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Abstract

Ecological divergence in a species provides a valuable opportunity to study the early stages

of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient

radiation of woody species, to examine how an ecological divergence continues in the face

of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island

of Hawaii, which is the youngest island with the highest altitude in the archipelago and

encompasses a wide range of environments. The continuous M. polymorpha forest stands

on the island of Hawaii were differentiated into three genetic clusters, each of which grows

in a distinctive environment and includes substantial genetic and phenotypic diversity. The

three genetic clusters showed signatures of selection in genomic regions encompassing

genes relevant to environmental adaptations, including genes associated with light utiliza-

tion, oxidative stress, and leaf senescence, which are likely associated with the ecological

differentiation of the species. Our demographic modeling suggested that the glaberrima

cluster in wet environments maintained a relatively large population size and two clusters

split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological

divergence possibly began before the species colonized the island of Hawaii. Interestingly,

the three clusters recovered genetic connectivity coincidentally with a recent population bot-

tleneck, in line with the weak reproductive isolation observed in the species. This study high-

lights that the degree of genetic differentiation between ecologically-diverged populations

can vary depending on the strength of natural selection in the very early phases of

speciation.
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Author summary

Knowledge about how genetic barriers are formed between populations in distinct envi-

ronments is valuable to understand the processes of speciation and conserve biodiversity.

Metrosideros polymorpha, an endemic woody species in the Hawaiian Islands, is a good

system to study developing genetic barriers in a species, because it colonized the diverse

environments and diversified the morphology for a relatively short period of time. We

analyzed the genomes of 70 M. polymorpha plants from a broad range of environments on

the island of Hawaii to infer the current and past genetic barriers among them. Currently,

M. polymorpha plants growing in different environments have substantially different

genomes, especially at the genomic regions with genes putatively controlling physiology

to fit in distinct environment. However, in its history, they had hybridized with one

another, possibly because plants formerly growing in different environments came into

close contact due to the climate changes. It is suggested that genetic barriers can easily

strengthen or weaken depending on environments splitting the ecology of a species before

reproductive isolation becomes complete.

Introduction

Adaptation to distinct resources or environments often causes genetic differentiation in a spe-

cies [1]. The genetic differentiation can increase and result in speciation, particularly when an

ecological divergence is allopatric [2] and/or adaptive traits are associated with non-random

mating [3]. However, ecologically-divergent populations do not always develop reproductive

isolation in nature [4] and we have still limited knowledge about how an ecological divergence

continues in the face of gene flow.

Metrosideros polymorpha Gaud. (Myrtaceae), which is an endemic and dominant species in

the native forests in the Hawaiian Islands, represents a unique example of incipient adaptive

radiation of a woody species. After colonizing the Hawaiian Islands 3.1–3.9 million years ago

[5,6], the species has adapted to a wide range of environments: it grows from sea level to the

alpine tree line and from dry substrates in early successional stages to wet and mature forest

soils [7,8]. The morphology of the leaves and other organs of the plant and its physiology are

diverse and vary with the environments of different habitats [7,9–12]. Morphological variation

in a common garden suggests that most of the phenotypic differences are genetically deter-

mined [10,12,13]. Home site advantage shown in reciprocal transplantation experiments indi-

cates that phenotypic differentiation is associated with fitness [14]. Despite efforts in recent

genomic studies [15,16], the genetic regions and selective forces associated with phenotypic

differences are still unclear.

The genetic differentiation between ecologically-divergent populations in M. polymorpha is

not evident. Metrosideros polymorpha plants are classified into different varieties based on

morphological characteristics and habitat environments [17] and genetic differentiation has

been found for some varieties [18]. However, in the field, continuous forest stands of M. poly-
morpha are comprised of not only plants with representative morphologies of particular varie-

ties but also plants with intermediate morphologies. This suggests that hybridization between

varieties is common in the species and reproductive isolation between varieties is likely to be

incomplete [19]. Moreover, phylogenetic and population genetic studies focusing on Metrosi-
deros species/varieties across islands showed the genetic distances between the same varieties

in different islands is larger than those between different varieties within islands despite its

phenotypic similarity, suggesting that the radiation occurred repeatedly in each island [5,20].
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Therefore, varieties across islands may not represent evolutionary units that account for the

spatiotemporal scale of the ecological divergence in M. polymorpha or more complex demo-

graphic history should be considered.

This study aimed to establish how M. polymorpha maintained the ecological divergence on

the island of Hawaii. As the island of Hawaii is the largest, youngest island with highest altitude

in the archipelago, it encompasses the most variety of climates associated with the variation in

altitude and substrate age compared to other islands [21]. Therefore, the M. polymorpha popu-

lations on the island is a suitable system to study the most recent and extensive adaptive evolu-

tion of the species and gain insight into demographic and selective forces sustaining an

ecological divergence. Previously, population genomic analyses on the island of Hawaii

focused on nine populations along an altitudinal transect [15] and the riparian adaptation of a

rare variant var. newelii [16]. With the aid of a genome assembly composed of chromosome-

scale pseudo-molecules [22], we investigated the whole-genome polymorphisms of 70 samples

from 55 localities covering the altitudinal range, lava types, and five varieties from across the

island. Firstly, we examined the population structure of M. polymorpha on the island and iden-

tified the primary evolutionary units that are genetically differentiated along environmental

gradients across the island. Secondly, we employed multiple methodologies for selection scan

and identified candidate genes with relevant functions for environmental adaptation. Lastly,

we used coalescent modeling to infer the demographic history of M. polymorpha. We discuss

how ecological divergence has been maintained in this species despite the presence of gene

flow.

