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Abstract

Disintegration in thalamocortical integration suggests its role in the mechanistic ‘switch’

from recreational to dysregulated drug seeking/addiction. In this study, we aimed to address

whether thalamic nuclear groups show altered functional connectivity within the cerebral

cortex in chronic ketamine users. One hundred and thirty subjects (41 ketamine users and

89 control subjects) underwent rsfMRI (resting-state functional Magnetic Resonance Imag-

ing). Based on partial correlation functional connectivity analysis we partitioned the thala-

mus into six nuclear groups that correspond well with human histology. Then, in the area of

each nuclear group, the functional connectivity differences between the chronic ketamine

user group and normal control group were investigated. We found that the ketamine user

group showed significantly less connectivity between the thalamic nuclear groups and the

cortical regions-of-interest, including the prefrontal cortex, the motor cortex /supplementary

motor area, and the posterior parietal cortex. However, no increased thalamic connectivity

was observed for these regions as compared with controls. This study provides the first evi-

dence of abnormal thalamocortical connectivity of resting state brain activity in chronic keta-

mine users. Further understanding of pathophysiological mechanisms of the thalamus in

addiction (ketamine addiction) may facilitate the evaluation of much-needed novel pharma-

cological agents for improved therapy of this complex disease.

Introduction

Ketamine is a “dissociative” anesthetic drug and a derivative of PCP (phencyclidine), but with

a shorter duration of action and less toxicity. Ketamine was first synthesized in 1962 by an

American chemist Calvin Lee Stevens in the Parke-Davis Laboratories [1, 2]. In 1970 the U.S.

Food and Drug Administration (FDA) approved ketamine for human medical use as an
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anesthetic drug [2]. However, it is also a psychedelic drug that can produce psychological

dependence [3]. Recently, ketamine has been used as an illicit drug inside and outside of club

and rave scenes in many parts of the world, such as China, Indonesia, Malaysia, and Australia.

There are multiple dangers associated with nonmedical use and abuse of ketamine, such as

dependence and psychiatric morbidity [4], lower urinary tract dysfunction [5], brain structural

[6, 7] and functional [8] abnormality, and sexual impulsiveness or violence [9].

Drug addiction (including ketamine [10–13]) results in deficits in cognitive and emotional

processes, which are involved in the thalamocortical network [14]. The thalamus plays a cen-

tral and dynamic role in information transmission and processing in the brain by controlling

corticocortical information that is being passed through the thalamus from one cortical area to

another [15, 16]. The thalamus is composed of a very complex circuitry between multiple

brain regions, including the prefrontal cortex, anterior cingulate, basal ganglia, cerebellum,

motor and sensory regions, and association regions of the cerebral cortex. Thus, the thalamus

may play a role as an active partner in the whole brain of cortical computations [16]. Disinte-

gration in the thalamocortical network is a change associated with addiction, it also suggests it

plays a mechanistic role in the ’switch’ from recreational to dysregulated drug seeking [14].

Resting state functional connectivity is a relatively novel fMRI approach that provides

insight for investigations in intrinsic brain connections, critical neurocircuits and pathophysi-

ological alterations in a variety of neuropsychiatric disorders, including schizophrenia and

addiction. A functional connectivity study demonstrated the relationship of resting brain

hyperconnectivity and schizophrenia-like symptoms produced by ketamine infusion in 22

healthy humans [17]. Understanding chronic use of ketamine and its impact on resting state

functional connectivity may help us to understand the neurobiological mechanism for addic-

tion, and given its special role in neuropsychiatric disorders may provide some implications in

treatment-resistant depression and schizophrenia [18, 19].

In this study we used rsfMRI to test whether thalamocortical connectivity is altered in

chronic ketamine users. Evidence shows that learning and performance factors are integrated

into a network centered on the mediodorsal thalamus. Additionally, deficits in goal-directed

control and a consequent dysregulation of habit learning processes could result in compulsive

drug seeking [14]. Given this evidence we hypothesize that thalamic nuclear groups would

show altered resting state functional connectivity (RSFC) in the cerebral cortex of chronic

ketamine users (ketamine addicts) when compared with healthy controls.

