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Abstract: The tensile stress–strain response is considered to be the most important and fundamental
mechanical property of ultra-high-performance fiber-reinforced concrete (UHPFRC). Nevertheless,
it is still a challenging matter for researchers to determine the tensile properties of UHPFRC. As a
simpler alternative to the direct tensile test, bending tests are widely performed to characterize the
tensile behavior of UHPFRC, but require further consideration and a sophisticated inverse analysis
procedure. In order to efficiently predict the tensile properties of UHPFRC, a nonlinear inverse
method based on notched three-point bending tests (3PBT) was proposed in this paper. A total of
fifteen UHPFRC beams were fabricated and tested to evaluate the sensitivity of the predicted tensile
behavior to variations in fiber volume fraction. A segmented stress–strain model was used, which
is capable of describing the various tensile properties of UHPFRC, including strain softening and
strain hardening. A more approximate formulation was adopted to simulate the load–deflection
response of UHPFRC beam specimens. The closed-form analytical solutions were validated by tensile
test results and existing methods in literature. Finally, parametric studies were also conducted to
investigate the robustness of the proposed method. The load–deflection responses obtained from
notched 3PBT could be easily converted into tensile properties with this inverse method.

Keywords: fiber-reinforced cement composites (FRCC); ultra-high-performance fiber-reinforced
concrete (UHPFRC); bending test; tensile behavior; load–deflection response; inverse analysis

1. Introduction

Ultra-high-performance fiber-reinforced concrete (UHPFRC) is today widely used in
structural applications, such as civil infrastructures [1,2], prefabricated components [3,4],
tunnel linings [5], retaining walls [6], and existing structure repairs [7]. According to
the classification of the fiber-reinforced cement composite (FRCC) [8], UHPFRC can be
considered as a special type of FRCC, which is characterized by an optimized gradation of
granular constituents along with a low water-to-binder ratio that results in a high dura-
bility and a high percentage of discontinuous internal micro-fine steel fiber reinforcement
providing a hardened concrete with excellent ductility [9,10]. Due to modified mechanical
properties, including durability, ductility, and crack width control capacity, UHPFRC can
be used for reducing the deadweight of the superstructure, increasing the span capability
of the bridge, and saving on the maintenance cost during the service life [11].

Generally, structural design with UHPFRC requires a reliable index about the tensile
performance, which is considered to be the most important property of this advanced
material [12]. However, the mechanical response of UHPFRC in tension is significantly
influenced by many parameters, such as fiber types, fiber distribution, or orientation, and
can be commonly grouped in two distinct classifications: strain softening and strain hard-
ening [13]. Compared with strain-softening ones, a strain-hardening material is considered
to be more excellent with respect to mechanical performance. Nevertheless, due to the
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obvious distinction between the behavior of bending and uniaxial tension, strain-softening
behavior in uniaxial tension can result in a deflection hardening response in bending, as
shown in Figure 1. Due to bridge effect of fiber, the load–deflection response of UHPFRC
prisms is significantly different with non-fiber-reinforced concrete, which always tends to
brittle bending failure. Accordingly, it is still a challenging matter for researchers to deter-
mine the tensile properties of UHPFRC, resulting in possible vacillations among designers,
inspectors, and administrators for counting on the participation of tensile performances
in UHPFRC.

Figure 1. Schematic description of: (a) Softening and hardening behavior of UHPFRC in uniaxial
tension; (b) Corresponding load–deflection response under three point bending.

In order to specifically quantify the tensile behavior of FRCC, several standard test
methods have been established, which can be classified into direct and indirect tests [14,15].
Due to the tensile property obtained directly without relying on inverse analysis, the direct
test is confirmed to be the most suitable method to characterize the tensile property of UH-
PFRC with strain-hardening behavior. However, performing direct tests is time-consuming,
challenging, and error-prone, especially for testing UHPFRC with strain-softening behavior,
which is significantly influenced by many factors, including specimen size, boundary con-
straint, loading machine stiffness, eccentric tension, and the inhomogeneity of the material
itself. Although uniaxial tensile tests that are easy to conduct have been developed by some
researchers [16–19], it is not appropriate for quality control on construction sites.

As a simpler alternative to the direct tensile test, bending tests, such as the notched
three-point bending test (3PBT) according to NF P18-470 [15] and EN-14651 [20], the
unnotched four-point bending test (4PBT) according to ASTM C1609/C1609M-12 [21] and
JCI-S-003-2007 [22], or the notched 4PBT according to CNR-DT 204 [23], are preferred in
(HP)FRCC testing. The 3PBT with notched prisms is normally conducted to characterize
the postcracking tensile law and to test UHPFRC materials that exhibit limited strain-
hardening or strain-softening behavior, while the 4PBT is adopted to determine elastic
properties and to test UHPFRC with significant strain-hardening behavior. As a result of
the easier handling, bending tests are widely performed to characterize the tensile behavior
of UHPFRC and its control quality in the field. However, we cannot regard the result
obtained from bending tests as the intrinsic material’s tensile properties, and so further
description and sophisticated inverse analysis are required before these properties can be
applied to structural design.

