strate-
gies based on color, texture, shape, and structure to extract 

handcrafted features and trained the GB, SVM-RBF, MLP, and 
RF classifiers. Additionally, they utilized 7 DL frameworks 
with transfer learning to extract deep features from histopatho-
logical images of lung and colon cancers. A significant improve-
ment in classifier performance was observed by comparing 
handcrafted features with deep features extracted by a deep 
CNN. The random forest classifier, leveraging DenseNet-121 
for deep feature extraction, achieved high accuracy and recall 
rates of 98.60% and 98.63%, respectively, in identifying lung 
and colon cancer tissues, with a precision of 98.63% and an F1 
score of 0.985. This study highlights the potential of DL tech-
niques for improving cancer tissue classification in histopatho-
logical images, aiding in early detection and treatment. 
Additionally, they utilized visualization techniques such as 
GradCam and SmoothGrad to enhance classification, and pro-
posed models utilizing MobileNetV2 and InceptionResnetV2, 
which achieved a precision of up to 99.95% in detecting can-
cer tissues, offering promise for automated and accurate can-
cer detection methods.47 Lung cancer is a highly lethal type of 
cancer with one of the worst fatality rates globally, as identi-
fied by Shandilya et al.48 “The primary objective of their study 
was to develop a CAD technique to categorize histopatho-
logical images of lung tissues. They used a publicly accessible 
dataset of 15 000 histopathological images of LDC, LSCC, 
and benign lung tissue from 3 distinct categories to create and 
validate a CAD system. Multiscale processing was employed 
to extract the image features. A comparison study was con-
ducted using 7 pre-trained CNN models: MobileNet, VGG-
19, ResNet-101, DenseNet-121, DenseNet-169, InceptionV3, 
InceptionResNetV2, and MobileNetV2. These models have 
been used to classify lung cancer. Pretrained models undergo 
hyperparameter tuning, which involves optimizing characteris-
tics, such as batch size, learning rate, number of epochs, and 
model correctness. ResNet101 achieved the highest accuracy of 
all CNN versions, reaching 98.67%. This discovery will assist 
researchers in developing more effective CNN-based models 
for lung cancer.48”

Prusty et al.49 utilized EfficientNetB7 to create a classifica-
tion model that integrates histopathological images to distin-
guish between 5 different types of lung and colon tissues, 
including 2 benign and 3 malignant tissues. Moreover, a lung 
and colon cancer predictive model was constructed using the 
histogram images from the Kaggle dataset. Precision, recall, and 
F1 scores were used to evaluate the model performance. 
According to the results, the EfficientNetB7 model achieved a 
notable accuracy of 98%. This model will assist medical profes-
sionals in formulating a proficient and suitable methodology for 
identifying different forms of lung and colon cancers.49 “In 
addition, Hadiyoso et al.50 reported that cancer is a non-com-
municable ailment and a primary contributor to mortality glob-
ally. Lung and colon cancers are the most prevalent types of 
cancers and are associated with significant fatality rates. An 
effective strategy to decrease mortality rates is to promptly 
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identify diseases through early detection and appropriate medi-
cal treatment. Tissue samples and clinical pathological exami-
nations are considered to be the most reliable and accurate 
methods for diagnosing cancer. Nevertheless, in certain 
instances, achieving a high level of precision is crucial when 
conducting pathological examinations of tissues at the cellular 
level. This accuracy is contingent upon the contrast of the path-
ological image, as well as the expertise of the clinician. Hence, it 
is imperative to employ an image processing methodology inte-
grated with artificial intelligence to achieve automated classifi-
cation. This study presents a novel technique for automated 
lung and colon cancer categorization using the DL methodol-
ogy. The object identified in the image was a histological image 
depicting normal tissue, benign tissue, and cancer. A CNN 
using the VGG16 architecture and CLAHE was used to clas-
sify 25 000 histopathology images. Simulation results demon-
strate that the proposed strategy achieves a maximum 
classification accuracy of 98.96%. The utilization of CLAHE 
enhances the performance of the system, resulting in superior 
detection accuracy compared with the absence of CLAHE. 
This improvement was stable for all epoch settings. This tech-
nique aims to assist clinicians in autonomously identifying can-
cers using massive datasets. It is expected to have a low cost, 
high accuracy, and rapid processing capabilities.50” Kauczor 
et al.51 mentioned that lung cancer is the most common lethal 
form of cancer, with a low chance of survival once the disease 
has progressed. The ability to screen persons at a high risk for 
lung cancer using annual LDCT demonstrated a survival 
advantage. ESR and ERS suggest that lung cancer screening 
should be conducted in well-structured, high-quality, long-term 
programs as part of a clinical trial or as regular practice at 
accredited multidisciplinary medical facilities. “The minimum 
need consists of standardized operating methods for acquiring 
low-dose images, computer-assisted examination of nodules, 
managing positive screening results, applying inclusion/exclu-
sion criteria, managing expectations, and implementing smok-
ing cessation programs. It is advisable to make additional 
improvements to enhance the quality, outcomes, and cost-effec-
tiveness of lung cancer screening. These include incorporating 
risk models, minimizing radiation exposure, utilizing computer-
assisted volumetric measurements, and evaluating comorbidi-
ties such as chronic obstructive pulmonary disease and vascular 
calcification. These parameters must be tailored to the area’s 
infrastructure and healthcare system. This will allow for precise 
determination of eligibility by utilizing a risk model, nodule 
management, and quality assurance strategy. It is highly recom-
mended that a centralized registry, including a biobank and 
image bank, be created at the European level.51” Coudray et al.52 
utilized a DCNN (specifically, Inceptionv3) to train on whole-
slide images obtained from TCGA. This study aimed to auto-
matically categorize lung tumors into 3 categories: LDC, 
LSCC, and normal lung tissue. The technique entailed instruct-
ing the network using diverse datasets such as frozen tissues, 

