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Electrically controlled spin 
polarized current in Dirac 
semimetals
Qianqian Lv1,2,3, Pei‑Hao Fu1,2,3, Xiang‑Long Yu2,3, Jun‑Feng Liu4 & Jiansheng Wu2,3,5*

We propose a highly tunable 100% spin‑polarized current generated in a spintronic device based 
on a Dirac semimetal (DSM) under a magnetic field, which can be achieved merely by controlling 
electrical parameters, i.e. the gate voltage, the chemical potential in the lead and the coupling 
strength between the leads and the DSM. These parameters are all related to the special properties of 
a semimetal. The spin polarized current generated by gate voltage is guaranteed by its semimetallic 
feature, because of which the density of state vanishes near Dirac nodes. The barrier controlled 
current results from the different distance of Weyl nodes generated by the Zeeman field. And the 
coupling strength controlled spin polarized current originates from the surface Fermi arcs. This DSM‑
based spintronic device is expected to be realized in Cd

3
As

2
 experimentally.

The generation and manipulation of spin polarized current are the key task to spintronics. One of the typical 
approaches to generate the spin polarization in the devices is to apply a magnetic field. However, the precise 
manipulation relying on a fine-tuning magnetic field remains a challenge. Recently, thanks to the discovery of 
topological materials in the past  decades1–3, it is possible to realize highly tunable spintronics through electric 
methods.

In this work, we study the electrically controlled transport phenomena in a Weyl semimetal (WSM)4–7 created 
in a Dirac semimetal (DSM)8–19 by a Zeeman field. Both WSM and DSM have gained increasing interest recently, 
due to (i) the nature of Weyl/Dirac quasiparticles in their band  structures16–19 and (ii) the surface Fermi arcs that 
connecting these  nodes13,14. Generally, a fourfold degenerate Dirac point is composed of two double degenerate 
Weyl points with opposite  chirality15. Thus a pair of Weyl nodes with two different spin subbands can be created 
from each Dirac node by a time-reversal breaking perturbation, such as high-frequency  illumination20–22 or a 
magnetic  field23,24. There are many transport experiments and applications on these new  materials25,26, including 
 superconductivity27–30, Aharonov-Bohm  interference31,32 and higher-order topological  states33. However, the 
proposals for DSM-based topological spintronics are still lacking.

Here, inspired by two recent  experiments34,35, we propose that a highly tunable 100% spin-polarized current 
can be generated in a normal metal (NM)/DSM/NM junction under an external magnetic field (see Fig. 1a). 
The current polarization can be controlled by (i) the gate voltage applied to the central DSM, (ii) the chemical 
potential in the NM leads and (iii) the coupling strength between the leads and DSM. Each access involves one 
characteristic of DSM, including the semimetallic feature, the distances of Weyl/Dirac nodes and the surface 
Fermi arcs, respectively. With an external magnetic field, it is not surprising to generate a fully spin-polarized 
current. However, it is a challenge to control the current polarization, which usually requires an inversion of 
current  direction34, the direction of magnetic  field24. In our work, due to the separation of spin subbands caused 
by a Zeeman field and accompanied with the creation of Weyl  nodes23, the current polarization is electrically 
manipulable, which makes a DSM as a potential topological spintronics device.

The remainders are organized as follows. The low energy model of DSM with Zeeman term and the cor-
responding dispersion are introduced in “Model”. The transport results and discussions in the NM/DSM/NM 
junction calculated from lattice Green’s function are demonstrated in “Numerical results and discussions”. The 
“Conclusion” is given in the final section.
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Model
We begin with the low-energy effective Hamiltonian of a DSM around the Ŵ  point23,

The Hamiltonian is written in the basis {|SJ=1/2, Jz = 1/2�, |P3/2, 3/2�, |S1/2,−1/2�, |P3/2,−3/2�} . And 
ǫ0(k) = C0 +