Methods

Study population

One hundred and thirty subjects (41 ketamine dependent subjects and 89 drug-free healthy

subjects) were enrolled in this study. All subjects were Han Chinese and between the ages of

19–39 with normal or corrected-to-normal vision. Ketamine dependent volunteers were

recruited from two sites in Changsha city: the Kangda Voluntary Drug Rehabilitation Centers

in Hunan Province and the Department of Addiction Medicine, Hunan Brain Hospital. All

ketamine users met the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) cri-

teria for lifetime ketamine dependence determined by the Structured Clinical Interview

(SCID) [20]. Ketamine subjects were excluded if they met criteria for other substance depen-

dence (excluding nicotine dependence) at any time, past and present. Drug free healthy con-

trol subjects were recruited through a combination of targeted site sampling, advertisement,

and snowball sampling referrals. All participants were Han Chinese with no history of neuro-

logical disorder or other psychiatric illness; neither did they have a first degree relative with

substance abuse or a history of psychiatric illness. Additionally, any participant that tested
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positive for pregnancy was excluded from participation. A licensed psychiatrist conducted all

clinical interviews.

The protocol was approved by the university ethics committee (The Second Xiangya Hospi-

tal of Central South University Review Board, No. S054, 2008) as well as carried out in accor-

dance with the Declaration of Helsinki. All subjects were informed about all procedures and

any potential risks associated with the procedures. Once provided this information, written

informed consent was obtained by all subjects. Craving for both ketamine and smoking were

assessed by The Visual Analogue Scale for Craving (VASc) [21]. The VASc assesses craving

using a scale from 0–10, where a score of 0 represents null craving and a score of 10 represents

the most extreme craving. The Digit Symbol Test (DST), Trail Making Test A (TMTA) and The

Stroop Color—Word Test (CWT) were also used to measure subject’s cognitive functioning.

Scan acquisition

MR imaging was carried out using a Siemens Magnetom Trio 3.0T MR scanner (Erlangen,

Germany). Functional images were collected axially by using an echo-planar imaging (EPI)

sequence sensitive to BOLD contrast. The acquisition parameters were as follows: 36 slices,

3000/30 ms (TR/TE), 4 mm thickness, 220×220 mm (FOV), 64×64 (resolution within slice),

90˚ (flip angle). The FOV covered all brain regions for all participants. Resting state was col-

lected during the fMRI and lasted 9 minutes with 180 volumes obtained. During the resting

state scan all subjects were instructed to stay as motionless as possible with their eyes closed

and to not think of anything in particular. Additionally, for spatial normalization, each par-

ticipant received a 3D anatomical MRI image with a T1-weighted magnetization-prepared

rapid-acquisition gradient echo (MP-RAGE). The protocol was as follows: sagittal, repetition

time = 2000 ms, echo time = 2.26 ms, inversion time = 900 ms, flip angle = 8˚, slice thickness = 1

mm, FOV = 256 × 256 mm2, in-plane resolution = 1 × 1 mm2.

Data preprocessing

Functional MRIs were preprocessed using SPM8 and in-house programs on the Matlab 2010

platform. Of the 180 scans obtained for each participant, the first 5 were discarded to allow the

MR signal to reach a steady state. The remaining fMRI scans underwent preprocessing that

included slice timing, motion correction, registration and normalization to a standard Mon-

treal Neurological Institute (MNI) space, and resampling to a stereoscopic 3 mm3. The result-

ing data were checked to ensure alignment and spatial correspondence. Next, any linear trend

shifts and head motion were removed voxel wise by regression. Finally, to reduce low-fre-

quency drift and high-frequency noise, the fMRI data were temporally filtered using a band-

pass range between 0.01 and 0.08 Hz with AFNI (http://afni.nimh.nih.gov/). It is noted that

the spatial smoothing was omitted to maximize resolution in the analyses of thalamus nuclei

groups, which are smaller brain structures. Additionally, we found that the average BOLD sig-

nal across all voxels in the brain was significantly correlated with the average time series within

the thalamus as reported in other studies [22, 23]. These results confirm that the study did not

regress out of the global signal within the brain.