Results

We resequenced the whole genomes of 70 M. polymorpha plants from 55 sites on the island of

Hawaii with a 29.6-fold mean sequencing coverage (Fig 1A). The 55 sites covered the environ-

mental range of the habitats on the island, spanning 15–2,373 m in altitude, 9˚C –23˚C in

mean annual air temperature, 486–6,379 mm in annual precipitation, and from <100 to over

250,000 years old in substrate age. The 70 samples included the five varieties known to occur

on the island of Hawaii: var. glaberrima, var. incana, var. polymorpha, var. nuda, and var. newe-
lii, and unclassified samples with intermediate characteristics in morphology (Fig 1A). The for-

mer three varieties are common on the island. Var. glaberrima has large, glabrous leaves and

mainly grows in wet forests [17]. Var. polymorpha has small and extremely pubescent leaves

and grows in subalpine zones [17]. Var. incana has mid-sized leaves with short trichomes on

the surface and grows on young and dry substrates in the lowlands [17]. The remaining two

varieties are rare, so fewer samples were included for them: Var. nuda shares habitats with var.

polymorpha, but it has tiny glabrous leaves, and Var. newelii only grows along a river and has

riparian-formed narrow leaves [23]. Our quantitative measurements of leaf size and the weight

of trichomes revealed that leaf traits were remarkably different, even within varieties (Fig 1B

and S1 Table).

Population structure

Population structure was investigated based on the genotypes at the 16,972 four-fold degener-

ate single nucleotide polymorphisms (SNPs). In the principal component analysis (PCA), the

PC1 and PC2 scores showed that the 70 plants were differentiated into three groups, which

mostly corresponded to the three common varieties found on the island of Hawaii: var. glaber-
rima, var. incana, and var. polymorpha (Fig 2A). Var. newelii and var. nuda belonged to the

var. glaberrima and var. polymorpha clusters, respectively, despite the clear differences in mor-

phology. The population clustering assuming two or three ancestries in the ADMIXTURE
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[24] supported genetic differentiation among the three common varieties (S1 Fig), in contrast

to larger cross-validation errors for the increased number of ancestries (K) (S2 Fig). Further

genetic differentiation was shown in var. glaberrima at K = 4 and in var. incana at K = 5

(S1 Fig).

To evaluate the effect of geography and environment on the genetic differentiation, we

quantified the proportion of genetic variation explained by geographic and environmental dis-

tances using redundancy analysis (RDA). As a result, both geographic and environmental dis-

tances significantly accounted for the genetic variation of the 70 M. polymorpha plants.

Environmental distances accounted for 7.1% (p< 0.001) of the genetic variation and 3.2%

(p< 0.001) while controlling for geographic distances (Fig 2B). The proportion of genetic vari-

ation explained by geographic distances was 4.6% (p< 0.001), but after controlling the con-

founded fractions, the proportion decreased into 0.7% (p< 0.05; Fig 2B). Therefore, the

genetic variation among the 70 plants was more affected by environmental differences than by

geographic distances.

Scatter plot of the first two components of RDA (RDA1 and 2) suggested that the three pri-

mary genetic clusters identified in PCA and ADMIXTURE were differentiated according to

the environment of habitat (Fig 2C and 2D). The cluster of var. polymorpha and var. nuda was
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https://doi.org/10.1371/journal.pgen.1009987.g001
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primarily distributed in subalpine zones, where cloud does not occur frequently (Cloud frq in

Fig 2D). The low mean air temperature (ca. 10˚C; Temp in Fig 2D) also makes the environ-

ment of the habitat harsh. The habitat of var. incana was characterized by high mean air tem-

perature and high vapor pressure deficit (VPD in Fig 2D), indicating that the genetic cluster is

exposed to dry and hot conditions. The cluster of var. glaberrima and var. newelii occurred in

wet environments in mature forests on old substrate (Lava age in Fig 2D), in which the amount
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https://doi.org/10.1371/journal.pgen.1009987.g002
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of precipitation exceeded 6,000 mm per year, and the vapor pressure deficit was less than 300

Pa (Rainfall and VPD in Fig 2D).

In sum, M. polymorpha populations were mainly differentiated according to environmental

differences on the island of Hawaii. Hereafter, we focus on the three genetic clusters according

to the plot of their PC1 and 2 scores (Fig 2A), RDA1 and 2 scores (Fig 2C), and the population

clustering at K = 3 (S1 Fig), and we refer to them as the glaberrima (including var. glaberrima
and var. newelii), incana (including var. incana), and polymorpha (including var. polymorpha
and var. nuda) genetic clusters.

Genetic diversity

The three M. polymorpha clusters showed different patterns of genetic polymorphisms. In the

glaberrima cluster, only 0.2% of runs of homozygosity (ROH) exceeded 100 kb (Fig 3A). In

contrast, in the incana and polymorpha clusters, the distribution of ROH shifted to longer

ranges (Fig 3A). In the polymorpha cluster, 0.47% of ROHs developed more than 100 kb up to

723 kb (Fig 3A). Slightly larger polymorphism (π: 0.00522 ± 0.00367) was observed in the gla-

berrima cluster than the other two genetic clusters (π: 0.00453 ± 0.00353 and 0.00445 ± 0.0035
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Fig 3. Genetic diversity in the three primary Metrosideros polymorpha genetic clusters on the island of Hawaii. (A) The distribution of runs of

homozygosity (ROH) with lengths less than 10 kb (main panels) and more than 100 kb (inset panels). (B) Probability distribution of the nucleotide

diversity (π). (C) Decay of linkage disequilibrium (r2) with physical distance. (D) Probability distribution of Tajima’s D.

https://doi.org/10.1371/journal.pgen.1009987.g003
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in the incana and polymorpha cluster, respectively; Fig 3B). The linkage disequilibrium (LD)

decays dropped to r2 = 0.2 within 10 kb in all the genetic clusters, although the tendency was

the most prominent in the glaberrima cluster (Fig 3C). The negatively skewed distributions of

Tajima’s D indicated that all the genetic clusters, particularly the glaberrima cluster, have rare

variants and experienced recent population expansions (Fig 3D).