Several inverse analysis methods have been developed for determining the tensile
properties of FRCC based on bending tests [24]. All inverse methods are committed to
converting the mechanical responses, such as load–deflection, load–crack mouth opening
displacement (CMOD), and load–curvature, obtained from bending tests into uniaxial
tensile properties by virtue of more or less complicated models that relate closely to
constitutive parameters in uniaxial tension and compression [25–27]. These methods can be
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classified in two distinct categories: simplified methods and accurate methods. Simplified
methods, which are based on the equilibrium of moments and forces in a sectional analysis,
utilize only a few key points from the data obtained from the bending tests to derive
several specific point coordinates on the stress–strain curve [28,29]. Simplified methods are
suitable for structural design or quality control, as it is easy to implement. Nevertheless,
these simplified methods based on the presumed constitutive model are inaccurate enough
to generate a point-by-point curve [30,31]. On the basis of a complete experimental law,
accurate methods utilize the load–deflection, load–CMOD, or load–curvature response
to fit the uniaxial constitutive parameters and to get a point-by-point curve [24]. Due to
a higher accuracy and sophisticated procedure, accurate methods are used for academic
study purposes and are indicated for computer analyses.

However, it should be noted that both the simplified and accurate methods proposed
in the most studies are based on 4PBTs, whereas the research about the inverse method
for predicting the postcracking tensile behavior of strain-hardening and strain-softening
UHPFRC based on load–deflection response that is obtained from the notched 3PBT is
limited. Additionally, in order to make the notched 3PBT widely accepted for the struc-
tural design and quality control of UHPFRC, further simplification and validation are
indispensable. The inverse analysis can be quick, easy, and reliable by developing a more
approximate formulation that associates the midspan deflection with the curvature, and
a united closed form solution for calculating the moment–curvature relationship of the
UHPFRC specimen [32]. Furthermore, the reliable tensile information, which is used for
designing UHPFRC elements, can be obtained by applying such a powerful inverse analysis
method to the notched 3PBT.

Therefore, in order to efficiently obtain more realistic results, a nonlinear inverse
analysis method based on the notched 3PBT was proposed in this paper. To evaluate
the sensitivity of the predicted tensile behavior of UHPFRC to variations in the fiber
volume fraction, a total of fifteen notched UHPFRC prisms with coarse aggregates and
different contents of fiber were fabricated and tested in the 3PBT. A segmented tensile
constitutive law was developed which is capable of describing the various tensile behaviors
of UHPFRC, such as strain softening and strain hardening. Considering the effects of
notch and shear force, a more approximate formulation was adopted to simulate the load–
deflection response of the UHPFRC beam specimens. The analytical solutions were derived
with a controllable accuracy that can be applied to different purposes, including academic
study, structural design, or quality control, and verified with the direct tensile test results
and existing inverse methods presented in Refs. [12,33]. A predictive application was
developed which can be easily implemented with Matlab or Excel. Parametric studies were
also performed for investigating the robustness of the proposed method.

2. Experimental Program
2.1. Materials and Test Setup

The mix proportions of the UHPFRC matrix used in this study are listed in Table 1.
Basalt aggregate with the maximum size of 8 mm was included as a coarse aggregate.
A type of brass-coated straight steel fiber with a diameter of 0.2 mm and with a length
of 16 mm was used. The properties of the smooth steel fiber adopted in this study are
shown in Table 2. To estimate the effect of the steel fiber volume content on the flexural
performance, the experimental program included five groups with different fiber volume
fractions of 0.5%, 0.75%, 1.0%, 1.25%, and 1.5%.

Table 1. Mix proportions of UHPFRC material (proportion by weight).

Water Cement Silica Fume Fine Aggregate Coarse Aggregate Superplasticizer

0.24 1 0.23 1.08 1.24 0.034
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Table 2. Properties of straight steel fibers.

Diameter
(mm)

Length
(mm)

Aspect Ratio
(Lf/Df)

Elastic Modulus
(GPa)

Tensile Strength
(MPa)

Density
(kg/m3)

0.2 16 80 200 2500 7850
Note: Lf = fiber length, Df = fiber diameter.

A total of fifteen UHPFRC prisms (three prisms for each group) with dimensions of
150mm × 150mm × 550mm were fabricated for the notched 3PBT in accordance with EN
14651 [20]. In order to obtain the compressive performance, three cylinders for each group
with a diameter of 100 mm and a length of 200 mm were also made. Additionally, all the
prismatic specimens and cylindrical specimens were covered with plastic sheets and stored
at room temperature for 24 h after casting, and then cured in water at a temperature of
20 ◦C for 28 days. The uniaxial compressive strengths of the UHPFRC were obtained by
using a hydraulic compression testing machine with a maximum load capacity of 3000 kN
at a rate of 0.1 mm/min. The three-point bending tests were conducted by using a universal
testing machine with an ultimate load capacity of 300 kN at a constant rate of 0.2 mm/min.
In order to initiate the crack location, a notch with a width of 5 mm and with a depth of
25 mm was sawn in middle of the lower side of the UHPFRC prism. The clear span is
500 mm. To measure the midspan deflection, two linear variable displacement transducers
(LVDTs) were installed on both sides of the prism by using a steel frame. Additionally, a clip
gage with a rated capacity of 8 mm was located at the notch for the CMOD measurement.
The test setup and geometry for the 3PBT with notched prism are illustrated in Figure 2.