formalin-fixed paraffin-embedded tissues, and biopsies. The 
results demonstrated a performance similar to that of patholo-
gists, with an average AUC of 0.97 for classification.52 Bychkov 
et  al.53 utilized DL techniques to predict the outcomes of 
patients with colorectal cancer without the need for intermedi-
ate tissue classification. This approach involves constructing a 
complex neural network using digitized samples of cancer tissue 
microarrays (TMAs) stained with hematoxylin and eosin. These 
samples were obtained from 420 patients and were accompa-
nied by clinicopathological and outcome data. This study 
showed that using DL to predict outcomes based on small tis-
sue areas yielded better results than visual histological assess-
ments by human experts. Patients were categorized as low- or 
high-risk at both TMA and whole-slide levels. The hazard ratio 
was 2.3, and the AUC was 0.69, indicating that DL can extract 
more prognostic information from colorectal cancer tissue mor-
phology than human observers.53 Shapcott et al.54 utilized DL 
for cell identification algorithm for diagnostic images from 
TCGA colon cancer repository. The goal was to enhance the 
performance by employing within-image sampling while main-
taining accuracy. The approach involved instructing the DL 
algorithm using a locally stored dataset, and subsequently utiliz-
ing it to analyze TCGA images by dividing them into smaller 
sections and identifying the cells inside them. The performances 
of 2 sample approaches, random and systematic random spatial 
sampling, were examined; the latter demonstrated a 7-fold 
enhancement in performance while maintaining good accuracy. 
The findings demonstrated connections between the antici-
pated cellular characteristics and clinical factors in the TCGA 
colon cancer data. For instance, a greater number of fibroblasts 
is associated with metastasis and other invasive factors, under-
scoring the ability of DL to generate morphological features 
that reflect cell density and tumor characteristics with clinical 
significance.54 Hussain et al.55 aimed to improve the detection 
of lung cancer by extracting many types of features such as tex-
ture, morphology, entropy, SIFT, and EFD features. This study 
utilized robust ML classification techniques, including the 
naïve Bayes, DT, and SVM methods, using Gaussian RBF and 
polynomial kernels. The findings demonstrate that the NB 
algorithm, when combined with entropy, SIFT, and texture fea-
tures, yielded the highest detection accuracy of 100%. In addi-
tion, the use of texture features with an SVM polynomial 
resulted in excellent accuracy. Furthermore, the naïve Bayes 
classifier achieved the greatest separation, with an AUC value of 
1.00 when using entropy, morphological, SIFT, and texture fea-
tures. The decision tree and SVM polynomial kernel classifiers 
also achieved high separation using texture features.55 According 
to Talukder et al.,56 cancer is a lethal condition that results from 
a combination of hereditary disorders and several metabolic 
irregularities. Lung and colon cancers are prominent contribu-
tors to mortality and morbidity in the human population. 
Histological identification of such malignancies typically plays 
a crucial role in determining the optimal course of therapy. 
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Timely identification of the disease on either side of the body 
significantly reduces the probability of death. ML and DL algo-
rithms can expedite cancer detection, enabling researchers to 
analyze many patients within a much-reduced timeframe at a 
decreased expense. “This study presents a novel hybrid ensem-
ble feature extraction approach for the accurate identification of 
lung and colon cancer. The system combines advanced tech-
niques such as deep feature extraction, ensemble learning, and 
high-performance filtering to analyze cancer image datasets. 
The model was assessed using histopathological (LC25000) 
datasets of the lungs and colon. The findings indicated that the 
hybrid model could accurately diagnose lung, colon, and com-
bined lung and colon cancers with accuracy rates of 99.05%, 
100%, and 99.30%, respectively. The results of this study dem-
onstrate that the proposed technique significantly outperforms 
the existing models. Therefore, these models have the potential 
to be used in clinical settings to assist doctors with cancer detec-
tion and diagnosis.56” According to Wahid et  al.,57 both lung 
and colon cancers are highly lethal and can develop concur-
rently. The primary objective of most studies is to identify the 
specific ailment that affects a particular body organ. “In this 
study, a CAD system was developed that utilized a CNN to 
identify lung and colon cancer tissues in the LC25000 dataset. 
The LC25000 dataset comprises 25 000 histological color sam-
ples of colon and lung tissues, indicating the presence or absence 
of adenocarcinoma, which is a form of cancer. This study 
included 3 pre-trained CNN models, ShuffleNet V2, 
GoogLeNet, and ResNet18, as well as a customized CNN 
model. The evaluation metric used in this study indicated that 
ResNet18 achieved the highest accuracy of 98.82% in classify-
ing lung cancer, whereas ShuffleNetV2 had the shortest train-
ing time of 1749.5 seconds. The ShuffleNetV2 model achieved 
the highest accuracy of 99.87% when used for colon classifica-
tion with a remarkably rapid training time of 1202.3 seconds. 
The proposed customized CNN model achieved an accuracy of 
93.02% in classifying lung cancer and 88.26% in classifying 
colon cancer. The CNN model suggested in this study had the 
fastest training time, outperforming both the GoogLeNet and 
ResNet18 models.57” According to Mengash et al.,58 cancer is a 
fatal illness that results from a range of biochemical abnormali-
ties and genetic disorders. “Colon and lung cancer have 
emerged as significant contributors to disability and mortality 
in humans. Histological identification of these cancers is cru-
cial for selecting the best course of action. Early and prompt 
diagnosis of illness on either side reduces the likelihood of 
mortality. DL and ML techniques have been employed to 
expedite cancer detection, enabling the research community to 
analyze more patients in a significantly shorter timeframe and 
at a reduced cost. This paper presents the MPADL-LC3 
approach, which utilizes DL to classify lung and colon cancer. 
The MPADL-LC3 approach was designed to accurately dif-
ferentiate between various forms of lung and colon cancer 
based on histopathological images. To achieve this, the 