Cortical ROI definition

To investigate the specific functional relationships between the cortex and the thalamus, nuclei

groups within the thalamus were partitioned into several nuclei groups using the methods pro-

posed in previous studies [22, 24]. Since there are distinct connections between thalamic sub-

regions and the cerebral cortex, specific functional relationships between them can be used to

parcel the thalamus into nuclear subdivisions. In concurrence with relevant research
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knowledge [22, 24, 25] this study divided the cortex into 6 non-overlapping regions of interest:

the prefrontal cortex, motor cortex/supplementary motor area, somatosensory cortex, tempo-

ral cortex, posterior parietal cortex, and occipital cortex. We used the Harvard-Oxford maxi-

mum probabilistic atlas of cortical structures (http://www.fmrib.ox.ac.uk/fsl/) to construct

these regions of interest as shown in a previous study [26]. The cortical regions of interest

(ROIs) are shown in Fig 1A, along with the details of the six regions of interest listed in S1

Table. In short, the prefrontal cortex ROI consisted of the superior, middle, and inferior fron-

tal gyri, the middle and lateral orbitofrontal gyri, the gyrus rectus, and the anterior cingulate

gyrus. Additionally, the motor cortex/supplementary motor area ROIs consisted of the precen-

tral gyrus and the supplementary motor area. The somatosensory region of interest was the

postcentral gyrus. The temporal lobe region of interest consisted of the superior, middle, and

inferior temporal gyri, the parahippocampal gyrus, and the fusiform gyrus. The posterior pari-

etal region of interest consisted of the superior parietal, the supramarginal, the angular gyri,

the posterior cingulate, and the precuneus. Finally, the occipital region of interest consisted of

the superior, middle, and inferior occipital gyri, the lingual gyrus, and the cuneus.

Partial correlation mapping between cortical regions-of-interest and

thalamus

The average fMRI time course was extracted from each cortical ROI. Partial correlations were

computed for each voxel in the thalamus using these time courses. Specifically, after eliminat-

ing the influence of all other cortical ROIs, the results show a partial correlation between the

local thalamic signal and the cortical ROI. To calculate statistical significance partial correla-

tion coefficients were converted to a normal distribution using Fisher’s R-to-Z transformation.

From this conversion we computed partial correlations between each thalamic voxel and each

of the six cortical ROIs for each subject.

Fig 1. The diffusively decreased thalamocortical connectivity in ketamine-dependent subjects. A. The 6 cortical regions-of-

interest. B. Thalamocortical connectivity of the drug-free control subjects. C. Thalamocortical connectivity of the ketamine-dependent

subjects. D. Group differences in thalamocortical connectivity for the drug-free control subjects and the ketamine-dependent subjects. All

shown clusters in this study were corrected for multiple comparisons with the corrected statistical threshold of P<0.05 using the

AlphaSim program (single voxele p value<0.01, and�108 mm3 (4 adjacent voxels). A presentation formation referred to the previous

study [26].

doi:10.1371/journal.pone.0167381.g001
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Group-level Statistical analysis

For both ketamine-dependent subjects and drug free healthy controls we checked the thalamo-

cortical connectivity patterns between the six regions of interest in the cortex compared to the

distinct areas of the thalamus using a one-sample t-test. Then, we used a two-sample t-test to

investigate whether there were significant differences in the thalamocortical connectivity pat-

terns between the two groups. In this study, the AlphaSim program of the AFNI software pack-

age was used to correct for multiple comparisons. Parameters were as follows: single P

value = 0.01, FWHM = 0, cluster connection radius r = 6.00 mm, mask of the thalamus with a

resolution of 3�3�3 mm, and a number of Monte Carlo iterations = 1000. Finally, we explored

whether there was a significant Pearson’s correlation between the strength of partial correla-

tion and various ketamine use variables and behavioral scores in the ketamine dependent sub-

jects. Behavioral scores included duration of ketamine abuse, daily average use of ketamine,

total quantity of ketamine use, ketamine craving scores and cognitive test scores.

Results

Demographic characteristics

One ketamine dependent subject and one control subject had severe head motion and as a

result were not included in statistical analysis. For other participants, the maximum displace-

ment in the cardinal direction was not greater than 3 mm and the maximum spin was not

greater than 3˚. Therefore, the final data set consisted of one hundred and twenty-eight (40

ketamine dependent subjects and 88 drug-free control subjects) subjects. Detailed demo-

graphic and clinical characteristics for the two groups (40 ketamine dependent subjects and 88

drug-free healthy subjects) are summarized in Table 1.

Thalamocortical connectivity

Drug-free Control subjects. Each cortical region of interest was connected to distinct,

largely non-overlapping regions of the thalamus, as shown in Fig 1B. Although our methods

in this study were not identical to previous studies the results are virtually identical [24, 26].