Figure 2. Notched three-point bending test (unit: mm).

2.2. Experimental Results

For the UHPFRC-notched prism subjected to a center point load, the bending stress
can be calculated by using Equation (1) according to EN 14651 [20].

f =
3PL

2b(d− a)2 (1)

where f and P represent the bending stress and applied load, respectively; a, b, d, and L
denote the notch depth, beam width, beam depth, and clear span, respectively.

The load–deflection curves obtained from the notched 3PBT for all test groups are
shown in Figure 3. The averaged load–deflection responses indicated by bold lines were
obtained from three specimens for each group. The limit of proportionality (LOP) in the
load–deflection curve can be considered as the first cracking point of the UHPFRC prisms
with smooth steel fibers, according to the study of Yoo et al. [33], as shown in Figure 3.
The initial stiffness, the first cracking load, and the corresponding deflection at LOP were
not sensitive to variations in the fiber volume content, whereas the peak load and the
descending slope were significantly affected by the fiber volume fraction. In addition, the
deflection at the point of modulus of rupture (MOR) corresponding to peak load exhibited
no noticeable difference for the specimens with the fiber volume fractions higher than 0.5%.
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For the beam with a fiber volume fraction of 0.5%, a sudden increase of deflection with a
sudden load drop was observed after matrix cracking, whereas the deflection-hardening
behavior was obtained for the beams with the fiber volume fraction higher than 0.5%. It
should be noted that only one major crack was observed at the midspan of all specimens, as
shown in Figure 4. As a higher volume content of fiber was adopted, more irregularity of
the crack was exhibited along the beam depth. Additionally, the characteristic parameters
with average value for depicting the UHPFRC compressive performance and bending
behavior are summarized in Table 3.

Figure 3. Load–deflection responses of UHPFRC prisms with various fiber contents: (a) The overall
of load–deflection responses; (b) Initial part of load–deflection responses.

Figure 4. Crack patterns of beam specimens with fiber volume content of 0.5% and 1.5%.

Table 3. Summary of mechanical test results.

Test Group fc (MPa) E0 (GPa) PMOR (kN) δMOR (mm)

Vf = 0.5% 139.9(2.65) 55.40(0.68) 29.5(0.78) 0.05(0.001)
Vf = 0.75% 135.2(3.21) 50.96(0.97) 35.2(0.64) 0.42(0.026)
Vf = 1.0% 134.2(2.37) 52.24(1.39) 47.1(2.13) 0.47(0.065)
Vf = 1.25% 140.6(1.80) 49.31(0.55) 54.4(0.35) 0.51(0.063)
Vf = 1.5% 147.3(1.74) 56.52(0.83) 65.1(2.42) 0.53(0.059)

Note: fc = uniaxial compressive strength, E0 = elastic modulus, PMOR = peak load, δMOR = deflection at the peak
load, (x.xxx) = standard deviation.
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3. Derivation of Nonlinear Inverse Method
3.1. Proposed Stress–Strain Relationship

The nonlinear inverse method entails having to assume a roughly stress–strain relation-
ship based on several assumptions in both tension and compression. With high compressive
strength, UHPFRC is typically considered to keep up higher linearity before the maximum
load [33]. Therefore, the compressive constitutive law of UHPFRC is supposed to be linear–
elastic at any stress, as shown in Figure 5a. Although this assumption may cause error at a
high level of compressive strain, the formulation can be developed without requiring any
compressive parameter [32]. In addition, the uniaxial tensile stress–strain relationship of the
UHPFRC is typically nonlinear, but any stress–strain curve envelop can be represented by a
series of piecewise linear functions. As shown in Figure 5a, a constitutive model in tension
is proposed with a segmented function that is able to characterize any experimental curve
obtained from uniaxial tensile tests. The elastic modulus (E0) for the UHPFRC is considered
the same both in compression and tension. In Figure 5a, Ei represents the modulus in the
(I + 1)th region of the tensile response, such as E1 represents the postcracking modulus that
can simulate either strain-hardening or softening materials by being assigned a positive
or negative scalar value, respectively; σi and εi represent the stress and the corresponding
strain at a point where the slope of the tensile curve changes, such as σ1 and ε1 represent
the tensile strength and strain at LOP, respectively. The mathematical form of the tensile
and compressive stress–strain relationship is depicted as follows:

σ(ε) =

{
E0ε for (−∞ ≤ ε < ε0)
σi + Ei(ε− εi) for (εi ≤ ε < εi+1, i = 0, . . . , n)

(2)

Figure 5. Material model of UHPFRC: (a) The stress–strain law; (b) The normalized constitutive law.