∑

i=x,y,z Cik
2
i  and M(k) = M0 −

∑

i Mik
2
i  . This Hamiltonian is valid for Cd3As28 and Na3Bi15, 

where C0,x,y,z , M0,x,y,z and v are model parameters fit by ab initio calculation as shwon in Table 1. σ ( σ0 ) and τ 
( τ0 ) are Pauli matrices (unit matrix) for the spin and orbital degree of freedom, respectively. We hereafter define 
the z axis as the spin-quantization axis. The dispersion of Eq. (1) describes spin-up (spin-down) subbands 
parallel (antiparallel) to the spin-quantization axis, which contain two Dirac nodes protected by crystalline 
symmetry and along kz-axis at KD = (0, 0,±kD) for kD =

√

M0/Mz  . The Hamiltonian (1) is invariant under 
the time-reversal  symmetry38,39

with ˆT = iσyτ0 ˆK ( ˆK is a complex conjugation) and inversion symmetry

with ˆP = σ0τz . In a DSM, each single Dirac node contains two Weyl nodes in different spin subbands because 
of the co-existence of time-reversal symmetry and inversion symmetry. If one or all of these symmetries are 
broken, the single Dirac node will be split into two Weyl nodes with opposite chirality and a DSM naturally 
evolves into a  WSM23.

One of useful approaches to break the symmetries is to apply a magnetic field to the system. In a DSM, when 
a magnetic field is along spin-quantization axis, the Zeeman term takes the form as

where Bs,p = gs,pµBBz/2 is the effective Zeeman term causing by an orbital-dependent g-factor gs,p , µB is the 
Bohr magneton and Bz is the strength of the field. An orbital dependent g-factors is chosen, because the bands 
of a DSM come from different  representations23. This is confirmed  experimentally36,37 and  theoretically40 and the 

(1)HD(k) = ǫ0(k)σ0τ0 +M(k)σ0τz + v
(

kxσzτx − kyσ0τy
)

.

(2)ˆTHD(k) ˆT
−1

= HD(−k),

(3)ˆPHD(k) ˆP
−1

= HD(−k),

(4)HZ = −σz ⊗

(

Bs 0

0 Bp

)

,

Figure 1.  (a) Schematic for a normal metal (NM)/Dirac semimetal (DSM)/NM junction. The length of the 
junction is Lx . The polarization of the current can be controlled by the barrier, gate and tunneling gate in the 
junction. (b–e) Dispersions of Dirac semimetals (b) without and (c–e) with Zeeman field. The spin-up and spin-
down subband are plotted in blue and red, respectively. The Zeeman terms (B�,B0) are (b) (0, 0), (c) (0, 0.2), (d) 
(0.5, 0) and (e) (0.5, 0.2). The dispersions are calculated using the simplified parameters shown in Table 1.

Table 1.  Value of parameters of the simplified model, Na3Bi15,36 and Cd3As223,37.

C0 (eV) Cx,y (eV Å 2) Cz (eV Å 2) M0 (eV) Mx,y (eV Å 2) Mz (eV Å 2) v (eV Å) ax,y (Å) az (Å) gs gp

Simplified model 0 0 0 1 1 1 0.5 1 1 – –

Na3Bi − 0.06 8.4 8.75 − 0.08 − 10.36 − 10.64 2.46 5.488 4.828 18.6 2

Cd3As2 − 0.0145 11.5 10.59 − 0.0205 − 13.5 − 18.77 0.889 12.64 25.43 20 20
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values of the g-factors in Na3Bi and Cd3As2 are shown in Table 1. Here, in order to clarify the effect of magnetic 
field, Eq. (4) can be rewritten as

with B0 = −

(

Bs + Bp
)

/2 and B� = −

(

Bs − Bp
)

/2 . It is noted that the first term in Eq. (5) breaks both ˆT and ˆP 
while the second term only breaks ˆT . These effects are reflected in energy spectrum of the Hamiltonian

whose dispersion is

where σ = +1 ( −1 ) denotes spin-up (spin-down) subbands.
To exhibit our results more clearly, the simplified model parameters depicted in Table 1 are used, while the 

results with model parameters of Cd3As2 and Na3Bi are given in the “Discussion” section. In the simplified 
model parameters, in order to investigate the effect of various (B0,B�) , no restriction is made on the orbital-
dependent g-factors. Figure 1b–e depict the dispersions with different (B0,B�) . In the absent of magnetic field, 
the system is a DSM with two Dirac nodes at KD = (0, 0,±kD) as shown in Fig. b. When applied magnetic field, 
each Dirac node splits into two Weyl nodes at Kσ