Genetic regions under selection

To search for candidate genomic regions under selection, we here employed approaches using

extended haplotype homozygosity, sweep scan and FST combined with population genetic sta-

tistics such as Tajima’s D, nucleotide diversity (π), and absolute genetic distance (DXY). As sta-

tistical power to detect selection varies among methodologies [25], combining results from

multiple methodologies can help to identify candidate genomic regions with prominent signa-

ture of selection. First, we compared haplotype homozygosity between each pair of the three

genetic clusters. The glaberrima, incana, and polymorpha clusters respectively showed

extended haplotype homozygosity (EHH) at 33, 45, and 38 regions compared with at least one

other genetic cluster and at 3, 6, and 3 regions compared with both of two other genetic clus-

ters (Fig 4).

Second, the signatures of selective sweep were examined using RAiSD [26]. RAiSD detected

the signatures at 136, 89, and 60 regions in the glaberrima, incana, and polymorpha cluster,

respectively (S3 Fig). Third, local deviations of genetic differentiation were tested based on

FST calculated for non-overlapping 20 kb windows. Genome-wide FST was 0.103 ± 0.091,

0.099 ± 0.09, 0.132 ± 0.116 between the glaberrima and incana, the glaberrima and polymor-

pha, and the incana and polymorpha cluster, respectively. We identified outlier FST at 17, 11,

and 40 windows between the glaberrima and incana, the glaberrima and polymorpha, and the

incana and polymorpha clusters, respectively (S4 Fig). Finally, we computed Tajima’s D, π,

and DXY for non-overlapping 20 kb windows and identified outlier windows. By combining

the results from these analyses, we identified a total of nine EHH regions with evidence from

other methodologies (Table 1).

While a large DXY with normal π suggests selection against gene flow from another genetic

cluster, a small π with normal DXY indicates a selective sweep in one genetic cluster e.g., [27–

29]. We found signatures of selection against gene flow in the glaberrima and incana genetic

clusters. The G1, I3, and I4 regions were significantly enriched with the top 5% DXY windows

calculated between the glaberrima and incana clusters (Table 1). The I4 region was also

enriched with the top 5% DXY windows between the incana and polymorpha clusters

(Table 1). The G2 and I1 regions included DXY and FST outlier windows, although these over-

laps were not statistically significant (Table 1). The I4 region encompassed only two genes,

WUSCHEL-RELATED HOMEOBOX 4 (WOX4; Mpol2_06G0152700) and NTL9 encoding a

membrane-associated NAC transcription factor (Mpol2_06G0152800) (S2 Table).

In contrast, the signatures of selective sweep were found in one region in the incana cluster

(I2) and three regions in the polymorpha clusters (P1–P3). The P1 and P2 regions significantly

overlapped with the bottom 5% π windows and RAiSD outliers, and all the P1, P2, and P3

regions were among the lower 5% Tajima’s D windows in the polymorpha cluster (Table 1).

Among the 22 genes in the P1 region, there were genes encoding relevant proteins to adapta-

tion in the subalpine zone, such as WRKY transcription factor, Chlorophyll a/b binding pro-

tein, JUNGBRUNNEN, and Cytochrome b561 domain-containing protein.

Antagonistic pleiotropy, in which different alleles in the same genetic regions are selected

in different populations, is another important process of adaptive evolution. In the three FST

outlier windows found above, different clusters had different alleles at more than half SNPs
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embedded in a window. The most prominent signature was found in a window with

large FST between the incana and polymorpha cluster, which included a gene putatively func-

tioning in the RNA-directed DNA methylation pathway (Mpol2_07G0105400), membrane-

associated kinase regulator (Mpol2_07G0105600), and one gene with unknown function

(Mpol2_07G0105500) (S5 Fig).

Fig 4. Cross-population extended haplotype homozygosity (xp-EHH) scores calculated between (A) the glaberrima and incana clusters, (B) the

glaberrima and polymorpha clusters, and (C) the polymorpha and incana genetic clusters. The genomic regions with significantly extended

haplotype homozygosity (EHH) against the other genetic clusters are indicated by black dots. The three, six, and three regions in which the

glaberrima, incana, and polymorpha clusters showed significantly EHH against both of the other genetic clusters were indicated by blue, green, and

red vertical lines, respectively. G1–G2, I1–I4, and P1–P3 indicated the EHH regions that overlapped with significant regions detected in at least one

of the other methodologies for selection scan (i.e., sweep statistics, FST, DXY, π, and Tajima’s D).

https://doi.org/10.1371/journal.pgen.1009987.g004
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Demographic history

We conducted Multiple Sequentially Markovian Coalescent (MSMC) [30] analysis to estimate

past effective population sizes and coalescent rates within and between the three clusters (Fig

5). During early generations around the sequence difference of 10−3, the effective population

size (Ne) of the three clusters corresponded very well and the cross-coalescent rates (CCRs) sta-

bilized around one, strongly suggesting they were not separated populations (Fig 5A and 5B).

The subsequent decreases in CCR indicated the genetic differentiation between the three clus-

ters, although the orders were not clearly resolved (Fig 5B). The genetic differentiation

between the clusters further proceeded and almost completed while the Ne increased gradually

(Fig 5A and 5B). Then, a bottleneck, or a decrease in Ne occurred in all the three clusters. Nota-

bly, the CCR increased along with the bottleneck (Fig 5B), suggesting that gene flow increased

between the clusters. Afterwards, the Ne of all three clusters increased and the CCR decreased

again (Fig 5A and 5B). By using an estimated mutation rate of 7.0 × 10−9 per site per genera-

tion [31] and a generation time of 30 years following Izuno et al. [32], three genetic clusters

diverged before the island of Hawaii emerged 0.4–0.5 million years ago (Mya) and the recent

bottleneck occurred around 50,000 years ago.