Specifically, the prefrontal cortex was functionally correlated to the anterior and dorsomedial

regions of the thalamus. The motor cortex/supplementary motor area showed strong correla-

tion with ventral lateral portions of the thalamus. The somatosensory regions of interest

showed significant connection to ventral posterior-lateral portions of the thalamus and the

posterior parietal cortex was robustly connected with the posterior nucleus and the pulvinar.

Additionally, the temporal lobe and occipital cortex directly correlated with posterior medial

and lateral areas of the thalamus, which appears consistent with the medial geniculate nucleus

and the lateral geniculate nucleus, respectively.

Ketamine dependent subjects. A similar pattern of functional connectivity between the

cortex and thalamus was demonstrated in the ketamine dependent subjects as shown in Fig

1C. However, there were qualitative differences between the ketamine dependent subjects and

the drug free control subjects. Particularly, in the ketamine dependent subjects the connectiv-

ity between the motor cortex/supplementary motor area, the posterior parietal cortex and the

specific nucleus of the thalamus appeared markedly less weak.

Group differences in thalamocortical connectivity

Group differences in thalamocortical connectivity were summarized in Table 2 and shown

graphically in Fig 1D. The ketamine dependent subjects demonstrated less connectivity

between the specific nucleus of the thalamus and the cortical regions, including the prefrontal
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cortex, the motor cortex /supplementary motor area, and the posterior parietal cortex. No

increased thalamic connectivity was observed for the ketamine dependent subjects in compari-

son with the control subjects.

Table 1. Demographic and drug use characteristics of ketamine dependent subjects and drug-free healthy subjects.

Ketamine users/smokers (n = 40) Controls (n = 88) Two sample T test X2

Demographic variables

Age, years, mean±SD 26.8 ±4.91 27.1 ±5.14 p = 0.731

Range (years) 19–39 19–39

Male/Female, % 33/7 (17.5%) 70/18 (20.45%) p = 0.696

Subjects’ education, years, mean±SD 11.9±2.75 14.1±2.94 P<0.001

Right/left-handed, % 39/1 (2.56%) 85/3 (3.53%) P>0.999

Unmarried/Married, % 25/15(37.5%) 54/34 (38.6%) P = 0.902

Ketamine use variables

Age of first use, years, mean±SD 23.10±5.21 ―
Range (years) 14–36 ―
Duration, months, mean±SD 41.1±21.79 ―
Range (months) 12–126 ―
Times of using ketamine/day 1.85 ―
Range (times) 1–4 ―
Quantity of using ketamine/time (g) 0.74 ±0.52 ―
Range (g) 0.1–2.5 ―
Smoking variables

Smokers (>100 cigarette lifetime) 44 44

Age of first smoking, years, mean±SD 15.2±3.09 17.9±4.29 P = 0.001

Range (years) 10–30 11–30

Duration, years, mean±SD 11.6±4.72 10.4±5.67 P = 0.286

Range (years) 1.5–21 1.5–21

Smoked cigarette/day,mean±SD 16.6±7.71 10.1±11.54 P<0.001

Range (cigarettes) 8–40 10–40

Other Drugs and alcohol usea

Alcoholb 30 48

Ecstasy 28 ―
Ma Gu (amphetaminecaffeine) 27 ―
Methamphetamine(ice) 23 ―
Marijuana 8 ―
Benzodiazepine (only diazepam) 6 ―
Heroin ― ―
Cocaine ― ―
Drug craving

Ketamine craving (cm) 6.3±2.72 ―
Smoking craving (cm) 5.4±2.18 6.5±1.25 P = 0.016

Cognitive Tests

Digit Symbol Test (number of symbols) 64.5±15.83 (n = 40) 76.43±16.54 (n = 88) P<0.001

Trail Making Test A (seconds) 39.7±11.80 (n = 39) 39.3±12.57 (n = 88) P = 0.883

The Stroop Word Test (seconds) 66.7±15.78 (n = 37) 57.5±12.72 (n = 88) P = 0.001

The Stroop Color Test (seconds) 174.5±53.81 (n = 32) 138.5±39.74 (n = 85) P<0.001

aEach person could have tried more than one drug; drugs have been included even only tried once in the lifetime.
bFour participants reported drinking more than once/week among ketaminesubjects, and three control subjects reported drinking more than once/week.