W =

(

0, 0,±kσW
)

 , kσW =

√

(σB� +M0)/M1  , with opposite 
chirality χσ

±

= ±σ sign(B�) . There are three cases for splittings. (i) When the effects of magnetic field on two 
orbits are identical ( B� = 0 ), two spin subbands are shifted in an opposite direction on energy scale resulting 
two pairs of Weyl nodes with different energy (see Fig. 1c). (ii) For another case where B0 = 0 (see Fig. 1d), each 
Dirac node splits into two Weyl nodes along kz-axes. (iii) Finally, combining two cases above, a general result 
is obtain with finite B0 and B� as shown in Fig. 1e, where each Dirac node is split into two Weyl nodes in both 
momentum and energy scales.

Numerical results and discussions
The creation of Weyl fermions in DSM with a external magnetic field or a magnetic doped DSM has been dem-
onstrated  explicitly23, which is characterized by some transport signatures such as negative magnetoconductance 
and three-dimensional quantum Hall  effect40. Here, in addition to the signature of Weyl nodes creation, we focus 
on the electrically controlled spin polarized current. The current is generated in a junction of a magnetic-DSM 
sandwiched by two NM leads (see Fig. 1a), which is described by a Hamiltonian

where H ′

D and HNM describe Hamiltonian of the DSM and NM and HC is the coupling at the x = 0 and Lx inter-
faces. Discretizing Eq. (6) along the x direction, one obtains

where

and

Here, µD is the chemical potential in DSM, which is controlled by the gate voltage, ai is the lattice constant 
in i-direction and H.c. denotes the Hermitian conjugate. Cky ,kz ,x ( C†

ky ,kz ,x
 ) is the annihilation (creation) operator 

of electrons at site x with momentum 
(

ky , kz
)

.
Similarly, the Hamiltonian of NM leads is

where, U
(

ky , kz
)

=

(

6t − U − 2t cos kza− 2t cos kya
)

 and t = |Mz |a
−2
z  is the hopping energy in the NM region, 

U is the chemical potential controlled by barriers. The Hamiltonian describing the coupling between NM leads 
and the DSM is

(5)HZ = B0σzτ0 + B�σzτz ,

(6)HW = HD +HZ ,

(7)Eσ
±

= ǫ0(k)+ σB0 ±

√

[M(k)+ σB�]
2
+ v2

(

k2x + k2y

)

,

(8)H = H ′

D +HNM +HC ,

(9)H ′

D =

∑

ky ,kz ,x

(H0 +HZ)C
†
ky ,kz ,x

Cky ,kz ,x +HxC
†
ky ,kz ,x

Cky ,kz ,x+1 +H .c.,

(10)

H0 =

(

µD + C0 +

∑

i

Cia
−2
i

)

σ0τ0 +

(

M0 −

∑

i

Mia
−2
i

)

σ0τz

− 2(Czσ0τ0 −Mzσ0τz)a
−2
z cos kzaz − 2

(

Cyσ0τ0 −Myσ0τz
)

a−2
y cos kyay − iva−1

y σ0τy sin kyay ,

Hx = Cxσ0τ0 −Mxσ0τz − iv(2ax)
−1σzτx .

(11)HNM =

∑

ky ,kz ,x

U
(

ky , kz
)

σ0τ0C
†
ky ,kz ,x

Cky ,kz ,x − tσ0τ0C
†
ky ,kz ,x

Cky ,kz ,x+1 +H .c,

(12)HC = −tc
∑

ky ,kz ,x

C†
ky ,kz ,x

Cky ,kz ,x+1 +H .c.,
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where the coupling strength tc can be controlled by the tunnelling barriers. The conductance of the junction is 
expressed as a quantum mechanical scattering probabilities and can be simply related to the total transmission 
probability T

(

ky , kz ,E
)

 , as

where T
(

ky , kz ,E
)

= Tr
[

ŴLG
r
LRŴRG

a
LR

]