MPADL-LC3 approach utilizes CLAHE-based contrast 
enhancement as a pre-processing step. Furthermore, the 
MPADL-LC3 method utilizes MobileNet to generate feature 
vectors. The MPADL-LC3 approach utilizes the MPA as a 
hyperparameter optimizer. In addition, DBNs can be used to 
classify the lungs and colors. An analysis was conducted on 
benchmark datasets to evaluate the simulation values of the 
MPADL-LC3 approach. The comparative analysis emphasized 
the improved results of the MPADL-LC3 system in terms of 
various metrics.58” Ibrahim and Talaat59 identified lung and 
colon cancers as the most prevalent and lethal forms of cancer, 
respectively. It accounts for approximately 25% of all cancer 
cases. “Detecting the disease at an early stage significantly 
increased the likelihood of survival. The classification accuracy 
was improved and cancer detection was automated using 
Double CLAHE stages and modified neural networks for 
image enhancement by employing DL methods. This study 
introduces a novel AI classification system that can accurately 
identify 5 different types of colon and lung tissue. These 
included 3 types of malignant tissue and 2 types of benign tis-
sue. This method is based on analyzing histological images, and 
can classify lung cancer into 3 distinct classes and colon cancer 
into 2 distinct classes. The findings of this study revealed that 
the proposed approach has a high level of accuracy and correctly 
identifies cancerous tissues up to 99.5% of the time. This model 
will assist medical professionals in creating an automated and 
dependable system for identifying various types of colon and 
lung tumors.59” According to Attallah et al.,60 lung and colon 
cancer are among the primary causes of death and illness in 
individuals. “They can occur simultaneously in organs and have 
detrimental effects on human life. If the cancer is not detected 
during its initial stages, there is a high probability that it may 
metastasize to many organs. Histological identification of these 
malignancies is vital for successful treatment. Despite their 
lengthy and complex nature, DL approaches have significantly 
accelerated and enhanced the procedure, allowing researchers to 
efficiently investigate more patients within a shorter timeframe 
at reduced cost. Prior research has relied on DL models, which 
require substantial computer power and resources. Most rely on 
separate DL models to extract high-dimensional data or to con-
duct diagnoses. Nevertheless, this study introduces a system that 
relies on several efficient DL models to detect early stage lung 
and colon tumors. The framework employs multiple transfor-
mation techniques to reduce the number of features and enhance 
data representation. Histopathological scans were inputted into 
the ShuffleNet, MobileNet, and SqueezeNet models within 
this framework. The deep features obtained from these models 
were then reduced using PCA and the FHWT algorithms. 
Subsequently, the reduced features of the FWHT acquired 
from the 3 DL models were fused using DWT. Furthermore, 
the PCA features of the 3 DL models are combined. Ultimately, 
the reduced features obtained via the PCA and FHWT-DWT 
reduction and fusion techniques were input into 4 separate ML 
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algorithms, resulting in an impressive accuracy of 99.6%. The 
findings achieved using the suggested framework, which relies 
on efficient DL models, demonstrate its ability to differentiate 
between lung and colon cancer types. Compared with the cur-
rent approaches, this is accomplished with a reduced set of char-
acteristics and less computational complexity. This study also 
demonstrated that employing transformation methods to 
decrease characteristics can provide a more accurate under-
standing of the data, thereby enhancing the diagnostic proce-
dure.60” According to Hoang et al.,61 cancer treatment poses a 
significant challenge. Lung cancer, along with colon, stomach, 
and liver cancer, is one of the most difficult forms of cancer. The 
early detection and treatment of this condition can significantly 
extend a patient’s lifespan. DL approaches can be used to per-
form several tasks across various industries, including medicine. 
This research suggests modifying the transfer learning of deep 
neural networks for classifying lung and colon cancers using the 
GoogLeNet model. The primary concept of the inception 
module in GoogLeNet involves simultaneously performing 
numerous operations (such as pooling and convolution) with 
various filter sizes, thereby eliminating the need for compro-
mise. The second benefit of the inception module is the decrease 
in dimensionality of the feature maps and the handling of over-
parameterization. The categorization output was modified to 
include only 3 or 2 classes to accommodate the specific lung and 
colon tissue classes. The proposed method achieved accuracies 
of 99.66% and 100% on lung and colon imaging datasets, 
respectively. The proposed method outperformed previous 
algorithms, including VGG16, ResNet50, NASNetMobile, and 
GoogLeNet.61 Bychkov et al.53 utilized a combination of con-
volutional and recurrent architectures to train a deep network to 
predict the outcomes of patients with colorectal cancer. 
“Predictions were made based on images of the tumor tissue 
samples. They claimed that their approach was unique because 
they directly forecasted patient prognosis without any interme-
diary tissue classification. They analyzed a collection of digi-
tized hematoxylin-eosin-stained tumor tissue microarray 
(TMA) samples from 420 patients with colorectal cancer. 
Clinicopathological and outcome data were obtained for these 
patients. The findings indicate that using DL to predict out-
comes based on small tissue areas as input is more effective 
(hazard ratio 2.3; 95% CI 1.79–3.03; AUC 0.69) than visual 
histological assessments conducted by human experts on both 
TMA spots (HR 1.67; 95% CI 1.28–2.19; AUC 0.58) and 
whole-slide levels (HR 1.65; 95% CI 1.30–2.15; AUC 0.57) 
when categorizing patients into low- and high-risk groups. 
These findings indicate that advanced DL methods may derive 
more predictive data from the physical characteristics of CRC 
cells than a skilled human observer.53” Tharwat et al.62 argued 
that addressing colon cancer treatment poses significant social 
and economic issues, mostly because of the elevated mortality 
rates associated with the disease. Annually, approximately 
500 000 individuals are diagnosed with cancer, including colon 

cancer, worldwide. Assessment of colon cancer grade mostly 
relies on examination of the structure of the gland in different 
tissue regions. This has resulted in the development of multiple 
screening methods that can be employed to analyze polyp 
images and detect colorectal cancer. This study provides an 
extensive examination of the process of colon cancer diagnosis. 
This comprehensive article encompasses all aspects of colon 
cancer, including symptoms, grades, and imaging modalities 
used for analysis, with a special focus on histopathological 
images. Additionally, it discusses the commonly used diagnostic 
systems. In addition, this study explored datasets and perfor-
mance evaluation criteria that are commonly used. They offered 
an extensive analysis of the existing research on colon cancer, 
categorized it into DL and ML methods, and highlighted the 
primary advantages and drawbacks of these methods. These 
techniques offer substantial assistance in detecting the initial 
phases of cancer, which enables prompt treatment of the disease 
and results in a reduced mortality rate compared to the rate 
observed when symptoms manifest. Furthermore, these tech-
niques can impede the progression of colorectal cancer by elimi-
nating premalignant polyps. This can be accomplished by using 
screening tests to facilitate early disease detection. The text pre-
sents the current issues and prospective research directions that 
pave the way for further study.62 According to Hamed et al.,63 
colon cancer is one of the primary causes of death and illness in 
humans. Histopathological diagnosis is a crucial factor in defin-
ing cancer type. This article describes the development of a 
computer-aided design (CAD) system for colon adenocarci-
noma. The system utilizes ML techniques to assess digital 
pathology images. A dataset including 10 000 photos was col-
lected from the LC25000 collection, with an equal distribution 
of 5000 images for each class. The classification model employed 
a CNN with a light-gradient boosting machine (CNN-
LightGBM) employing multiple threads. The proposed system 
was compared with other ML algorithms. The claimed diag-
nostic accuracy for colon cancer has surpassed 90%, surpassing 
the accuracy of the latest ML algorithms regarding illness clas-
sification. Nevertheless, the precision was lower than that of the 
lung cancer classification achieved using this method. This 
study demonstrates the ability of ML to enhance the precision 
and effectiveness of medical diagnoses. It also emphasizes the 
necessity for additional research to enhance the precision of 
colon cancer diagnosis.63 AlGhamdi et  al.64 emphasized the 
importance of promptly detecting lung and colon cancers to 
enhance patient outcomes and ensure treatment efficacy. “The 
HPI has become a reliable and effective diagnostic method for 
cancer. HPI analysis for LCC diagnosis involves thorough eval-
uation and analysis of tissue samples obtained from LCC to 
identify any abnormalities or malignant cells. It plays a crucial 
role in the staging and diagnosis of this tumor and contributes 
to the prognosis and treatment planning. However, manually 
analyzing an image is time consuming and prone to human 
error. Hence, the detection of LCC using HPIs requires CAD 
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techniques. TL utilizes pre-trained DL algorithms trained on a 
larger dataset to extract relevant features from HPIs. These fea-
tures were then used to develop a classifier for tumor diagnosis. 
This paper presents the invention of the BERTL-HIALCCD 
approach, which optimizes the Earth’s radius of Al-Biruni using 
transfer-learning-based histopathological image analysis to 
detect lung and colon cancer. This study aimed to accurately 
identify LCC in histopathological images. The BERTL 
HIALCCD approach employs computer vision and TL princi-
ples for precise LCC identification. The BERTL-HIALCCD 
approach uses an enhanced ShuffleNet model for feature extrac-
tion, and its hyperparameters are determined by the BER sys-
tem. A DCRNN model was used to effectively recognize LCC. 
The Coati optimization algorithm was used to select the 
parameters for the DCRNN technique. To evaluate the effec-
tiveness of the BERTL-HIALCCD technique, a series of 
extensive experiments was performed on a substantial dataset of 
histopathological images. The experimental results indicate that 
integrating the AER and COA algorithms achieves superior 
performance in cancer detection compared to the other tested 
models.64” According to Xu et al.,65 tumors are dynamic bio-
logical systems that are undergoing ongoing evolution. Medical 
imaging has the distinct advantage of tracking these changes 
throughout the treatment. Although it may be easy to subjec-
tively follow lesions over space and time, developing automated 
radiomic systems that combine serial imaging data and are clin-
ically meaningful is much more difficult. This study assessed the 
performance of DL networks in predicting clinical outcomes by 
evaluating the time-series CT scans of patients diagnosed with 
locally advanced NSCLC. Dataset A included 179 patients 
diagnosed with stage III NSCLC, who underwent definitive 
chemoradiation. The dataset included pretreatment and post-
treatment CT images taken at the 1-, 3-, and 6-months follow-
ups, totaling 581 scans. The models were created by applying 
transfer-learning techniques to combine CNNs with RNNs. 
These models were trained using a single-point tumor localiza-
tion approach. Dataset B, which consisted of 89 patients with 
NSCLC who underwent chemoradiation and surgery, was sub-
jected to pathological response validation. In total, 178 scans 
were included in the analysis. Time-series scans have been 
effectively utilized in DL models to accurately predict survival 
and particular cancer-related outcomes including progression, 
distant metastases, and locoregional recurrence. The perfor-
mance of the CNN model improved with each consecutive 
follow-up scan, as indicated by the increase in the AUC for 
2-year overall survival to 0.74, with a significance level of 
P < .05. The models categorized patients into low- and high-
mortality risk groups, which showed a strong correlation with 
overall survival [hazard ratio (HR) = 6.16; 95% confidence 
interval (CI), 2.17–17.44; P < .001]. The model accurately pre-
dicted the pathological response in dataset B with a substantial 
level of confidence (P = .016). They proved that DL can include 
imaging scans taken at various intervals, enhancing the accuracy 