doi:10.1371/journal.pone.0167381.t001
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Correlations between thalamocortical connectivity and individual

behavior scores in ketamine dependent subjects

We also examined the relationship between connectivity changes and ketamine use related

variables; these included age of first use (years), duration of use (months), frequency of use

(how many times per day), quantity of ketamine use per time (grams), ketamine craving (cm)

and scores of cognitive testing. We only found that the functional connectivity between the

posterior parietal area and the right lateral dorsal nucleus (MNI [x, y, z] coordinate: (12, -18,

15)) was significantly correlated to individual ketamine craving scores (p<0.05, corrected)

(Fig 2). We also calculated the correlation among all behavior scores and cognitive tests scores.

We found that there are significant correlations between total ketamine intake and ketamine

craving scores (Pearson’s r = 0.5963, p = 0.003), while there were no significant correlations

between any behavioral and cognitive testing scores.

Functional connection patterns of thalamic nuclei with the cortex

We computed the functional connection patterns of thalamic nuclei with the cortex by first

extracting the six thalamus subregions as ROIs, as shown in Fig 3. Specifically, in the T map of

one sample t-test of the thalamocortical connectivity of the drug-free control subjects (as

shown in Fig 1B in the main manuscript), the voxel with the peak T value and its surrounding

region with a relatively large T value (75% ~ 85% of the peak T value for different ROIs) was

extracted as an ROI. Only right thalami ROIs are extracted. Then, we checked that the six

ROIs contained no overlapping regions. In detail, the ROI_1 (dark blue) was located at the

anterior and dorsomedial regions of the right thalamus, the ROI_2 (light blue) was located at

ventral lateral portions of the thalamus, the ROI_3 (dark green) was located at ventral poste-

rior-lateral portions of the thalamus, the ROI_4 (light green) was located at the posterior

nucleus and the pulvinar, and the ROI_5 (red) and ROI_6 (yellow) were located at posterior

medial and lateral areas of the thalamus, respectively (Fig 3). Next, the average fMRI time

Table 2. Differences in thalamocortical connectivity between these two groups (ketamine dependent subjects and drug-free control subjects).

Seed Region of Interest, Contrast, and Brain regions Montreal neurological Coordinates (x,y,z) Peak t value Cluster size (mm3)

Prefrontal

Healthy controls > ketamine dependent subjects

Left medial dorsal nucleus -3, -18, 9 3.72 270

Motor/supplementary motor area

Healthy controls > ketamine dependent subjects

Left ventral posterior lateral nucleus -12, -18, 6 3.41 459

Right ventral lateral nucleus 12, -15, 3 3.34 135

Posterior parietal

Healthy controls > ketamine dependent subjects

Right pulvinar 9, -27, 6 3.72 243

Left pulvinar -18, -33, 6 2.76 108

Left pulvinar -18, -27, 12 3.87 378

Left medial dorsal nucleus -3, -9, 3 4.32 108

Right ventral lateral nucleus 12, -3, 6 3.20 162

Right lateral dorsal nucleus 12, -18, 15 3.53 405

The ketamine dependent subjects group demonstrated significantly less connectivity between the thalamus and the cortical regions-of-interest, including

the prefrontal cortex, the motor cortex /supplementary motor area, and the posterior parietal cortex. No increased thalamic connectivity was observed for

the ketamine dependent subjects in comparison with the control subjects.

doi:10.1371/journal.pone.0167381.t002
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course was extracted from each thalamus ROI. Using these time courses, partial correlations

were computed for each voxel in the brain. Then, the one sample t-test was used to obtain con-

nectivity patterns of each thalamus ROI, separately for the drug free control subject group and

the ketamine user group, as shown in Fig 4. We think that these connectivity patterns are very

Fig 2. Functional connectivity patterns between the posterior parietal area and the right lateral dorsal nucleus (MNI (x,y,z) coordinate:

(12, -18, 15)).

doi:10.1371/journal.pone.0167381.g002

Fig 3. Location of thalamus subregion ROIs

doi:10.1371/journal.pone.0167381.g003
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consistent with our hypothesis, that is, different thalamic nuclei have significant distinctive

connection patterns with the cortex. For example, the thalamus ROI_1 shows strong connec-

tions with the prefrontal cortex, while the thalamus ROI_2 shows significant connection with

the primary motor cortex and the supplementary motor area. In summary, we believe these

results of thalamocortical connectivity are relatively reliable and are grounds for further test-

ing. Finally, we used a two-sample t-test to investigate whether there were significant differ-

ences in the functional connectivity patterns of thalamus ROIs between the two groups.