The formulation can be further simplified by introducing three normalized parameters:
αi, βi and µi, as defined in Equation (3). The normalized stress–strain diagram is described
in Figure 5b.

αi =
εi
ε1

; βi =
σi
σ1

; µi =
Ei
E0

=
βi+1 − βi
αi+1 − αi

(i = 0, . . . , n) (3)

The following normalized stress–strain relationship is developed by substituting all
normalized parameters expressed in Equation (3) into Equation (2).

β =

{
α for (−∞ ≤ α < α0)
βi + µi(α− αi) for (αi ≤ α < αi+1, i = 0, . . . , n)

(4)
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3.2. Derivation of Closed Form Moment–Curvature Formulation

Considering that a rectangular section with a depth (d – a) and width (b) above the
notch is shown in Figure 6, three assumptions are introduced in the derivation of the
moment–curvature (M−φ) formulation: (1) resultants of internal stress equilibrate with
the externally applied loads; (2) plane sections remain plane during bending; (3) the
stress–strain relationship of the material is assumed.

Figure 6. Linear distribution of strain along the depth and the corresponding stress distribution.

Assuming that strain distributes linearly along the depth of notched cross-section, as
shown in Figure 6, the stress distribution across the section can be obtained depending
on the proposed stress–strain relationship in Figure 6. Both the normalized strain at the
top fiber (αc) and the normalized strain at the bottom fiber (α) are linearly related to the
neutral axis depth ratio (k), as presented in Equation (5). The normalized height and the
internal force of each component obtained from the stress–strain diagram are presented in
Equations (6) and (7), respectively.

αc =
k

1− k
α (5)

hc = k; hj =
(αj − αj−1)

α
(1− k) (j = 1, . . . , i); hi+1 =

(α− αi)

α
(1− k) (6)

Fc =
αk2

2(1− k)
; Fj =

(αj − αj−1)(β j + β j−1)

2α
(1− k); Fi+1 =

(α− αi)(β + βi)

2α
(1− k) (7)

Similarly, the normalized moment arms, which are measured from the centroid of
each force component to the neutral axis, are presented in Equation (8).

yc =
2
3

k; yj =
Cj(1− k)

3α(β j + β j−1)
; yi+1 =

Ci+1(1− k)
3α(β + βi)

(8)

where Cj = 2αjβj + αjβj−1 + αj−1βj + 2αj−1βj−1 (j = 1, ···, i); Ci+1 = 2αβ + αiβ+ αβi + 2αiβi
(I = 1, ···, n).

The neutral axis depth ratio (k) is presented in Equation (9), which can be solved by
the equilibrium of internal forces. Additionally, the internal moment (M) is determined as a
summation of each force component multiplied by their respective moment arms. Likewise,
the curvature (φ) is considered as the ratio of the compressive strain at the top fiber to the
depth of the neutral axis. M and φ are normalized with respect to their respective values at
LOP, and the normalized forms M’ and φ’ are presented in Equations (10) and (11), respectively.

k =
Di

α + Di
; Di =

√√√√(β + βi)(α− αi) +
i

∑
j=1

(β j + β j−1)(αj − αj−1) (i = 0, . . . , n) (9)
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M′ =
2αk3

1− k
+

(1− k)2

α2

[
Ci+1(α− αi) +

i

∑
j=1

Cj(αj − αj−1)

]
(10)

φ′ =
α

2(1− k)
(11)

M = M′MLOP; MLOP =
1
6

b(d− a)2E0ε1 (12)

φ = φ′φLOP; φLOP =
2ε1

d− a
(13)

When the number of segments (n) is equal to 3, the same moment–curvature (M−φ) for-
mulation derived by Soranakom and Mobasher [30] can be obtained from Equations (10) and (11).

In a sectional analysis, the M−φ relationship of the UHPFRC beams can be obtained
by three procedures. Firstly, an initial value is selected for the tensile strain at the bottom
fiber (α), then the maximum compressive strain (αc) and the neutral axis depth ratio (k) are
calculated by Equations (5) and (9), respectively. Secondly, the internal moment (M) and
corresponding curvature (φ) can be determined using Equations (12) and (13), respectively.
In this way, one point is produced on the M−φ diagram. At last, to describe the complete
moment–curvature response, sufficient points should be generated by repeating the first
and second steps.

3.3. Load–Deflection Response

Although a closed form moment–curvature formulation was derived, the relationship
should be developed to connect the curvature and the midspan deflection. As for a notched
beam submitted to three-point bending, the elastic behavior of the region near the notch is
typically perturbed before cracking, as the stress field is modified by the notch. According
to previous research [34], the length of the perturbed area is roughly twice the notch depth.
As shown in Figure 7a, the length of the perturbed area is assumed to be 2a at the elastic
stage in this study. As for a notched beam loaded beyond the cracking strength, a single
macrocrack is usually observed above the notch [33]. Hence, the region near the notch
is also perturbed by the crack depth (dc), and the length of this region is changed to be
2(dc + a), as shown in Figure 7b. In this region, beam theory is applied to the analysis of an
uncracked part above the macrocrack, and two rigid blocks at the bottom are considered to
behave in accordance with the kinematic hypothesis. The consistency of the rotation angle
is satisfied at the boundaries of the perturbed zone.