of predicting clinical outcomes. AI-driven non-invasive radi-
omic biomarkers can greatly influence clinical practice because 
of their cost-effectiveness and limited human involvement. 
Medical imaging is a non-invasive method for monitoring the 
response and progression of tumors in patients following treat-
ment. Nevertheless, quantitative evaluation using manual meas-
ures is laborious, time-consuming, and susceptible to differences 
across operators, as subjective visual judgment can lack objectiv-
ity and be influenced by personal bias. AI can automatically 
measure and analyze the radiographic features of tumor pheno-
types. It can also be used to quantitatively track tumor changes 
before, during, and after therapy. This study demonstrated the 
ability of DL networks to accurately predict prognostic out-
comes in patients undergoing radiation therapy by utilizing 
serial CT images that are regularly collected during the follow-
up process. They further emphasized their capacity to account 
for and utilize existing sequential images to extract key time 
points and image characteristics relevant to predicting survival 
and response to therapy. This information offers a better under-
standing of applications such as identifying significant remain-
ing diseases without surgery and other personalized medicine 
techniques.65 Agbley et al.66 powered DL models using exten-
sive datasets. Nevertheless, the availability of medical data is a 
barrier that affects the reliability of computer-aided diagnostic 
models. There are multiple reasons for the scarcity of labeled 
data. One area of expertise is the process of annotating biopsies 
and scans obtained from the laboratories. Another factor to 
consider is the delicate and confidential nature of the medical 
information. “This study aimed to enhance the automatic fea-
ture engineering capabilities of DL by utilizing data from other 
diseases gathered using the same technique, thereby increasing 
the amount of accessible data. Therefore, this study examined 
the training of a model that could categorize 2 distinct diseases 
into their respective subclasses using multiple centers. The data 
for each disease were stored on individual devices to ensure that 
the original data remained confidential and exclusive to each 
device. Each center trains VGG16 locally, and the parameters 
are then shared and aggregated to create a global model. This 
experiment employed the LC25000 dataset, which consists of 
lung and cancer biopsy images. The global model was evalu-
ated using distinct test sets for patients 1 (lungs) and 2 (colon). 
In addition, they conducted centralized learning (CL) by 
aggregating the 4 classes used in the decentralized experiment. 
The methodology achieved exceptional results, surpassing cur-
rent state-of-the-art methods, while ensuring data confidenti-
ality.66” According to Ren et al.,67 cancer ranks as the second 
most prevalent cause of mortality globally, with lung cancer 
exhibiting much higher fatality rates than other cancer forms. 
“Many innovative computer-aided diagnostic methods utiliz-
ing DL have recently been developed to identify early stage 
lung cancers. However, DL models are prone to overfitting, 
which leads to poor performance. To address the issue of lung 
cancer classification, a combined LCGANT approach was used. 
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This system comprises of 2 primary components. The initial 
component is a DC-GAN designed for lung cancer, which is 
capable of generating synthetic images. The second component 
is regularization-enhanced transfer learning, which categorizes 
lung cancer images into 3 distinct categories. The framework 
achieved an accuracy of 99.84% ± 0.156%, precision of 
99.84% ± 0.153%, sensitivity of 99.84% ± 0.156%, and an 
F1-score of 99.84% ± 0.156%. The outcome achieved the high-
est performance in the dataset for classifying lung cancers.” The 
proposed framework effectively addresses the issue of overfit-
ting in lung cancer classification tasks, surpassing the perfor-
mance of existing cutting-edge methods.67

Zheng et  al.68 proposed the Radiology Analysis and 
Malignancy Evaluation Network (R2MNet) for assessing pul-
monary nodule malignancy through radiological characteris-
tics, using radiological features as channel descriptors to 
emphasize crucial regions for malignancy evaluation. “The 
study also introduced Channel-Dependent Activation 
Mapping (CDAM) to visualize features and clarify the deci-
sion-making process of deep neural networks (DNNs). 
Experimental results on the Lung Image Database Consortium 
Image Collection (LIDC-IDRI) dataset demonstrated that 
R2MNet achieved an area under the curve (AUC) of 0.92 for 
nodule radiology analysis and 0.87 for malignancy evaluation. 
CDAM feature explanations revealed that nodule shape and 
density are critical factors in malignancy inference, aligning 
with the diagnostic cognition of experienced radiologists, 
thereby enhancing the confidence and interpretability of evalu-
ation results.68”