The significant decrease in thalamocortical connectivity in the ketamine user group is repre-

sented by the dotted purple lines in Fig 5. These brain areas with significantly decreased thala-

mocortical connectivity in ketamine user group were almost located in the corresponding

cortex ROIs.

Fig 4. Functional connectivity patterns of thalamus ROIs.

doi:10.1371/journal.pone.0167381.g004

Fig 5. Differences of functional connectivity patterns of thalamus ROIs between drug-free control subject group and ketamine user

group. The purple dotted lines show the significant different brain regions (single voxel P<0.01, cluster size>20 voxels).

doi:10.1371/journal.pone.0167381.g005
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Discussion

This study, to the best of our knowledge, is the first to investigate resting state functional con-

nectivity of the thalamus in chronic ketamine users compared to demographically matched

drug free healthy subjects. Our findings provide first evidence that chronic ketamine users

show abnormal thalamocortical connectivity of resting state brain activity when compared to

healthy controls. We found that ketamine dependent subjects show significantly less connec-

tivity between the thalamus and the cortical regions-of-interest, including the prefrontal cor-

tex, the motor cortex /supplementary motor area, and the posterior parietal cortex. However,

no increased thalamic connectivity was observed in the ketamine dependent subjects in com-

parison with the control subjects.

Although the current study is the first to demonstrate the changes of RSFC with chronic

ketamine administration, previous studies with acute ketamine administration also showed

changes of RSFC in healthy subjects. For example, using rsfMRI, a randomized, placebo-con-

trolled, double-blind, crossover study demonstrated that acute ketamine administration

markedly reduced RSFC of the default mode network (DMN) to the dorsal nexus (DN), the

pregenual anterior cingulate (PACC) and medioprefrontal cortex (MPFC) via its representa-

tive hub, the posterior cingulate cortex (PCC) in healthy subjects compared to placebo [27,

28]. However, another similar RSFC study revealed that the administration of a subanesthetic

dose of ketamine significantly increased cortico-thalamic connectivity of the somatosensory

and temporal cortex [29]. One possible reason for this inconsistency may be due to the pur-

pose of the study, the former is for treatment-resistant depression and the latter is for a schizo-

phrenia model. Thus, these two studies focused on different circuit connectivity using similar

methods.

Considering that addiction is a chronic, relapsing brain disease and a state of compulsive

drug use, it can include tolerance, dependence and withdrawal symptoms [30]. And the dis-

rupted circuit connectivity in addictive drug users may inform specific neurobiological sub-

strates associated with addiction.[31]. Here, we discuss results from additional RSFC studies

dealing with other types of substance addiction. A line of study demonstrated decreased func-

tional connectivity in addiction of other drugs (such as cocaine and heroine). For example, a

study on cocaine administration followed by fMRI observed decreased functional connectivity

in the human primary visual and motor cortex after acute administration of cocaine [32]. In

addition, Kelly et al. found reduced prefrontal interhemispheric resting-state functional con-

nectivity (RSFC) in cocaine-dependent participants compared to control subjects [33]. By

whole-brain resting-state fMRI connectivity analysis, Gu et al. reported almost universally

reduced functional connectivity strength for six functional networks regions (ventral tegmen-

tal area, nucleus accumbens, the mediodorsal nucleus (MD) of the thalamus, amygdala, hippo-

campus and rostral anterior cingulate cortex) in cocaine users. They also found that the MD

thalamus seed yielded decreased rsFC within extensive striatal regions and impaired mesocor-

ticolimbic circuits for the cocaine group [34]. These regions are thought to be important for

focusing and maintaining desired behaviors while suppressing unwanted behaviors [35].