Figure 7. Moment and curvature distributions along the notched beam at two stages: (a) Precracking;
(b) Postcracking.
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Due to the influence of the notch, the moment–curvature relationship of the section
at midspan, which is described by dashed curve in Figure 8, is different with that of the
section at the boundaries of the perturbed area described by the solid curve. To simplify
the analysis, a linear variation of curvature is assumed from the value φ in the midspan
to the value φθ in a length (dc + a), as shown in Figure 7b. When the moment in the
midspan beyond ultimate moment at MOR (MMOR), the areas near the crack follow the
softening portion of solid curve in Figure 8, whereas the remainder of beam specimen
undergoes unloading elastically. Moreover, φθ is denoted in Equation (14) with respect
to the midspan curvature (φLOP). The crack depth (dc) above the notch and the rotation
angle (θ) at the boundaries of the perturbed zone, shown in Figure 7b, are presented in
Equations (15) and (16), respectively.

φθ = [1− 2(dc + a)
L

](1− a
d
)

3 M
MLOP

φLOP (14)

dc =
(α− 1)(1− k)(d− a)

α
(15)

θ =
∫ dc+a

0
φ(x)dx =

(φ + φθ)(dc + a)
2

(16)

where MLOP and φLOP are the moment and curvature of the central section at LOP, respec-
tively, and a and dc are the depth of notch and crack, respectively.

Figure 8. Moment–curvature relationships in notched and unnotched cross section.

As described in Equation (17), the total midspan deformation consists of three compo-
nents, including the deflection (δm) caused by the bending deformation in the elastic state,
the deflection (δv) caused by the shear deformation, and the deflection (δc) caused by crack
propagation above the notch. Compared with the bending deformation, the shear distortion
is generally ignored under the large span-to-depth ratio. Conversely, the deflection caused
by shear distortion cannot be neglected due to the small span-to-depth ratio in this study.
The shear deflection (δv) can be computed according to the shear strain distribution along
the specimen [31]. Furthermore, the relationship between the shear force and strain is
supposed to be linear–elastic if no shear cracks are observed.

δ = δm + δv + δc =
∫ L/2

−L/2
(Muφe)dx +

∫ L/2

−L/2
(Vuγ)dx +

θL
2

(17)

where φe is the curvature of a beam in the elastic state, as shown in Figure 7; γ is shear
strain along the notched specimen; Mu and Vu represent the unit virtual moment and the
unit virtual shear force, respectively.
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By applying diagram multiplication to both the shear force–strain and moment–
curvature diagrams, the midspan deflection formula of the notched beam can be derived
explicitly as follows:

δ = (1− a
d
)

3 MφLOP
12MLOP

[
L2 + 2κ(1 + ν)d2

]
+

θL
2

(18)

where κ is the shear form factor, which is equal to 1.2 for rectangular cross-section, and ν is
Poisson’s ratio. The applied load P can be calculated as follows:

P = 4M/L (19)

Then, the load–deflection response can be obtained by a combination of Equations (18)
and (19).

3.4. Algorithm to Predict the Tensile Properties

In the inverse analysis, both the load–deflection and the moment–curvature responses
were developed on the basis of a stress–strain relationship proposed in this study. The
proposed inverse analysis method can be conveniently implemented in Matlab or Excel
with the analytical solutions derived above. The implementation procedure is shown in
Figure 9. The following procedures are appropriate for designers to obtain the tensile
properties based on the notched 3PBT.

Figure 9. Implementation procedure for the nonlinear inverse analysis.
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1. Firstly, the σ-ε relationship is divided into n pieces according to the different precision
requirement. Then, some initial parameters, including specimen size and constant
coefficient, should be determined;

2. An initial value is assigned to the stress σi+1, and then the moment–curvature response
can be generated using Equations (12) and (13). Next, the load–deflection response
for a notched beam can be calculated by using Equations (18) and (19);

3. The stress σi+1 is adjusted, and then step 2 is repeated until the calculated load–
deflection response fit the experimental results within acceptable error tolerance;

4. The stress–strain relationship and the approximate load–deflection curve can be
obtained by repeating steps 2 and 3.

4. Verification of Nonlinear Inverse Method

As the localization of the distortions takes place at the macrocrack in the direct tensile
tests, the stress–strain relationship is no longer appropriate for the description of the soften-
ing behavior after crack localization. In general, the softening behavior of the UHPFRC in
the uniaxial tensile tests is described by stress–crack opening (σ-w) curves. Nevertheless,
the tensile properties of the UHPFRC obtained by the proposed inverse analysis are de-
scribed by the stress–strain (σ-ε) law. In order to obtain an equivalent strain, a reference
length (lcs), expressed in Equation (20), is introduced to convert the σ-w relationship into
the σ-ε diagram. The reference length is assumed as the beam depth (d) for simplicity,
according to fib Model Code 2010 [35].