We further inferred the demography using site-frequency-based modeling [33]. The

observed site-frequency spectrum was computed for each pair of the three genetic clusters (S6

Fig), and was fit to 24 possible models to estimate demographic parameters (Fig 6A). Models

1–12 hypothesized that all the genetic differentiation events occurred relatively recently and

migration rate was constant after the split of the three genetic clusters. Models 13–24, on the

other hand, hypothesized that the split between genetic clusters were followed by a change in

migration rate, which was inspired by the MSMC analysis. As a result, M22 was the most likely

scenario with the smallest Akaike’s information Criterion (AIC) (Table 2). In this model, the

polymorpha cluster diverged from the glaberrima cluster 166,784 (95% confidence interval

(CI): 130,580–168,219) generation ago, then the incana cluster diverged from the polymorpha

Table 1. Genomic regions with significantly extended haplotype homozygosity in each of the three Metrosideros polymorpha genetic clusters against both of the

other genetic clusters.

Region

ID

Genetic

cluster with

extended

homozygous

haplotypes

Pseudo-

chromosome

Start

position

End

position

Length

(bp)

Nr. 20-kb windows Overlap

with

RAiSD

outlier

regions

(kb)

All DXY

(G-I)

outlier

DXY

(G-P)

outlier

DXY

(I-P)

outlier

FST

(G-I)

outlier

FST

(G-P)

outlier

FST

(I-P)

outlier

π
outlier

Tajima’s

D outlier

G1 glaberrima Mpol_Chr03 18,057,860 18,184,154 126,295 3 2�� 1 NA 0 0 NA 0 0 0

G2 glaberrima Mpol_Chr11 4,275,197 4,323,722 48,526 2 1 1 NA 0 0 NA 1 0 0

I1 incana Mpol_Chr02 18,810,670 18,889,083 78,414 3 1 NA 1 1 NA 0 0 1 0

I2 incana Mpol_Chr03 3,891,815 3,994,108 102,294 5 0 NA 0 0 NA 0 2� 1 0

I3 incana Mpol_Chr06 2,206,825 2,324,704 117,880 6 2� NA 1 0 NA 0 0 0 0

I4 incana Mpol_Chr06 16,515,161 16,580,947 65,787 3 3�� NA 3�� 0 NA 0 0 0 0

P1 polymorpha Mpol_Chr01 20,313,337 20,489,061 175,725 8 NA 0 0 NA 0 0 7�� 5�� 124

P2 polymorpha Mpol_Chr02 3,364,778 3,502,559 137,782 7 NA 0 0 NA 0 0 5�� 3�� 20

P3 polymorpha Mpol_Chr06 24,179,678 24,248,660 68,983 3 NA 0 0 NA 0 0 1 2�� 0

Overrepresentation of DXY, FST, π, and Tajima’s D outlier windows in each extended haplotype homozygosity region examined with Fisher’s exact test

��: p< 0.01

�: p< 0.05.

Parenthesis of DXY and FST indicate a pair of genetic clusters (G-I: the glaberrima and incana clusters; G-P: the glaberrima and polymorpha clusters; I-P: the incana and

polymorpha clusters)

https://doi.org/10.1371/journal.pgen.1009987.t001
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Fig 5. Multiple Sequentially Markovian Coalescent (MSMC)-based estimation of the past demography of the

three Metrosideros polymorpha genetic clusters: the glaberrima cluster (G), incana cluster (I), and polymorpha

cluster (P). (A) Historical change in the effective population size. (B) Relative cross calescent rate between genetic

clusters. Two vertical bars (colored in beige) at 4.7–5.1 and 0.4–0.5 million years before present indicate the estimated

time periods when the islands of Kauai and Hawaii emerged, respectively.

https://doi.org/10.1371/journal.pgen.1009987.g005
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cluster 163,216 (95% CI: 34,109–163,033) generations ago, although these split times were

close each other and the CIs overlapped (Fig 6B). Assuming a mutation rate of 7.0 × 10−9 per

site per generation [31] and 30 years per generation [32], these splits corresponds to 5.00 (95%

CI: 3.92–5.05) million years ago (Mya) and 4.90 (95%CI: 1.02–4.89) Mya, respectively. At

10,713 (95% CI: 410–13,421) generations ago, which corresponds to 0.31 (95% CI: 0.01–0.40)

Mya, the migration rates between the three genetic clusters increased about 23–314 fold (Fig

6C). This increase was equivalent to the change in population migration rate from 0.02–2.08 to

5.11–68.46 (S3 Table). A larger effective population size was estimated in the glaberrima clus-

ter (N0) than the incana and polymorpha clusters (N1 and N2; Fig 6D), which is consistent with

the largest genetic diversity and recent population expansion suggested by more negatively

skewed Tajima’s D (Fig 3B and 3D). The difference between observed SFS and expected SFS

under the best model deviated from 0, indicating even the best model misses some true demo-

graphic processes of the species (S6 Fig).

Discussion

Core evolutionary units comprising the M. polymorpha forests on the

island of Hawaii

Our extensive genome sequencing revealed three core genetic clusters comprising the continu-

ous M. polymorpha forests on the island of Hawaii adapted to different environments: the gla-

berrima cluster in the wet cloud forest, the incana cluster in the dry and early successional

forests, and the polymorpha cluster in the subalpine zone (Fig 2). Each of the major genetic

clusters harbored substantial genetic and phenotypic diversity (Figs 1 and 3). In the glaberrima

and incana cluster, a further genetic differentiation was observed, possibly due to geographic

isolations within clusters (S1 Fig). The glaberrima cluster accommodated riparian var. newelii
(Fig 2). Several studies [16,18,20] analyzed a substantial number of var. newelli samples and

reported evident differentiation in the allele frequency between var. glaberrima and var. newe-
lii. The distinctive morphology of var. newelii is the consequence of local adaptation to riparian

environments [23]. Our results indicated that the genetic differentiation was smaller than that

among the three major genetic clusters and supported that the adaptation to riparian environ-

ments emerged from var. glaberrima [16]. In the polymorpha cluster, glabrous var. nuda
shared neutral genetic variations with pubescent var. polymorpha (Figs 2 and S1). Therefore,

differences in leaf pubescence and physiological characteristics [34] could be attributed to a

limited number of genetic differences. Further studies are required to determine the ecological

and genetic factors underlying the scarcity of var. nuda plants in the subalpine zone.

