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1. A Very Short Introduction to Ribosomes and their Biosynthesis

According to the classic ribosome model, developed in the 1960s and 1970s, its only
function is to translate the four-letter nucleic acid code into the 20 amino acid peptide-code,
while polymerizing amino acids into peptides with the help of a large complement of
tRNAs and translation factors that cycle on and off the ribosome [1,2]. However, advances
accumulating over the recent decades have shown that the ribosome performs tasks beyond
the classic model, such as initial folding of nascent peptides and regulation of translation in
response to growth and stress conditions [3–5]. Moreover, the ribosome interacts with the
Signal Recognition Particle to secure the post-translation transport of protein products to
their proper cellular location [6].

Given the complexity of the ribosome function, it is not surprising that the ribosome
structure has many components of both rRNA and ribosomal proteins (r-proteins) (Table 1).
Some r-proteins are phylogenetically preserved and contribute to a universal ribosomal
core structure, while others differ between phylogenetic domains [7].

Table 1. Ribosome composition.

Type of Ribosome Number of rRNAs Number of Ribosomal Proteins

Escherichia coli 3 57
Archaea 3 Up to 68
Saccharomyces cerevisiae
cytoplasmic 4 79

Saccharomyces cerevisiae
mitochondrial 2 72

Human 4 80

Ribosome assembly requires synthesis and modification of its components, which
occurs simultaneously with their assembly into ribosomal particles. The pathways differ
phylogenetically, but universally the formation occurs by a stepwise ordered addition of
ribosome components. The process is assisted by many assembly factors that facilitate and
monitor the individual steps, for example by modifying ribosomal components, releasing
assembly factors from an assembly intermediate, or forcing specific structural configura-
tions [8–14]. The quality of the ribosome population is controlled by a complement of
nucleases that degrade assembly intermediates with an inappropriate structure and/or
which constitute kinetic traps [15]. Ribosomal variants can be formed by alternate path-
ways or incorporation of paralogous r-protein variants, but the functional significance is
generally still not clear [16,17]. Adding to the complexity are the extra-ribosomal functions
of some r-proteins as regulators of cell cycle progression and apoptosis, or as substrates for
post-translational ubiquitination of protein products [18].

2. The Volume

The intent of this special volume is to illustrate selected principles in ribosome biogen-
esis. Some chapters also address the consequences of impeding ribosome biogenesis, often
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termed nucleolar stress. For comprehensive reviews of ribosome biogenesis, the reader is
referred to other sources (see above).

Ribosome formation begins in the nucleolus, a membrane-less distinct domain of the
nucleus. The morphology of this organelle has been extensively explored in metazoan
cells, but the analysis of the yeast nucleolus is challenged by the low contrast of its mostly
decondensed chromatin. Thelen, Defourny, Lafontaine, and Thiry show that this hurdle
can be overcome by subjecting cells to hyperosmotic shock [19]. Moreover, they find that
the organization of the yeast nucleolus into separate domains is less distinct than is the
case in mammalian nucleoli.

Two papers illustrate that combination of mutant analysis and cryo-electron mi-
croscopy is an effective method for elucidating the function of assembly factors. Paternoga,
Früh, Kunze, Bradatsch, Baßler, and Hurt show that the N-terminal domain of the Nsa2
assembly factor binds to the 60S precursor particle, thereby preventing the cytoplasmic re-
lease and nuclear reimport of the Nog1 GTPase [20]. Maksimova, Korepanov, Kravchenko,
Baymukhametov, Myasnikov, Vassilenko, Afonina, and Stolboushkina classified the bac-
terial 30S ribosomal subunit according to structure in response to depleting the assembly
factor RbfA. The results indicate that RpfA stabilizes the 30S pseudoknot (a universal
feature of the small ribosomal subunit across the evolutionary spectrum) and assists the
docking of 16S rRNA Helix 44 into the decoding center [21].

Three of the four rRNA components in eukaryotic ribosomes are generated by nu-
cleolytic processing of the RNA PolI primary transcript. The ribozyme RNase MRP is
necessary for rRNA processing and ribosome production [22–26]. It cleaves a specific site
in the precursor rRNA [27], but the paper by Li, Zengel, and Lindahl now shows that this
cleavage is dispensable for rRNA maturation. Based on this and their previously published
data, the authors suggest that RNase MRP may be necessary for the activation of other
rRNA processing activities [28].

Kofler, Prattes, and Bergler demonstrate that the addition of small molecular-weight
inhibitors can be used to interrogate the kinetics of the individual steps in the ribosome
formation. Their analysis further shows how the perturbation of individual steps affects the
kinetics of other parts of the pathway, both downstream and upstream of the perturbation
site [29].

The synthesis of a protein must be followed by transport to its site of function. The
Signal Recognition Particle (SRP), anther RNA-protein complex, receives numerous nascent
proteins as they emerge from the ribosome exit tunnel and chaperones them to their cellular
location. Kellogg, Miller, Tikhonova, and Karamyshev present a review of this process and
discuss the composition and evolution, as well as the signals built into individual proteins,
which assure their delivery to their appropriate location [30].

Two r-proteins, e-S31 and eL40, are synthesized as fusions with ubiquitin (Ub) enti-
ties and are used as substrates for post translational ubiquitination. Martín-Villanueva,
Gutiérrez, Kressler, and de la Cruz review the distribution of Ub-encoding genes across the
evolutionary spectrum, discuss the various consequences of ubiquitination, and analyze
the potential evolutionary pressures that may have contributed to the current state of
ubiquitination [31].

Pecoraro, Pagano, Russo, and Russo briefly summarize the major phases of ribosome
biogenesis and continue into a review of how r-proteins promote tumorigenesis. Boosted
synthesis of either cytoplasmic and mitochondrial r-proteins can cause r-proteins to assume
extra-ribosomal functions, including inhibiting turnover of the tumor suppressor p53 or
otherwise interfering with cell cycle progression [32].

Mutations in genes that decrease normal ribosome biogenesis or function can lead to
numerous congenital diseases, collectively called ribosomopathies [33,34]. The analysis
of these diseases is complicated by fact that ribosome deficiencies are the systemic. The
paper by DeLeo, Baral, Houser, James, Sewell, Pandey, and DiMario reviews how this
hurdle can be overcome by using the imaginal discs of Drosophila [35]. Furthermore, they
show inhibition of the synthesis of Nopp140, a protein found in both nucleoli and Cajal
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bodies (sites for the assembly of several RNA protein particles, including some that help
modify rRNA) in several imaginal discs. The ribosome content is reduced, simultaneously
with the accumulation of unusual cytoplasmic bodies, sharing several proteins with (P)
processing bodies.

The ribosome formation is somewhat flexible and contributes to the adaptation of
organisms to changing environments. Martinez-Seidel, Beine-Golovchuk, Hsieh, Eshraky,
Gorka, Cheong, Jimenez-Posada, Walther, Skirycz, Roessner, Kopka, and Firmino report on
an extensive analysis of r-protein gene expression in Arabidopsis following a temperature
down-shift. Interestingly, changes in the expression of paralogous genes for a given protein
depend on the location of the proteins in the ribosome [36]. This suggests that limited
flexibility in the ribosome structure may contribute to temperature adaptation.
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