ε = σ(w)/E0 + w/lcs (20)

4.1. Comparison with Direct Tensile Test Results

The experimental results obtained by Leutbecher and Rebling [12] were used for check-
ing the results obtained from the nonlinear inverse method. In their experimental program,
they fabricated and tested a number of UHPFRC prisms (150 mm × 150 mm × 550 mm)
with a 25 mm notch at midspan. In order to minimize the influence of the fiber orientation
and distribution, strip-shaped members with a length of 400 mm were cut from the UH-
PFRC beam specimens and tested in uniaxial tensile tests. A total of six series with various
parameters, such as maximum aggregate size, fiber geometry, and fiber volume fraction,
were included in their test program, whereas only specimens of series 1 and series 2 were
selected and discussed here, as no stress–crack opening curve was available for series 3–6.

In the inverse analysis, the average load–deflection curve is used as the target curve.
Moreover, the average stress-crack opening curve obtained from the direct tensile test is
converted into a stress–strain curve depending on a reference length of 150 mm. The mean
cube strengths for series 1 and series 2 are determined to be 176 and 172 MPa, respectively.
The details of the two series and the essential parameters used in the inverse analysis are
listed in Table 4.

Table 4. Details of UHPFRC mixtures and parameters used in inverse analysis.

Test Series Lf/df
(mm/mm)

Vf
(%)

L
(mm)

b
(mm)

d
(mm)

a
(mm)

E0
(GPa) κ ν

1 9/0.175 2.5 500 150 150 25 46.1 1.2 0.2
2 17/0.2 1 500 150 150 25 45.0 1.2 0.2

Figure 10 depicts the comparison of the tensile σ-ε curve back-calculated by the
proposed method with the uniaxial tensile test results and the correlation between the
calculated and measured load–deflection responses for series 1 and series 2. Figure 10a
shows a σ-ε curve calculated by the analysis method is in good agreement with the direct
tensile test results of series 1. However, the predicted tensile strength is slightly higher
than the test result for series 2 due to the underestimation of elastic modulus, as shown in
the inset of Figure 10c, and the higher scatter of experimental load–deflection responses,
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as illustrated in Figure 10d. In addition, since no experimental data are available for the
deflection larger than 4mm, the stress–strain curve calculated by the inverse analysis is
incomplete for series 2. The maximum compressive strain obtained by using Equation (5) is
2.01 × 10−3, which is only half of the ultimate compressive strain. This result indicates that
the compressive constitutive law assumed to be linear–elastic at any stress is applicable for
the inverse analysis of UHPFRC.

Figure 10. Comparison of inverse analysis results with experimental results reported in Ref. [12]:
(a) Tensile stress–strain curves for series 1; (b) Load–deflection responses for series 1; (c) Tensile
stress–strain curves for series 2; (d) Load–deflection responses for series 2.

4.2. Comparison with Existing Inverse Method

In order to validate the proposed inverse method, the experimental results reported in
the study of Yoo et al. [33] were used. In their three-point bending tests, the UHPFRC beam
specimens (100 mm × 100 mm × 400 mm) with a 10 mm notch at the midspan were casted
and tested. The sets of flexural test specimens and the UHPFRC mechanical properties are
listed in Table 5. Additionally, Yoo et al. [33] suggested a bilinear softening curve for the
UHPFRC based on the result of inverse analysis, which could be used to check the results
obtained from the proposed analysis method. In their inverse analysis, the finite element
model with dense meshing was used.
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Table 5. Sets of flexural test specimens and UHPFRC mechanical properties.

Test Series Lf/df
(mm/mm)

Vf
(%)

L
(mm)

b
(mm)

d
(mm)

a
(mm)

E0
(GPa)

f c
(MPa) κ ν

UH-V1 13/0.2 1 300 100 100 10 51.0 197.1 1.2 0.2
UH-V2 2 50.5 201.6
UH-V3 3 52.5 207.2
UH-V4 4 48.5 185.1

Similarly, both the primitive and bilinear softening curves suggested by Yoo et al. [33]
were converted into the tensile σ-ε curve depending on a reference length of 100 mm.
The comparisons of the predicted tensile σ-ε curves obtained from the proposed inverse
analysis with the analysis of Yoo et al. [33] are presented in Figure 11. The maximum tensile
strain 6.5% corresponding to the cracking opening of 6.5 mm in accordance with the fiber
length limit is obtained from the proposed analysis method. Compared with the primitive
analysis, the results derived from the bilinear analysis seem to slightly overestimate the
experimental load–deflection in the descending branch, especially for UH-V2 and UH-V4.
The stress–strain response obtained from the proposed method provides the best fit of the
primitive softening curve for UH-V1, UH-V2, and UH-V3. A slight deviation between the
proposed analysis and the primitive analysis result for UH-V4, as shown in Figure 11g, is
mainly due to the intrinsic scatter of the experimental load–deflection responses at a high
strength level and the low disperse degree of the fiber. The first cracking tensile strength
with an approximate value of 10MPa is obtained by the proposed method for all specimens.
This means that, due to effect of the fiber volume fraction, UH-V1 exhibits a strain-softening
behavior while UH-V2, UH-V3, and UH-V4 exhibit a strain-hardening behavior. Therefore,
the verification results indicate that the proposed method can be used for predicting the
postcracking tensile behavior of UHPFRC.