Natural selection associated with ecological divergence

By combining the results from different methodologies for selection scan, we identified two to

four EHH regions in each genetic cluster that showed a signature of selection against gene flow

or selective sweep (Table 1). These regions encompassed several candidate genes responsible

for adaptation in each cluster (S2 Table). For example, the I4 region, which showed a signature

of selection against gene flow between the other two genetic clusters, included two genes

(Tables 1 and S2): WOX4 and NTL9. WOX4 is involved in various developmental processes,

including an early stage of leaf development in rice [35], the maintenance of vascular stem

cells in Arabidopsis [36], and secondary growth through regulating cambial cell division in

Populus [37]. NTL9 plays a role in plant immunity [38] and regulates osmotic stress signaling

during leaf senescence [39]. One or both of these genes must be important for the incana clus-

ter to colonize young substrates as a pioneer plant shortly after volcanic eruptions.

PLOS GENETICS Population genomics of an ecologically divergent tree species

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009987 January 21, 2022 11 / 26

https://doi.org/10.1371/journal.pgen.1009987


(C)(B)

(A)

(D)

T1

T2

N0

NB

NA

N2

N1 m01 m02

m12

m3

Pop 0 Pop 2Pop 1

T1

T2

N1

NB

NA

N2

N0

m01 m12

m02

m3

Pop 1 Pop 2Pop 0

M1–6 M7–12

T1

T2

N0

NB

NA

N2

N1 m01 m02

m12

m3

Pop 0 Pop 2Pop 1

T1

T2

N1

NB

NA

N2

N0

m01 m12

m02

m3

Pop 1 Pop 2Pop 0

M13–18 M19–24

k01 k02

k12

k01 k12

k02

TCTC

k01 k02 k12 m01 m12m02 m3 N0 N1 N2 NA NBTC T1 T2

10
4

10
5

10
6

10
7

10
8

10
3

10
−

8
10

−
7

10
−

6
10

−
5

10
−

4
10

−
3

0
50

10
0

15
0

E
ffe

ct
iv

e 
po

pu
la

tio
n 

si
ze

M
ig

ra
tio

n 
ra

te

G
en

er
at

io
ns

 b
ef

or
e 

pr
es

en
t (

10
3 )

Fig 6. Site-frequency-based modeling of the population divergences in Metrosideros polymorpha on the island of Hawaii. (A) Schematic

representation of simulated demographic models. Time points of divergence between three genetic clusters (T1 and T2), a time point when migration

rates changed (TC), effective population sizes for present (N0, N1, and N2) and ancestral (NA and NB) populations, and migration rates between genetic

clusters (k01, k02, k12, m01, m02, m12, and m3) were inferred based on the multidimensional site-frequency spectrum observed in the glaberrima, incana,

and polymorpha genetic clusters. The models M1–12 and M13–24 hypothesized the divergence after and before the colonization of the island of

Hawaii, respectively. (B–D) Parameter estimates (black points) and ranges (gray shade) derived from the parametric bootstrap for the best model

(M22). Black lines indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1009987.g006
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Other candidate genes were found in the P1 region, which showed a signature of selective

sweep in the polymorpha cluster (Table 1). Because the polymorha cluster is exposed to strong

radiation without clouds (Fig 2D), the regulation of light and oxidative stress are likely to be

important. Chlorophyll a/b binding protein (LCHB; Mpol2_01G0166500), which harvests sun-

light [40,41], and Cytochrome b561 domain-containing protein (Cyt-b561;

Mpol2_01G0167500), which prevents damage from excess light under drought conditions

[41], are good candidate genes for controlling light utilization. In addition to these two genes,

WRKY28 (Mpol2_01G0166100) is likely to respond to oxidative stress as its expression is

increased under oxidative stress in A. thaliana [42–47]. In the subalpine zone, there is a defi-

ciency of soil nitrogen under cool temperatures [8,48], making nitrogen management another

significant consideration for the polymorpha cluster. Transcription factor JUNGBRUNNEN1
(Mpol2_01G0168500), whose overexpression delays leaf senescence in A. thaliana [49], could

be related to longer leaf longevity in the polymorpha cluster compared with other genetic clus-

ters: the leaf longevity of the polymorpha cluster and the other two genetic clusters was esti-

mated to be ca. 8.5 and 2.2 years, respectively [12]. This co-localization of genes with similar

selective forces could have contributed to accelerate adaptation [50,51].

The nine EHH regions (Table 1) could be among the most significant genomic regions for

the adaptive evolution of the species. Besides these, substantial genomic regions showed the

signals for EHH, genetic differentiation, and selective sweep in each analysis, but rarely over-

lapped with those found in different analyses (Figs 4, S3 and S4). This indicated the extent and

Table 2. Comparison of the 24 demographic models for the three Metrosideros polymorpha genetic clusters using Akaike’s information criterion (AIC).