 . ŴL/R = i
(

�r
L/R −�a

L/R

)

 is the linewidth function with �r
L/R the self-

energy due to the coupling between the left/right NM lead and DSM region. And Gr
LR =

(

E −H0 −�r
L −�r

R

)

−1 
is the retarded Green’s function, which can be obtain by means of the lattice Green’s function  technique41–43. 
Since the conductance of the junction is contributed by electrons with different spin individually, the conduct-
ance can be rewritten as

with G
↑/↓ =

e2

h

∑

ky ,kz
T
↑/↓

(

ky , kz ,E
)

 , where T
↑/↓

(

ky , kz ,E
)

 is the block matrix component in the transmission 
matrix T

(

ky , kz ,E
)

 . The spin polarization of the current can be defined as

In the following the simplified model parameters depicted in Table 1 are used, while the results with model 
parameters of Cd3As2 and Na3Bi are given in the end of this section.

Gate‑controlled spin‑polarized current. In the absent of a magnetic field, the system is invariant under 
both time-reversal symmetry and inversion symmetry, thus the conductance contributed by electrons with spin-
up and spin-down are identical and not spin-polarized current is created. This feature is shown in the behavior 
of conductance via the gate voltage in DSM region, µD , in the dashed line in Fig. 2a where G

↑
= G

↓
 for all value 

of µD . It should be noted that there is region of µD where G
↑/↓ = 0 , which originates from the vanishing density 

of state (DOS) near the Dirac nodes which is the characteristic of semimetals.
In the present of a magnetic field, the spin degeneracy is shifted. We first focus on the case with 

(B0,B�) = (0.2t, 0) exhibited in Fig. 2a, where the conductances contributed by electrons with spin-up and 
spin-down spilt in an opposite direction in µD . As a result, there are some regions in µD where the conductance 
of spin-up (spin-down) subband is finite while the one of spin-down (spin-up) subband vanishes, resulting to 
a spin-polarized current with P = +1 ( −1 ). In this case, the spin-polarization P via µD is exhibited in the black 
line in Fig. 2b. It is obvious that there are two platforms where P = +1 or −1 corresponding to conductance 

(13)G =

e2

h

∑

ky ,kz

T
(

ky , kz ,E
)

(14)G = G
↑
+ G

↓
,

(15)P =

G
↑
− G

↓

G
.

Figure 2.  (a) The spin-dependent conductance with and without B0 . (b–d) The spin polarization P via the 
gate voltage µD with various (b) Zeeman terms B0 , (c) barriers U and (d) coupling strength tc . The length of 
the junction is Lx = 50a , the barrier is U = 0.3t , the coupling strength is t/tc = 1 and the energy of incident 
electron is E = 0.2t . Other parameters are the same as those in Fig. 1c.
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solely contributed by spin-up or spin-down electrons, respectively. In the region between two platforms, there 
is a high sensitivity of spin-polarization P to the gate voltage µD , which means a slightly change in µD leads to a 
significant change in P. On the contrary, in the region out of two platforms the magnitudes of P rapidly reduce 
to zero and become insensitive to µD.

These highly tunable spin-polarization is generated because both ˆT and ˆP are broken by B0 , which cause 
each Dirac node splits into two Weyl nodes in energy scale. When calculating the conductance in Fig. 2, we 
keep the Fermi level in the system unchange, but the energy of Weyl nodes is controlled by the gate voltage µD . 
When one pair of Weyl nodes are tuned to near the Fermi level, because of the semimetallic feature, the DOS 
of the corresponding spin subband vanishes while the one of the spin subband is finite. This is the reason why 
the spin-polarized current occurs and can be controlled by the gate voltage µD . When B0 increases, the energy 
difference between Weyl nodes in two spin subbands grows leading to the distance between two spin-polarized 
conductance platform increases as shown in Fig. 2b. In addition, since the spin-polarized current in this case 
is created by breaking ˆT and ˆP through the magnetic field, it is robust against the parameters in the NMs (see 
Fig. 2c) and the interface between leads and DSM (see Fig. 2d).