Zhu et  al.69 presented DeepLung, a fully automated lung 
computed tomography (CT) cancer diagnosis system. 
“DeepLung consists of 2 components: nodule detection, which 
identifies candidate nodule locations, and classification, which 
differentiates benign and malignant nodules. To handle the 3D 
nature of lung CT data efficiently, 2 deep 3D dual-path net-
works (DPN) were designed for these tasks. For nodule detec-
tion, a 3D faster region with a convolutional neural network 
(R-CNN) utilizing 3D dual path blocks and a U-net-like 
encoder-decoder structure is employed to learn nodule features 
effectively. For nodule classification, a gradient boosting 
machine (GBM) with 3D dual-path network features was pro-
posed. This classification subnetwork, validated on the LIDC-
IDRI public dataset, outperformed state-of-the-art methods 
and experienced doctors in image-based diagnoses. In 
DeepLung, candidate nodules are first detected by the nodule 
detection subnetwork, followed by nodule diagnosis via the 
classification subnetwork. Extensive experiments showed that 
DeepLung’s performance is comparable to that of experienced 
doctors for both nodule- and patient-level diagnoses on the 
LIDC-IDRI dataset.69”

Pardyl et al.70 introduces a fully automated pipeline called 
CompLung for lung cancer screening, utilizing machine learn-
ing tools to address challenges in lung segmentation and 

detection of potentially malignant nodules in CT scans.The 
proposed tool provides organ segmentation, patient-level can-
cer probability, and locations of suspicious regions.The authors 
trained CompLung using the LIDC-IDRI dataset and dem-
onstrate its superior performance and interpretability com-
pared to existing methods for lung cancer diagnosis70.

Pardyl et al.71 addressed the limitations of automated lung 
cancer classification methods, which often rely on the LIDC-
IDRI dataset for training, and typically focus on node-level 
classification, resulting in poor patient-level diagnostic out-
comes. “In their paper, they introduced an end-to-end method 
that takes a CT scan as input and provides patient-level diag-
nosis as the output. This study explored 3 approaches under 
different data regimes to assess how varying levels of supervi-
sion impact model performance, aiming to enhance both node-
level and patient-level diagnostic accuracy.71”

Souza et al.72 addressed the challenge of automatically seg-
menting lung fields in chest X-rays (CXR), especially when 
dense abnormalities such as opacities from diseases like tuber-
culosis and pneumonia are present. “These opacities often lead 
to incomplete segmentation, as they can be misinterpreted as 
lung boundaries. To address this, the authors proposed a 
method involving 4 main steps: image acquisition, initial seg-
mentation, reconstruction, and final segmentation, utilizing 2 
deep convolutional neural network (CNN) models. Testing 
138 CXR images from Montgomery County’s Tuberculosis 
Control Program showed impressive results, with an average 
sensitivity of 97.54%, specificity of 96.79%, accuracy of 96.97%, 
Dice coefficient of 94%, and Jaccard index of 88.07%. The 
study demonstrated that incorporating a reconstruction step 
effectively addresses the problem of dense abnormalities, sig-
nificantly enhancing lung segmentation accuracy.72”

Shen et  al.73 investigate diagnostic lung nodule classifica-
tion using thoracic Computed Tomography (CT) screening, 
addressing the challenge of modeling raw nodule patches with-
out predefined nodule morphology. “They proposed a hierar-
chical learning framework called Multi-scale Convolutional 
Neural Networks (MCNN) to capture nodule heterogeneity by 
extracting discriminative features from alternatingly stacked 
layers. This framework uses multiscale nodule patches to simul-
taneously learn class-specific features by concatenating the 
response neuron activations from the last layer of each input 
scale. Evaluated on CT images from the Lung Image Database 
Consortium and Image Database Resource Initiative (LIDC-
IDRI), this method is effective in classifying malignant and 
benign nodules without relying on nodule segmentation.73”

Shen et al.74 address the challenge of insufficient imaging 
samples with pathologically-proven labels in developing CNN 
models for predictive lung cancer diagnosis. They proposed a 
domain-adaptation framework to learn transferable deep fea-
tures to predict patient-level lung cancer malignancies. “This 
study utilized CNN-based features from a large discovery set 
of 2272 lung nodules, labeled with malignancy likelihood based 
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on multiple radiologists’ assessments, which were tested on a 
smaller diagnosis-definite set of 115 cases with pathologically 
proven lung cancer labels. Evaluated on the LIDC-IDRI data-
set, their approach demonstrated superior predictive perfor-
mance for patient-level malignancy (Acc = 70.69%, 
AUC = 0.66), outperforming a nodule-level CNN model 
(Acc = 65.38%, AUC = 0.63), and comparable to radiologists’ 
knowledge (Acc = 72.41%, AUC = 0.76).” The model signifi-
cantly reduces the need for pathologically proven data, offering 
the potential to enhance cancer diagnosis by leveraging multi-
source CT imaging datasets.74

Haghighi et  al.75 explored the untapped potential of rich 
semantics embedded in medical images for self-supervised 
learning aimed at enhancing deep semantic representation 
learning. “They introduced a novel framework that trained 
deep models to learn semantically enriched visual representa-
tions through self-discovery, self-classification, and self-resto-
ration of anatomical structures in medical images, resulting in 
a pretrained 3D model called Semantic Genesis. This model 
was evaluated against all publicly available pre-trained models, 
both self-supervised and fully supervised, across 6 distinct tar-
get tasks encompassing classification and segmentation in vari-
ous medical modalities (CT, MRI, and X-ray). Extensive 
experiments revealed that Semantic Genesis significantly out-
performs its 3D counterparts and the widely used ImageNet-
based transfer learning in 2D because of the framework’s ability 
to leverage consistent anatomical patterns in medical images 
for compelling semantic representation learning.75”

Asuntha et  al.76 address the significant global mortality 
caused by lung cancer, with about 5 million deaths annually. 
Their study aimed to detect cancerous lung nodules on CT 
scans and classify the severity of lung cancer. “The approach 
utilizes advanced deep learning methods and effective feature 
extraction techniques, including the Histogram of Oriented 
Gradients (HOG), wavelet transform-based features, Local 
Binary Pattern (LBP), Scale Invariant Feature Transform 
(SIFT), and Zernike Moment. These techniques extract tex-
ture, geometric, volumetric, and intensity features, which are 
then optimized using the Fuzzy Particle Swarm Optimization 
(FPSO) algorithm to select the best features. The selected fea-
tures are classified using a novel FPSOCNN, which reduces 
the computational complexity of the traditional CNNs. The 
performance of the method was validated on a real-time data-
set from the Arthi Scan Hospital. The experimental results 
demonstrate that the novel FPSOCNN outperforms other 
techniques in detecting and classifying lung cancer.76”