Model Pop0 Pop1 Pop2 Maximum ln(likelihood) Number of parameters AIC Delta AIC

M1 G I P -127172.5 11 585672.9 29217.3

M2 I P G -127229.0 11 585933.3 29477.7

M3 P G I -127286.5 11 586198.1 29742.5

M4 G P I -127281.5 11 586174.7 29719.1

M5 I G P -127261.8 11 586084.3 29628.7

M6 P I G -127153.6 11 585585.7 29130.1

M7 G I P -126330.1 11 581793.6 25338.0

M8 I P G -127334.0 11 586416.5 29960.9

M9 P G I -127219.8 11 585890.9 29435.3

M10 G P I -127576.1 11 587531.8 31076.2

M11 I G P -127356.7 11 586521.2 30065.6

M12 P I G -127250.8 11 586033.5 29577.9

M13 G I P -120975.1 15 557141.0 685.4

M14 I P G -120873.1 15 556671.3 215.7

M15 P G I -120944.8 15 557001.5 545.9

M16 G P I -120967.7 15 557106.9 651.3

M17 I G P -120983.8 15 557181.0 725.4

M18 P I G -120858.9 15 556605.7 150.1

M19 G I P -120890.9 15 556753.1 297.5

M20 I P G -120992.7 15 557221.8 766.2

M21 P G I -120972.1 15 557127.3 671.7

M22 G P I -120826.3 15 556455.6 0.0

M23 I G P -121018.4 15 557340.6 885.0

M24 P I G -121035.5 15 557418.9 963.2

G, I, and P indicates the glaberrima, incana, and polymorpha cluster, respectively.

https://doi.org/10.1371/journal.pgen.1009987.t002
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time scales of selection varies across the genomes, as the different time scales of selection are

measured by different parameters [52]. Genomic regions subject to recent selection could

show the signatures of selective sweep but may not be differentiated between genetic clusters.

Likewise, old haplotypes relevant to adaptation in the past could still be genetically differenti-

ated from other genetic clusters but the homozygosity may not be extended as long as before.

There were a few signatures of antagonistic pleiotropy among FST outliers (S5 Fig). In the

most of FST outliers, alleles could show fitness advantage in one genetic cluster (i.e., condi-

tional neutrality; [53]) or allelic trade-offs could occur in narrow genomic regions within a

20-kb window. The genes around the genomic region showing allelic trade-offs has broad or

unknown functions (S5 Fig), therefore, the role of antagonistic pleiotropy in the evolution of

M. polymorpha was unclear.

Divergence and admixture history

How M. polymorpha adapted to the diverse environments on the Hawaiian Islands is a long-

standing question. A scenario in which multiple, ecologically-diverged M. polymorpha lineages

independently colonized each island was suggested because of similar ecological and morpho-

logical adaptations on different islands. However, genetic differentiation between varieties

within islands was negligible compared to that between islands [5,20], suggesting that the eco-

logical divergence in M. polymorpha occurred on each island. Our data suggest a new scenario

in which these two scenarios may not be mutually exclusive.

Previous phylogenic studies suggested that all the Hawaiian Metrosideros species are mono-

phyletic and most closely related to a species from southern Polynesia [5,6]. Thus, it is possible

that a reduction in Ne found around 5 Mya was associated with the introduction into the

Hawaiian Archipelago through long-distance dispersal. Considering that long-distance dis-

persal does not always result in a temporal reduction in Ne [54,55], the ecological windows

open to the ancestral populations of the species was likely to be small. The immigration could

rely on a rare dispersal vector, such as jet stream [56,57], and/or only a fraction of immigrants

survived on new environments [58].

After the bottleneck, the three genetic clusters split and the connectivity was progressively

lost between clusters (Fig 5B). A major question remains as to whether the split occurred

within the island or in advance in different islands. By assuming a generation time of 30 years

and a mutation rate estimated for Arabidopsis, the split was estimated to start 4.9–5.1 Mya in

fastsimcoal (Fig 6B) and a few to five Mya in MSMC (Fig 5B). Therefore, this split most likely

dates before the emergence of the island of Hawaii about 0.4–0.5 million years ago. Care

should be taken in interpreting the results because it is still possible that some clusters diverged

on the island of Hawaii when considering different generation times and mutation rates (S7

Fig). Very close point estimations of T1 and T2 in fastsimcoal modelling (Fig 6B) and mostly

coincident CCR traces around 1–5 Mya (Fig 5B) suggested that the divergence between three

genetic clusters likely occurred in a short period of time and/or that the current data are insuf-

ficient to resolve the orders of divergence.

Among the three clusters, the archipelago-wide distribution of var. glaberrima could be

closely related to the ancestral form that migrated to the archipelago, which is consistent with

the best fitted model (M22; Fig 6). Var. glaberrima grows in wet and late-successional forests

and the sort of habitat appears on every island even after the islands subside and become

eroded. The central position (around 100–1500 m above sea level) in the elevational range of

the species distribution could lead to high genetic diversity through increased hybridization

between other genetic clusters or varieties. As a previous implication based on microsatellite

polymorphism [20], this large, genetically rich, ancestral genetic cluster could have served as
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the genetic source of adaptive diversification in the species. Currently, the polymorpha cluster

(i.e., var. polymorpha and var. nuda) is not found on Kauai Island, and it is rare on Oahu Island

[17], where there is no remaining subalpine zone. Likewise, the incana cluster (i.e., var. incana)

does not exist on Kauai Island and remains in small populations on Oahu Island [17], where

forest succession proceeded and suitable habitat disappeared. However, as all Hawaiian Islands

emerged through volcanic eruption and likely subsided 2,000–4,000 m compared to their his-

torical maximum height [59], it is possible that the ancient bare lava flows or subalpine envi-

ronments over the inversion layers provided opportunities for ecological differentiation of the

incana and polymorpha clusters in the past.

Island organisms that experienced a population bottleneck during initial colonization often

reduce the Ne [60]. Relatively small area of islands tends to reduce the organisms’ dispersal

ability [61]. Metrosideros polymorpha, however, remarkably increased the Ne since the first

immigration to the archipelago (Figs 5A and 6D) and still shows high dispersal ability [62]. A

series of volcano eruption in the Hawaiian Islands could make it possible for the species to suc-

cessively expand the distribution and maintain the genetic variation. The ecological divergence

could be a consequence of the large Ne through history, in which natural selection acts effec-

tively [63].