Barrier‑controlled spin‑polarized current. In the situation with (B0,B�) =
(

0, 0.5k2D
)

 , contrary to the 
above situation, the present of B� leads to four Weyl nodes in momentum space at the same energy as shown in 
Fig. 1c. The system now is in WSM phase with both two spin subband holds a pair of Weyl nodes with opposite 
chirality when the Fermi level is near the nodes. Without splitting in energy scale, it is difficult to generate spin-
polarized current by means of the gate voltage µD . However, since the different locations in momentum space 
of two pairs of Weyl nodes, spin-polarized current can be obtained by controlling U, the chemical potential in 
NM region.

The dependence transmission coefficients T
↓,↑ on both U and kz are exhibited in Fig. 3a,b. Both of T

↓
 and T

↑
 

are nonzero only in a small region around the Weyl nodes in the corresponding subband. However, since the 
distance of nodes in the spin-up subband is larger than those in the spin-down subband, the spin-up transmission 
coefficients T

↑
 is lagged behind the spin-down one, leaving a wide region of U where T

↑
= 0 but T

↓
�= 0 . This 

gives rise to the spin polarized current controlled by U as shown in Fig. 3c, where the conductance contributed 
by spin-up and spin-down electrons are shown separately. For a small U, the spin polarization is not well defined, 
since both the conductances are nearly zero. When U grows, the spin-down conductance begins to increase in 
advance to the spin-up one, leading to P = −1 . As U is large enough that the spin-up electron are involved in 
the transmission process, the polarization vanishes. Our numerical results also reveals that the spin-polarization 
current is robust against the interface coupling between leads and DSM.

Figure 3.  The dependence of Transmission coefficients on both U and kz of the (a) spin-down and (b) spin-up 
subband near the corresponding Weyl nodes. (c) The spin-dependent conductance (red and blue dashed lines) 
and the spin polarization (green line) via the barrier U. We choose B� = 0.5k2cz and B0 = 0 . Other parameters 
are the same as those in Fig. 2.
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Combining the results in the last subsection, in the general case where both B0 and B� are finite, highly tun-
able spin-polarized current can be generated by controlling the gate voltage µD and the barrier U in the junction, 
which are shown in Fig. 4. It should be noted that the polarization is still sensitive to the gate voltage µD and can 
be switched between P = −1 and +1 in a wide region of B�.

The role of Fermi arcs. The results so far focus on the properties of bulk states in a magnetic DSM. How-
ever, the spin-polarized Fermi arc surface state is another characteristic of  DSM13,14, whose effects on the con-
ductance is missed above. In Fig. 5a, the spectrum of magnetic DSM involving the surface states are shown, 
which is calculated from a Eq. (9) with periodic boundary condition in both z- and y-direction and open bound-
ary condition in the x-direction. The flat band in Fig. 5a denotes the surface Fermi arcs connecting bulk Weyl 
nodes. In our proposal, because of the broken translational symmetry along x-direction when constructing the 
junction, Fermi arcs surface state is localized at the y-z plane with a group velocity along y-direction and disper-

Figure 4.  The dependence of spin polarization on (a) gate voltage and (b) barrier with different Zeeman terms. 
The parameters in (a) are the same with those in Fig. 2 with B0 = 0.2t while parameters in (b) are the same with 
those in Fig. 3 with µD = − 0.2t.

Figure 5.  (a) The spectrum of DSM with Zeeman terms B� = 0.2k2cz and B0 = 0.2t in open boundary 
condition along x-direction with Lx = 100 , ky = 0 and µD = −0.2t . (b) The spin polarization via the length 
of the junction with various coupling strengths. (c,d) The momentum-resolved transmission coefficient T

↑
 ( T

↓
 ) 

in a junction with length Lx = 10a (30a) with the coupling strength tc = 0.25t . We choose U = 0.3t and other 
parameters are the same as those in Fig. 4b.
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sionless along z-direction [the completely flat band in Fig. 5a As a result, the surface state can contribute to the 
current through evanescent modes at two lead-DSM interfaces.

The result shown in Fig. 4b is in a long junction limit, where the length exceeds the penetration lengths of 
the surface state and the bulk states becomes dominated in the current. In this limit, the spin-down electrons 
dominate the conductances leading to P = −1 when the length of the junction Lx/a is large for various coupling 
strength tc.