Ardila et al.77 address the high mortality rate of lung cancer 
in the United States, which caused an estimated 160 000 deaths 
in 2018. “Lung cancer screening using low-dose computed 
tomography (CT) has been shown to reduce mortality by 
20-43% and is included in the US screening guidelines. 
However, challenges such as inter-grade variability and high 
false-positive and false-negative rates persist. To address these 

issues, the authors propose a deep learning algorithm that pre-
dicts lung cancer risk by analyzing a patient’s current and prior 
CT volumes. Their model achieved state-of-the-art perfor-
mance with an area under the curve (AUC) of 94.4% on 6716 
cases from the National Lung Cancer Screening Trial and 
showed similar performance on an independent clinical valida-
tion set of 1139 cases. In 2 reader studies, the model outper-
formed all 6 radiologists in scenarios in which prior CT 
imaging was unavailable, reducing false positives by 11% and 
false negatives by 5%. When prior imaging was available, the 
model’s performance was similar to that of radiologists. This 
demonstrates the potential of deep learning models to enhance 
the accuracy, consistency, and adoption of lung cancer screen-
ing, optimizing the screening process through computer assis-
tance and automation.77”

Lee et al.78 conducted a study to evaluate the effectiveness of 
a deep learning algorithm for detecting lung cancer in chest 
radiographs, supported technically by Lunit but independently 
designed and analyzed. “This study involved a screening cohort 
from 2008 to 2012, comprising 10 202 individuals with lung 
cancer cases determined by experienced radiologists. Validation 
tests were conducted by board-certified radiologists to compare 
the performance of the algorithm with that of radiologists. 
Using 10 285 radiographs, including 10 with visible lung can-
cers, the algorithm achieved an AUC of 0.99 and a sensitivity 
of 90% compared to radiologists’ 60% sensitivity, albeit with a 
higher false-positive rate (FPR) of 3.1% versus 0.3% (P < .001). 
In a larger screening cohort of 100 525 radiographs, including 
47 with visible lung cancers, the algorithm achieved an AUC of 
0.97, with 83% sensitivity and 3% FPR. The results indicate 
that the deep learning algorithm has a lung cancer detection 
performance comparable to that of radiologists, suggesting its 
potential to assist in screening populations with a low preva-
lence of lung cancer.78”

Huang et al.79 aimed to develop a more accurate lung cancer 
screening protocol by predicting the 3-year lung cancer risk 
after 2 CT scans using a deep learning algorithm called 
DeepLR. “The algorithm was trained on data from the 
National Lung Screening Trial (NLST) and validated using 
data from the Pan-Canadian Early Detection of Lung Cancer 
(PanCan) study. DeepLR performance was compared with 
that of the Lung CT Screening Reporting and Data System 
(Lung-RADS) and volume doubling time. The training 
cohort included 25 097 participants from the NLST and the 
validation cohort included 2294 individuals from PanCan. 
DeepLR demonstrated high accuracy, with time-dependent 
AUC values for cancer diagnosis at 1, 2, and 3 years of 0.968, 
0.946, and 0.899, respectively. It identified 94%, 85%, and 71% 
of lung cancers diagnosed within 1, 2, and 3 years, respectively, 
in high-risk individuals deemed high risk. Additionally, those 
with high DeepLR scores had a significantly higher risk of 
mortality than those with high Lung-RADS scores (hazard 
ratio 16.07, 95% CI 10.15–25.44; P < .0001).” DeepLR 
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effectively recognizes patterns in nodule and non-nodule fea-
tures, providing accurate guidance for clinical management fol-
lowing repeat CT screenings.79

Lu et al.80 conducted a study to improve the assessment of 
tumor response in metastatic colorectal cancer (mCRC) 
patients undergoing anti-vascular endothelial growth factor 
therapies, where morphological changes in tumors may pre-
cede size changes. “Using a deep learning (DL) network, they 
retrospectively analyzed data from 1028 patients with mCRC 
in the VELOUR trial (NCT00561470). The DL network out-
performed traditional size-based assessments in predicting 
early on-treatment response, achieving a C-index of 0.649 
(95% CI 0.619–0.679) compared to 0.627 (95% CI 0.567–
0.638) for size-based methods (P = .009, z-test). Combining 
DL with size-based methodology further improved the predic-
tion performance to a C-index of 0.694 (95% CI 0.661–0.720), 
which was significantly superior to either model alone 
(P < .001, z-test). This study highlights the potential of DL 
networks to provide a noninvasive, quantitative, and compre-
hensive assessment of tumor morphological changes, enhanc-
ing personalized early on-treatment decision-making in 
patients with mCRC.80”

Zhang et al.81 developed and validated a deep learning (DL) 
method to predict the response of locally advanced rectal can-
cer to neoadjuvant chemoradiotherapy using diffusion kurtosis 
and T2-weighted MRI. “In this prospective study, 383 partici-
pants with rectal adenocarcinoma (⩾cT3 or N+) were enrolled 
between October 2015 and December 2017 and were divided 
into 308 training and 104 test samples. DL models primarily 
predicted pathologic complete response (pCR) and secondarily 
assessed tumor regression grade (TRG) and T downstaging. 
The DL model achieved an area under the receiver operating 
characteristic curve (AUC) of 0.99 for pCR in the test cohort, 
significantly outperforming 2 radiologists with AUCs of 0.66 
and 0.72 (P < .001). The model’s AUCs for TRG and T down-
staging were 0.70 and 0.79, respectively. The AUC of the DL 
model for pCR also surpassed that of the best-performing 
diffusion-kurtosis MRI parameter (Dapp value, AUC = 0.76). 
Radiologists’ subjective evaluations had higher error rates 
(26.9% and 24.8%) than the DL model (2.2%), but error rates 
decreased to 12.9% and 14.0% when assisted by the DL model. 
The study concluded that the DL model based on diffusion 
kurtosis MRI effectively predicts pCR and assists radiologists 
in evaluating the response of rectal cancer to neoadjuvant 
chemoradiotherapy.81”

Zhao et  al.82 developed and validated a deep-learning-
based, fully automated lymph node detection and segmenta-
tion (auto-LNDS) model for rectal cancer (RC) staging using 
multiparametric magnetic resonance imaging (mpMRI). The 
study included 5789 annotated lymph nodes (LNs) from 293 
patients with RC. “The auto-LNDS model, based on Mask 
R-CNN, fused T2-weighted images (T2WI), and diffusion-
weighted images (DWI), was validated on both internal (935 

LNs) and external (1198 LNs) datasets. For LNs detection, the 
model achieved a sensitivity of 80.0%, positive predictive value 
(PPV) of 73.5%, false positive rate per case (FP/vol) of 8.6 in 
internal testing, sensitivity of 62.6%, PPV of 64.5%, and FP/vol 
of 8.2 in external testing. These results were significantly better 
than those obtained by the junior radiologists. The detection 
and segmentation time was 1.3 seconds per case, compared to 
200 seconds per case for radiologists. The Dice similarity coef-
ficient (DSC) for LNs segmentation ranged from 0.81 to 0.82.” 
The study concluded that the auto-LNDS model significantly 
improved the efficiency and accuracy of LNs detection and 
segmentation in RC staging.82