Our fastsimcoal modelling and MSMC analysis both suggested an increase in genetic con-

nectivity between clusters in a relatively recent time, estimated during 0.01–0.4 Mya (Figs 5

and 6). This indicated once differentiated genetic clusters experienced a secondary contact.

Importantly, the secondary contact occurred in association with a bottleneck (Fig 5). The weak

genetic isolation between the M. polymorpha clusters is consistent with the lack of strong

reproductive isolation in current populations, which is indicated by the absence of geographic

barriers, especially on young islands [64], the mostly shared pollinators and flowering period

[62,19], and the slightly reduced hybrid fertility [19]. Assuming weak reproductive isolation in

the past, the low CCR during older periods could suggest that the clusters were in allopatry on

single or different islands. The timing of the bottleneck and loss of isolation possibly coincide

with the last glacial maximum (LGM; Fig 5). During the LGM, the climate of the Hawaiian

Islands was cooler and drier than today: the sea surface temperature was 2˚C cooler [65] and

the treeline on Mauna Kea was depressed to an altitude of 2,000 m because of the depressed

inversion layer level [66]. Arid conditions may have spread around the island of Hawaii, given

that xerophytic plants dominated the vegetation of the island [67]. Consistent with the reduced

effective population sizes of the MSMC-based estimation (Fig 5), less Metrosideros pollen was

detected in the LGM compared to that during more recent time periods, even at an altitude of

465 m on the Oahu shoreline [68]. The decrease in the suitable habitat of the species as a whole

might have allowed a parapatric distribution and promoted secondary contact among the

three genetic clusters. The effective population sizes of all three M. polymorpha genetic clusters

increased remarkably since the bottleneck (Fig 5), although it is possible that the values in the

recent past were overestimated and unreliable due to the limited sample sizes used for MSMC

and/or phasing errors [69–71]. In the post-glacial period, the temperature became warmer and

precipitation increased due to the inversion level rising [72]. Given the suggested dominance

of rainforest vegetation on the island based on the pollen record [67], suitable areas for the gla-

berrima cluster likely increased. The eruptions of Mauna Loa and Kilauea [21] and a fluctuat-

ing inversion layer level in more recent years [72] may have provided more opportunities for

the incana or polymorpha clusters to increase their population sizes.

The differentiation of the three clusters before the emergence of the island of Hawaii does

not necessarily contradict the genome-wide similarity of plants on each island. Discrepancy

between population history and genealogy of adaptive genes was also reported in recent geno-

mic studies [73,74]. In M. polymorpha, we hypothesize that the three genetic clusters diverged
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through environmental adaptation and then came into close contact on the island of Hawaii.

While the genomic regions responsible for local adaptation remained differentiated, the

majority of the genome may have become undifferentiated due to weak reproductive isolation.

The candidate regions under selection, as described above, provide the key to examine the

hypothesis of genetic divergence through environmental adaptation when integrated with the

sequence data from different islands.

Methods

Plant materials and trait measurement

In 2016–2017, 66 samples were collected from 51 sites that covered almost all the M. polymor-
pha populations on the island of Hawaii. Leaf functional traits, including leaf area, leaf tissue

mass per area, and trichome mass per area, were quantitatively measured following Tsujii et al.

[12]. Each sample was classified into five known varieties following Dawson and Stemmer-

mann [17]: var. glaberrima, var. incana, var. polymorpha, var. nuda, and var. newelii. Plant

samples were collected under the research permissions from U.S. National Park Service, Divi-

sion of forestry and Wildlife in State of Hawaii, and Kohala Ranch. We also included four sam-

ples from Stacy et al. [18] to compensate for the habitat range of M. polymorpha on the island.

The four samples showed typical morphological characteristics of varieties, but qualitative

measurements of the leaf traits were not taken.

Whole-genome sequencing

Genomic DNA was extracted using NucleoSpin Plant II (Macherey-Nagel, Düren, Germany).

After the genomic DNA was fragmented into approximately 350 bp fragments using a sonica-

tor (E220 or LE220, Covaris, Woburn, MA, USA), sequencing libraries were synthesized using

NEBNext Ultra II DNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA,

USA) or a TruSeq DNA PCR-Free High Throughput Library Prep Kit (Illumina, San Diego,

CA, USA) following the manufacturer’s protocols. Each DNA library was tagged with distinc-

tive barcode sequences and equimolarly pooled into a tube. Of the 70 samples, 30 were

sequenced in four lanes in HiSeq2500 (Illumina) with the paired-end 125 bp chemistry, while

the remaining were sequenced in four lanes in HiSeq X Ten (Illumina) with the paired-end

150 bp chemistry. Raw sequence data are deposited in the DNA Data Bank of Japan (accession:

DRA011715). We obtained an average of 10.3 G bases (range: 2.95–34.4 Gb) per sample.

Quality control, mapping, and variant calling

After trimming adapter sequences and low-quality bases using Trimmomatic (ver. 0.33) [75],

the clean reads were aligned against the M. polymorpha reference genome sequence [22] using

the BWA-MEM algorithm (ver. 0.7.12-r1039) [76]. For two samples (HI_26 and HI_28 in S1

Table) with more than 70 million reads, 60 million clean read pairs were randomly selected

and used for mapping due to limited computational capacity. Approximately 98% of the

raw data passed quality filtering and 95% of the data aligned with the reference genome

sequence. PCR-derived duplicated reads in the alignments were marked using Picard (ver. 2.6;

http://broadinstitute.github.io/picard/). We obtained alignments with an average of 29.6-fold

(range: 9.5–52.5 fold) coverage.