However, it is interesting that the polarization of the current inverses in a short junction with a weak coupling. 
Now, instead of the propagating mode and the bulk modes, the surface state can contribute to the current through 
evanescent modes at two lead-DSM interfaces. When length of the junction is comparable to the penetration 
lengths of the surface state, electrons in the left lead can transmits to the right lead through the overlap between 
the evanescent surface modes at x = 0 and x = Lx surface, which is the current contributed by the Fermi arc 
surface state. In the short junction limit, the contribution of the bulk state is suppressed, because of the bulk gap 
is induced by the finite size effect. Besides, the reducing coupling produces a potential barrier at the interface 
between DSM and lead, increasing the tunneling conductance mediated by the Fermi arc surface states local-
ized at two interfaces and closed to the Fermi level. As exhibited in Fig. 5a, the spin-up Fermi arc is near to the 
Fermi level (the gray dashed line) generating a spin-up electrons dominated current with P ∼ +1 in the short 
junction and weak coupling limit shown in Fig. 5b. This can be confirmed by the momentum-resolve spin-up 
transmission coefficient T

↑
 in Fig. 5c in the short junction limit, while the T

↓
 nearly vanishes. In Fig. 5c, T

↓
 is 

dominated by the modes between Weyl nodes, which is the contribution of the surface states. On the contrary, 
in a long junction whose length exceeds the penetration lengths of the surface state, the bulk states becomes 
dominated in the current. This is justified by the momentum-resolve spin-down transmission coefficient T

↓
 in 

Fig. 5d, which is mainly contributed by the modes around the Weyl cones.

Discussions on experimental realization. The above results are obtained from the simplified model 
parameters. In this subsection, the realization of our proposal is discussed using the the first-principle-fit param-
eters in Table 1, which may serve as a reference for future experiments. The effect of Landau level is beyond our 
current discussions, which is another method to generate spin-polarized current in DSM controlled by a lateral 
 gate24. Here, this orbital effect can be ignored because the required field strength is of the order of Bz ∼ 5 T, 
resulting to Bza2z ≪ h/2e.

Figure 6 shows the results involving two well-accepted DSM candidate materials, Cd3As29–13 and Na3Bi14,15. 
In Cd3As2 (see the top panel of Fig. 6), since gs = gp , the current is fully spin-polarized and the polarization can 
is highly tunable by the gate voltage. Although the polarization is insensitive to the chemical potential because 
of the identical g-factor of two orbits, a fully spin-polarized current can be generated with suitable parameters. 
Besides, the Fermi-arc-contributed current polarization is also expected. On the contrary, in Na3Bi , although it is 
possible to generate the fully spin-polarized current, the polarization of the current is difficult to manipulate and 
the current contributed by the surface state is ambiguous. In a word, although affected by the C0,x,y,z parameters 
sightly, compared with Na3Bi , our proposal is expected to be realized in Cd3As2.

Figure 6.  The current polarization tuned by (a,d) voltage gate, (b,e) barrier and (c,f) the length of the junction 
made by Cd3As2 (top panel) and Na3Bi (bottom panel). The model parameters are shown in Table 1. The Fermi 
level is E = 0.2t and the magnetic field is Bz = 5 T. Other parameters are shown in the figures.
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Conclusion
In this work, it is found that a highly tunable 100% spin-polarized current can be generated in an NM/DSM/
NM junction, and it can be achieved only by controlled one of the three electric parameters, i.e. the gate voltage 
applied to the central DSM, the barrier in the NM leads, and the coupling strength between the leads and DSM. 
These three methods reveal three aspects of DSM. The spin polarized current generated by gate voltage is guar-
anteed by its semimetallic feature, because of which the DOS vanishes near Dirac nodes. The barrier controlled 
current is generated resulting from the different distance of Weyl nodes in the corresponding spin subbands. 
While all these two feature are caused by the bulk properties of DSM, the coupling strength controlled spin 
polarized current originates from the surface Fermi arcs, which is another characteristic of DSMs. All these three 
features make a great potential to realize DSM-based spintronics devices merely controlled by electric methods 
and we expect that our proposals can be realized in Cd3As2.

Received: 18 August 2021; Accepted: 11 October 2021
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