Shayesteh et  al.83 investigated the feasibility of predicting 
treatment response in locally advanced rectal cancer (LARC) 
patients undergoing neoadjuvant chemoradiation therapy 
(nCRT) using MRI-based pre-, post-, and delta-radiomic fea-
tures. “The study included 53 patients with LARC, with data 
split into a training set (36 patients) and an external validation 
set (17 patients). T2-weighted MRI scans were acquired before 
and after nCRT, and 96 radiomic features were extracted and 
harmonized. Various machine learning algorithms, including 
k-nearest neighbors (KNN), Naïve Bayes (NB), Random 
Forests (RF), and extreme Gradient Boosting (XGB), have 
been used for classification. The highest AUC values were 
achieved with the delta-radiomic-based RF model (0.96 ± 0.01) 
and NB (0.96 ± 0.04), outperforming pre- and post-treatment 
features (P-value <.05). The study concluded that delta-radi-
omic features analyzed with RF classifiers are promising bio-
markers for predicting treatment response in patients with 
LARC.83”

Pizzi et al.84 developed a machine learning model to predict 
treatment response in patients with locally advanced rectal 
cancer (LARC) undergoing neoadjuvant chemoradiotherapy 
(CRT) followed by total mesorectal excision (TME). “The 
study utilized pretreatment T2-weighted MRI scans from 72 
patients with LARC, with tumors segmented by 2 independ-
ent readers. Radiomic features were extracted from both the 
tumor core (TC) and tumor border (TB). A Partial Least 
Squares (PLS) regression model was employed, with leave-
one-out nested cross-validation used for hyperparameter opti-
mization. The model achieved an AUC of 0.793 (P = 5.6 × 10−5), 
demonstrating improved predictive performance when com-
bining clinical and radiomic features.” This study highlights 
the potential of integrating MRI-based clinical and radiomic 
features for early prediction of treatment response and suggests 
the need for prospective validation in clinical trials.84

Zhou et  al.85 developed a deep learning model named 
CRCNet for the optical diagnosis of colorectal cancer (CRC) 
using 464 105 images from 12 179 patients. “The model was 
tested on 2263 patients from 3 independent datasets. At the 
patient level, CRCNet achieved high performance with an area 
under the precision-recall curve (AUPRC) ranging from 0.867 
to 0.882, outperforming average endoscopists in terms of recall 
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rate and precision in most test sets. At the image level, CRCNet 
demonstrated exceptional accuracy, with AUPRC values 
between 0.990 and 0.997.” These results suggest the potential 
of CRCNet to improve CRC screening, warranting further 
investigation through prospective clinical trials.85

Grosu et al.86 investigated the use of machine learning to 
differentiate between benign and premalignant colorectal pol-
yps detected using CT colonography. “They used radiomics to 
extract 1906 features from segmented polyps and applied a 
random forest classification algorithm. The model was trained 
on 107 polyps and validated using an external test set of 77 
polyps. The random forest model achieved an area under the 
receiver operating characteristic curve (AUC) of 0.91, with a 
sensitivity of 82% and a specificity of 85%. A study demon-
strated that machine learning can effectively distinguish 
between benign and premalignant polyps noninvasively, show-
ing promise for improving colorectal cancer screening.86”

Talukder et al.56 developed a hybrid ensemble feature extrac-
tion model for cancer detection, focusing on lung and colon 
cancers. “Their model integrates deep learning for feature 
extraction with ensemble learning and high-performance fil-
tering and is tested on LC25000 histopathological datasets for 
lung and colon cancers. The hybrid model achieved accuracy 
rates of 99.05% for lung cancer, 100% for colon cancer, and 
99.30% for combined lung and colon cancer.” The results of 
this study indicate that this model significantly outperforms 
the existing methods and could be a valuable tool in clinical 
settings to assist in cancer diagnosis.56

Sirinukunwattana et al.87 developed an image-based method, 
imCMS, to predict colorectal cancer (CRC) consensus molecu-
lar subtypes (CMS) from standard H&E-stained tissue sec-
tions using deep learning. “The method was trained and tested 
on data from 3 independent datasets: FOCUS trial, 
GRAMPIAN cohort, and The Cancer Genome Atlas (TCGA). 
imCMS achieved high classification accuracy with AUCs of 
0.84 and 0.85 in unseen datasets. It effectively resolved intratu-
moral heterogeneity, correlated genomic and epigenetic altera-
tions, and matched the prognostic associations of transcriptomic 
CMS. This approach offers a cost-effective alternative for bio-
logical stratification in routine clinical workflows.87”

Wulczyn et al.88 developed a deep learning system (DLS) to 
predict the 5-year disease-specific survival in stage II and III 
colorectal cancer using 27 300 histopathology slides from 3652 
cases. “The DLS achieved AUCs of 0.70 and 0.69 on validation 
datasets, adding significant predictive value to 9 clinicopatho-
logic features. To enhance interpretability, the study explored 
human-interpretable features and found that traditional clinico-
pathological factors (T-category, N-category, grade) explained 
only 18% of the variance in DLS scores. In contrast, histological 
features derived from clustering deep learning embeddings 
explained 73%-80% of the variance. A specific clustering-derived 
feature, associated with poorly differentiated tumor cell clusters 
near adipose tissue, was highly prognostic and identifiable by 

annotators with 87.0%-95.5% accuracy.” This approach provides 
insight into DLS predictions and identifies potentially novel 
prognostic features for further validation.88

Table 1 encompasses a range of studies focusing on the detec-
tion and diagnosis of both lung and colon cancer using ML and 
DL techniques. These studies have utilized various datasets and 
methodologies to address the challenges of identifying these 2 
types of cancer. The findings demonstrate the efficacy of DL 
models in accurately diagnosing cancerous tissues, with reported 
accuracy rates ranging from 88.26% to 100% across different 
studies. The results underscore the potential of ML algorithms, 
such as convolutional neural networks (CNNs) and transfer 
learning, to enhance the precision and efficiency of cancer diag-
nosis for both lung and colon cancer. However, several limita-
tions were noted, including scarcity of labeled data and risk of 
overfitting. Despite these challenges, studies have collectively 
highlighted the significance of leveraging artificial intelligence 
to improve early detection and ultimately enhance patient out-
comes in managing lung and colon cancers.