Figure 11. Cont.
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Figure 11. Comparison of inverse analysis results with primitive and bilinear softening curves for
each group reported in Ref. [33]: (a) σ-ε curves for UH-V1; (b) L-δ responses for UH-V1; (c) σ-ε curves
for UH-V2; (d) L-δ responses for UH-V2; (e) σ-ε curves for UH-V3; (f) L-δ responses for UH-V3; (g) σ-ε
curves for UH-V4; (h) L-δ responses for UH-V4.
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4.3. Summary of Method Verification

In summary, the method verification indicated that the proposed inverse method
could reasonably predict the UHPFRC tensile properties, including the softening and
hardening parameters, based on the load–deflection response that was obtained from the
notched 3PBT. The verifying results indicated the correlation between the measured and
back-calculated tensile σ-ε responses was improved. Actually, the underestimation of the
first cracking tensile strain and the elastic modulus could lead to the overestimation of the
ultimate tensile strength. Therefore, it is essential to well calibrate the initial parameters,
including the first cracking tensile strain and elastic modulus. Meanwhile, the analytical
result of the proposed method was significantly affected by the scatter of the experimental
load–deflection responses.

5. Application of the Proposed Method for Parametric Studies

In order to estimate the effect of the fiber volume fraction on the tensile performance
of UHPFRC, the proposed method was adopted for predicting the tensile property based
on the bending test results shown in Section 2. Additionally, parametric studies were also
conducted for evaluating the robustness of the proposed method.

5.1. Application of Predicting Tensile Behavior

The bending test results shown in Figure 3 and the parameters listed in Table 1
were used for the inverse analysis. The tensile stress–strain curves of the UHPFRC with
different fiber volume fractions were well predicted by using the proposed method to
fit the load–deflection responses, as shown in Figure 12a. Additionally, the correlations
between calculated load–deflection response and that obtained from the notched 3PBT were
depicted in Figure 12b. As shown in inset of Figure 12a, the postcracking tensile strength
exhibits an approximately proportional behavior to the fiber volume fraction, whereas
the first cracking tensile strength was insensitive to the fiber volume fraction, and it was
primarily determined by the matrix strength. In addition, the ultimate tensile strain was
also seldom affected by the amount of fiber, which is mainly influenced by the fiber length
and orientation. It should be noted that a strain-softening behavior was observed for the
UHPFRC with the fiber volume fraction lower than 1.5%, while a limited strain-hardening
behavior was obtained for the UHPFRC with the fiber volume fraction of 1.5%. For a
strain-softening UHPFRC with deflection-hardening behavior in bending, the deflection
corresponding to the bending strength was insensitive to the fiber volume fraction.

Figure 12. The sensitivity of the predicted tensile behavior to variations in fiber volume fraction:
(a) The predicted tensile stress–strain curves; (b) The correlations between calculated and experimen-
tal load–deflection responses.
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As shown in Figure 12a, due to the fiber bridging, the strain-softening part of tensile
stress–strain response contributes to the load-carrying capacity and nonlinear energy
dissipation. When subjected to bending stresses, the post-peak response in the tensile
regions contributes to the load-carrying capacity in the softening observed in the deflection
response of the UHPFRC prisms with the fiber content of 0.5%. However, if the volume
fraction of the fibers is larger than 0.75%, as shown in Figure 12b, the stiffness contribution
of the cracked zone may result in loads in excess of the first cracking point and is defined
as deflection hardening. Therefore, the stiffness of the cracked zone in the tensile regions
contributes to the increased capacity in bending at large deflection levels.

5.2. Effect of the Number of Segments

In the nonlinear inverse method, the tensile constitutive law is divided into n pieces,
as defined in Equation (2). In general, the larger the number of segments (n) is, the more
accurate the calculation result. Nonetheless, the implementation of the proposed method
is more complex with increasing the number of segments. Hence, it is essential to make a
balance between the handiness and the accuracy of the proposed method.

Figure 13 shows the effect of the number of segments on the accuracy of the proposed
inverse method. The overestimation of the calculated postcracking strength is reduced
from 9.6% to 0.6% compared to experimental result, with the number of segments increased
from three to eight. Furthermore, the modulus of the strain-hardening stage is improved
with increasing the number of segments, as shown in the inset of Figure 13a. When n is
equal to 5, the corresponding overestimation is under 4%, which is precise enough for the
structural design and quality control of the strain-hardening UHPFRC. It shows that a
highly precise analytical solution that agrees with the results of the direct tensile test can be
obtained as long as the length of each segment is small enough. Therefore, the proposed
method can be also used for research purposes.

Figure 13. Effect of the number of segments (n) on the accuracy of proposed method: (a) The predicted
tensile stress–strain curves; (b) The calculated and experimental load–deflection responses.