Drug dependent subjects are known to have difficulties with response inhibition, which likely

contributes to the propensity to relapse in the presence of drug related cues. However, both

decreased and increased functional connectivity have been reported in heroin users. For exam-

ple, Ma et al. found increased functional connectivity between the nucleus accumbens and

ventral/rostral anterior cingulate cortex (ACC), the nucleus accumbens and orbital frontal

cortex (OFC), the amygdala and OFC, and decreased functional connectivity between prefron-

tal cortex and OFC and between prefrontal cortex and ACC [36]. Additionally, evidence

shows increased functional connectivity in the right hippocampus and decreased functional

Thalamocortical Connectivity in Ketamine Users

PLOS ONE | DOI:10.1371/journal.pone.0167381 December 15, 2016 10 / 14



connectivity in the right dorsal anterior cingulate cortex and the left caudate in the default

mode network (DMN) [37] in 14 chronic heroin users compared with 13 non-addicted con-

trols. Using graph theory analysis (GTA), Liu et al. found dysfunctional brain connectivity

among several brain regions in the network of chronic heroin users that may contribute to

decreased self-control, impaired inhibitory function, as well deficits in stress regulation in

twelve chronic heroin users when compared with twelve controls [38].

However, these are only a few studies that have examined addiction-related alterations in

thalamocortical connectivity directly. Thalamocortical integration deficits in instrumental

learning and performance could contribute to drug addiction as it often causes deficits in cog-

nitive and emotional processes [14]. With 54 cocaine dependent patients and 54 age and gen-

der matched healthy adult subjects, a simple reaction time task-fMRI study showed alteration

of error-related thalamic- ventral medial prefrontal cortex connectivity, which is associated

with impaired self-control in patients with cocaine dependence [39]. An animal study with

electroencephalography (EEG) examined thalamocortical function in vivo and in vitro in mice

after a cocaine “binge” administration. It illustrated that thalamocortical dysfunctions in a

cocaine hydrochloride “binge” might be observed as a result of two distinct but additive events:

1. An increase in low frequency oscillatory thalamocortical activity and 2. Over-inhibition of

ventrobasal neurons that can abnormally “lock” the whole thalamocortical system at low fre-

quencies, ultimately inducing a thalamocortical dysrhythmia-like state [40]. Considering the

key role of the thalamus in information transmission, processing, and basic corticocortical

communication, examining the possible roles of the thalamus in addiction, as well as identify-

ing open questions and exploring ways to address them may provide a more precise under-

standing of the pathophysiological mechanisms of addiction. Given the multifaceted nature

of this complex brain disease, circuit disruptions, such as abnormal thalamocortical con-

nectivity in the current study, may represent one of the potential targets for future treatment

development.

In this study we also found that the functional connectivity between the posterior parietal

area and the right lateral dorsal nucleus was significantly correlated to individual ketamine

craving scores (p<0.05, corrected). Considering that craving is a central driving force for

ongoing drug use and relapse following abstinence, using neuroimaging and other approaches

to explore the neurobiology of craving is of utmost importance. Functional brain imaging in

humans and animals has revealed an interconnected set of cortical and limbic brain regions

that are involved in associative learning and prove to be an underlying theme for craving and

relapse (see review [41]). However, we still do not fully understand the neurobiology and neu-

rocircuitry mechanisms involved in drug-related craving.

Our study has several strengths, such as a relatively large sample size, use of the human

chronic ketamine administration model, and the hypothesis-driven investigation of thalamo-

cortical functional connectivity. However, we also acknowledge several limitations. First,

although ketamine use participants did not meet dependence for any other substances except

nicotine they may have engaged in other substance use and as such would be different from

the controls in this regard. Second, the ketamine and control groups differed in smoking status

and education. Although our analyses suggested that decreased thalamocortical functional

connectivity observed are unlikely to reflect group differences in smoking and educational lev-

els, future studies should match groups on smoking status and levels of education. Third, as is

typical of studies in drug dependent populations, the sample was predominantly male. The

potential role of gender differences should be examined in future studies. Additional limita-

tions are demonstrated in the cognitive testing between the two groups, which future studies

should take into consideration and instead match groups educationally in order to rule out

any confounding factor.
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In conclusion, this study provides first evidence for abnormal thalamocortical connectivity

of resting state brain activity in chronic ketamine users. We found that the ketamine depen-

dent subjects showed significantly less connectivity between the thalamus and the cortical

regions-of-interest, including the prefrontal cortex, the motor cortex/supplementary motor

area, and the posterior parietal cortex. However, no increased thalamic connectivity was

observed for the ketamine dependent subjects in comparison with the control subjects. Further

understanding of the pathophysiological mechanisms of the thalamus in addiction, specifically

ketamine addiction, may facilitate the evaluation of much needed novel pharmacological

agents for improved therapy of this complex disease.
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