Challenges and Opportunities in Lung and Colon 
Cancer Imaging Research
Research on lung and colon cancer imaging faces both chal-
lenges. Challenges include the complexity of tumor morphol-
ogy and heterogeneity, making accurate diagnosis and 
classification difficult. In addition, the availability of labeled 
data for training ML models remains limited, hindering the 
development of robust algorithms. Moreover, overfitting and 
generalizability pose significant obstacles in translating 
research findings into clinical practice. However, there are sev-
eral promising opportunities in this field. Advances in imaging 
technologies such as high-resolution CT scans and hyperspec-
tral imaging offer detailed insights into tumor characteristics 
and microenvironments. Furthermore, integrating ML and DL 
techniques has great potential for improving the diagnostic 
accuracy and personalized treatment strategies. Collaborative 
efforts to collect and share annotated imaging datasets and the 
development of innovative algorithms can address some of the 
current challenges and pave the way for more effective imag-
ing-based approaches for managing lung and colon cancer. The 
achievements in diagnosing lung and colon cancers using com-
puter intelligence from 2017 to 2023 are listed in Table 2.

Table 2 illustrates the significant advancements in computer 
intelligence for the diagnosis of lung and colon cancer. In 2017, 
while the specific accuracy for diagnosing lung cancer was not 
provided, there was a notable achievement of 87% accuracy in 
diagnosing colon cancer. Subsequent years saw varying levels of 
progress, with 2019 marking a milestone with high accuracies 
of 94.56% for colon cancer and 95% for both lung and colon 
cancer. The trend continues to improve, particularly in lung 
cancer diagnosis, reaching an impressive accuracy of 98.67% in 
2021 and a range of 99.05%-100% in 2022. Although the spe-
cific accuracy for colon cancer was not provided for 2023, a 
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substantial achievement of 97% accuracy was reported for lung 
cancer, with a remarkable 99.87% accuracy for both lung and 
colon cancers. Overall, the consistent enhancement in accuracy 
underscores the growing potential of computer intelligence in 
facilitating the early and precise detection of lung and colon 
cancers, offering promising prospects for improved patient 
outcomes and healthcare management.

Specific studies and cases provide context and make the 
information more tangible on challenges and opportunities in 
lung and colon cancer imaging research.

Examples of the major challenges are as follows:

1.	  �A study by Gerlinger et al.89 highlighted the significant 
intratumour heterogeneity in lung cancer, which com-
plicates accurate diagnosis and classification. Researchers 
have found that different regions of the same tumor can 
have distinct genetic mutations, making it challenging 
to develop uniform diagnostic criteria.89

2.	  �Litjens et  al.90 emphasized the scarcity of large anno-
tated datasets for training machine-learning models in 
medical imaging. This limitation hinders the develop-
ment of robust algorithms and their subsequent valida-
tion across diverse patient populations.90

3.	  �Yamashita et al.91 demonstrated that deep learning mod-
els trained on limited datasets often exhibit overfitting, 
reducing their ability to generalize to new, unseen data. 
This issue is particularly evident in lung cancer imaging, 
where the variability in tumor appearance can lead to 
model performance degradation in clinical settings.91

Specific examples of opportunities.

• � Bejnordi et  al.92 explored the use of high-resolution 
CT and hyperspectral imaging for lung cancer detec-
tion. Advanced imaging techniques provide detailed 
insights into tumor characteristics and microenviron-
ments, facilitating more accurate diagnosis and treat-
ment planning.92

• � Esteva et  al.93 demonstrated the potential of deep 
learning algorithms in improving diagnostic accuracy 

for various cancers, including colon cancer. Their study 
showed that deep learning models could achieve per-
formance comparable to that of dermatologists in diag-
nosing skin cancer, suggesting similar potential for lung 
and colon cancers.93

• � The Cancer Imaging Archive (TCIA) is instrumental 
in providing publicly available annotated imaging data-
sets. Clark et  al.94 highlighted the impact of TCIA in 
facilitating collaborative research and the development 
of innovative algorithms for cancer diagnosis, including 
lung and colon cancers.94

• � Kather et  al.95 demonstrated the use of deep learning 
algorithms to predict microsatellite instability in colo-
rectal cancer using histopathological images. This inno-
vation could lead to personalized treatment strategies 
and better patient outcomes.95

Summary of Key Findings and Insights from the 
Review
Future research on image-based lung and colon cancer diag-
nosis holds immense promise in advancing early detection, 
treatment planning, and patient outcomes. One direction is 
the integration of multimodal imaging techniques, combining 
data from various imaging modalities such as CT, MRI, PET, 
and histopathology. This integration can provide comprehen-
sive information regarding tumor morphology, metabolism, 
and microenvironment, thereby enhancing diagnostic accu-
racy and treatment decision-making. The development of 
artificial intelligence (AI) algorithms and DL models tailored 
for lung and colon cancer diagnosis will also remain a focal 
point. These models can analyze large-scale imaging datasets 
with high accuracy, assisting radiologists and pathologists in 
interpreting complex images and identifying subtle features 
indicative of malignancy. Furthermore, there is a growing 
interest in leveraging radiomic and radiogenomic approaches 
to extract quantitative imaging biomarkers associated with 
tumor phenotypes, genotypes, and treatment responses. 
Integrating these biomarkers into clinical practice can enable 
personalized medical strategies and facilitate prognostication. 
Moreover, as imaging technology evolves, advancements in 

Table 2.  Achievement toward lung and colon cancer diagnosis using computer intelligence.

Year Lung cancer accuracy (%) Colon cancer accuracy (%) Lung & colon cancer 
accuracy (%)

2017 N/A 87 N/A

2018 N/A N/A N/A

2019 N/A 94.56 95

2020 N/A N/A N/A

2021 98.67 N/A N/A

2022 99.05-100 90 N/A

2023 97 — 99.87
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image acquisition techniques such as higher spatial and tem-
poral resolutions and novel contrast agents will further 
enhance the sensitivity and specificity of cancer detection. 
Finally, efforts to standardize imaging protocols, establish 
robust quality assurance measures, and promote data sharing 
and collaboration across institutions will ensure the reproduc-
ibility and generalizability of the research findings, ultimately 
translating into improved patient care and outcomes.

In conclusion, image-based diagnosis powered by cutting-
edge technologies, such as artificial intelligence and multi-
modal imaging, has the potential to revolutionize cancer care 
and significantly improve patient outcomes. By enabling the 
earlier detection of lung and colon cancers, these advanced 
imaging techniques can facilitate timely interventions, leading 
to better treatment responses and increased survival rates. 
Moreover, the integration of quantitative imaging biomarkers 
and radiomic/radiogenomic approaches is promising for use in 
the era of personalized medicine, where treatment strategies 
can be tailored to individual patient characteristics and thera-
peutic efficacy can be optimized while minimizing adverse 
effects. Furthermore, the standardization of imaging protocols 
and establishment of quality assurance measures will ensure 
consistency and reliability across diagnostic procedures, 
enhancing the accuracy and reproducibility of the results. 
Overall, the continued advancement and adoption of image-
based diagnosis holds great promise for transforming the land-
scape of cancer care, offering hope for improved patient care 
and outcomes in the future.
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