5.3. Effect of Notch-to-Depth Ratio

With respect to the notched 3PBT, both the moment and curvature at the midspan are
influenced by the notch-to-depth ratio (a/d), as shown in Figure 9. It is observed that the
curvature at midspan increases continuously, and the moment decreases rapidly with an
increasing notch-to-depth ratio. Meanwhile, the curvature distribution along the length of
the perturbed area is also affected by the notch-to-depth ratio and further influences the
load–deflection response. In order to investigate the influence of the notch-to-depth ratio,
the load–deflection responses are simulated for series 1 with a notch depth of 0, 12.5, 25,
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and 50 mm at the midspan of the beam specimens that which result in a ratio a/d of 0, 0.08,
0.16, and 0.33, respectively.

Figure 14a demonstrates the effect of the ratio a/d on the load–deflection response
of series 1. It is observed that the peak load decreases sharply, and the curve becomes
smooth with an increasing notch-to-depth ratio. As shown in the inset of Figure 14a, the
load at LOP is inversely proportional to the notch-to-depth ratio because UHPFRC is more
prone to cracking failure with the increase of that ratio. Furthermore, Figure 14b depicts
the bending stress–deflection curves of series 1 with different notch-to-depth ratios. The
bending stress was calculated by using Equation (1). The bending strength is slightly
affected by the notch-to-depth ratio, and softening occurs more slowly with an increasing
notch-to-depth ratio, as shown in Figure 14b. This is due to the distance between the top of
the specimen and the tip of the notch, which reduces with the increase of the notch-to-depth
ratio, leading to a lower first cracking load.

Figure 14. Effect of the notch-to-depth ratio (a/d) on: (a) Load–deflection responses; (b) Bending
stress–deflection responses.

5.4. Effect of Postcracking Strength

As for the postcracking strength study, the bending tensile strength and ductility were
expressed as the normalized M−φ response, which is irrelevant to specimen size and first
cracking tensile strength. Figure 15a demonstrates the tensile constitutive model with
the normalized postcracking strength (β2) varied from 0.25 to 1.25 and the correspond-
ing normalized transition strain α2 = 10, simulating a range of strain-softening response
of the UHPFRC with a low fiber volume fraction, to the strain-hardening response of
the UHPFRC with a high fiber volume fraction. Figure 15b illustrates that the normal-
ized M−φ relationship is highly sensitive to variations in the material parameter β2, as
it significantly influences the peak and post-peak response. It is important to remark
that the bending tensile strength and ductility are improved as the normalized postcrack-
ing strength changes from 0.25 to 1.25, and a significant deflection hardening response
occurs when β2 is larger than 0.75. This means that a strain-softening material can ex-
hibit deflection-hardening or deflection-softening behavior in bending. Considering the
significant deflection-hardening material is applicable for structural application where
bending prevails, a postcracking strength no less than 75% of the first cracking strength is
recommended for strain-softening UHPFRC.
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Figure 15. Effect of the normalized parameter β2 to: (a) The normalized tensile constitutive model;
(b) The normalized moment–curvature response.

6. Conclusions

In this paper, a nonlinear inverse method based on the notched 3PBT was developed
for predicting the tensile properties of UHPFRC. An experimental program was conducted
to evaluate the sensitivity of the predicted results. The verifications and parametric studies
were also performed to investigate the generality and robustness of the proposed method.
The main conclusions are as follows:

1. The verifications indicated that the segmented stress–strain model used in the non-
linear inverse analysis was capable of describing various tensile properties of the
UHPFRC, including strain softening and strain hardening. Both the tensile strain–
stress relationship and the load–deflection response showed good agreement between
the experimental and analytical results. However, the accuracy of the predicted result
was significantly affected by the scatter of the experimental load–deflection response;

2. A high sensitivity of the proposed method was observed with a fiber volume fraction
varying from 0.5% to 4%. The deflection-softening behavior was simulated for the
UHPFRC beams with the fiber volume fraction of 0.5%, in accord with test result.
That the strain-softening behavior resulted in a deflection-hardening response was
also identified by the prediction. For a strain-softening UHPFRC with deflection-
hardening behavior in bending, the deflection corresponding to the bending strength
was insensitive to the fiber volume fraction;

3. For the strain-hardening UHPFRC, the predicted ultimate tensile strength was highly
sensitive to the number of segments. The overestimation of the ultimate tensile
strength was less than 4% with increasing the number of segments to five. However,
with reducing the number of segments to three, the overestimation of the postcracking
strength reached around 10%. Therefore, this method with a controllable accuracy
can be adapted for academic research and structural design;

4. The load–deflection response of the UHPFRC beam specimens was significantly
affected by the notch-to-depth ratio. With a lower notch-to-depth ratio, the deflection-
hardening behavior was more obvious, and softening occurred more quickly. Nonethe-
less, the bending strength was slightly affected by the notch-to-depth ratio;

5. For a strain-softening material, a significant deflection-hardening response was ob-
served with the postcracking strength larger than 75% of the first cracking strength
and the corresponding transition strain of 0.15%. Both the postcracking strength and
the transition strain are most important factors to the bending strength and ductility
of the strain-softening UHPFRC.
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