Nucleotide polymorphisms against the reference sequence were called for each sample

using GATK HplotypeCaller (ver. 3.6) [77]. The resulting variant call format files were used to

identify variant and invariant sites among the 70 samples. We ignored sites on the repeat

sequences and transposable elements and retained sites satisfying specific qualities: QD>2.0,
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MQ>30.0, MQRankSum >−12.5, FS<60.0, SOR <3.0, and ReadPosRankSum >−8.0. We

regarded genotypes as missing if the depth per genotype was extremely low (<5) or high

(>100). For variant sites, SNPs with more than three alleles were excluded from the dataset

and the effect of SNPs on gene functions were estimated using SnpEff (ver. 4.3T) [78] based on

the M. polymorpha gene annotation [22]. A total of 243,376,950 sites, including 231,298,492

monomorphic sites and 12,078,458 bi-allelic SNPs, were used for subsequent analyses.

Population structure

The population structure among the 70 M. polymorpha plants was assessed using ADMIX-

TURE (ver. 1.3) [24], principal component analysis (PCA), and redundancy analysis (RDA).

In the ADMIXTURE analysis, the 70 plants were clustered assuming 1–10 ancestries

(K = 1–10) with 10 replicated runs per K. We used 57,196 four-fold degenerate SNPs, in which

the minor allele frequency was larger than 0.05, LD between any sites within 50 bp did not

exceed 0.5, and less than 20% missing data was allowed per SNP. In the PCA, we used 16,972

four-fold degenerate SNPs, which were retained after removing SNPs with missing genotypes

from the SNP dataset used in ADMIXTURE.

In order to evaluate the effect of geographic and environmental distances on the genetic dif-

ferentiation, we modeled the genetic variation among the 70 plants with geographic (GEO)

and environmental (ENV) distance matrices and conducted RDA to partition the variation.

Genetic variation was represented by the genotypes at the same SNPs used for PCA. The envi-

ronmental distances were estimated from the scaled 12 environment variables, including sub-

strate age, mean annual air temperature, annual precipitation, cloud frequency, net radiation,

albedo, Penman-Monteith potential evapotranspiration, soil evaporation, transpiration, vege-

tation height, and vapor pressure deficit. These data were obtained from the Geography

Department of the University of Hawaii (http://climate.geography.hawaii.edu) [79] and the

United States Geological Survey (https://pubs.usgs.gov/of/2007/1089/) [21]. The geographic

distances were represented by 13 distance-based Moran’s eigenvector map (dbMEM), which is

obtained from GPS coordinates using the dbmem function in adespatial package (ver. 0.3.14)

[80]. In order to avoid overfitting in the subsequent RDA, forward selection was performed

for each of environmental and geographic variable sets using the ordiR2step function in vegan
package (ver. 2.5.7) [81]. In the end, six environmental variables, including mean annual air

temperature (Temp in Fig 2D), soil evaporation (Soil evapo), annual precipitation (Rainfall),

substrate age (Lava age), cloud frequency (Cloud frq), vapor pressure deficit (VPD), and six

dbMEMs were used for ENV and GEO matrix, respectively, in the following RDA. Proportion

of genetic variation explained by the GEO and ENV matrices were estimated using varpart
function in vegan package based on the full and partial RDA models. Statistical significance of

explanatory variables in each model was examined by a permutation test (999 permutations).

Genetic diversity

In the subsequent analyses, we focused on 40 samples with >90% ancestry in the population

clustering, assuming three ancestries (14, 14, and 12 samples for the glaberrima, incana, and

polymorpha clusters, respectively; S1 Table). Bi-allelic SNPs with<20% missing data in the 40

samples were used for calculation.

LD decay was estimated using PopLDdecay [82], in which we further removed SNPs with a

minor allele frequency of less than 0.1 and calculated the squared correlation coefficient (r2)

between SNP genotypes at a maximum of 100 kb apart. The ROH, i.e., the stretches of homo-

zygous genotypes, and Tajima’s D in 20-kb nonoverlapping sliding windows were calculated
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for each genetic cluster using VCFtools [83]. Nucleotide diversity within each genetic clusters

(π) in 20-kb sliding windows using pixy [84].

Genome scan for selection

Genomic regions with a signature of selection were searched based on haplotype homozygosity

estimates, sweep statistics, local deviation of FST, and diversity and divergence parameters such

as π, Tajima’s D, and DXY.

If the frequency of a beneficial allele increases rapidly, the haplotype homozygosity around

the allele becomes more extended than expected with normal recombination. Therefore, sig-

nificantly different haplotype homozygosity between genetic clusters indicates positive selec-

tion affecting one genetic cluster. For each pair of three M. polymorpha genetic clusters, we

calculated cross-population extended haplotype homozygosity (xp-EHH) around SNPs with

more than four minor alleles in each pair using the R package rehh (ver. 3.1.0) [85]. As this

analysis requires haplotype information, haplotypes of individuals in each genetic cluster were

statistically inferred from genotype data using WhatsHap (ver. 0.18) [86] and Shapeit (ver.

4.1.2) [87]. SNPs were recognized as outliers if the p-value of xp-EHH score between each of

genetic cluster pairs was less than 10−6. Around each outlier SNP, genomic regions showing

EHH in one genetic cluster against the other was identified using calc_furcation function in

rehh [85] and consecutive EHH regions were merged. The glaberrima cluster showed EHH at

13 and 23 regions against the incana and polymorpha cluster, respectively. Likewise, the incana

cluster showed EHH at 30 and 21 regions against the glaberrima and polymorpha cluster,

respectively, and the polymorpha cluster showed EHH at 28 and 13 regions against the glaber-

rima and incana cluster, respectively. The subsequent analyses focused on EHH regions that

were found in comparison with both of other genetic clusters, because these EHH regions can

encompass genomic signatures of cluster-specific adaptation.

The signatures of selective sweep were searched using RAiSD (ver. 2.0) [26]. RAiSD calcu-

lates a Mu statistic, which is an integrated score dependent on the extent of polymorphism,

LD, and the change in SFS, for a stretch of sequences including 50 SNPs. Higher Mu statistic

values indicate the genetic regions are more likely to be affected by selective sweep. RAiSD was

carried out for each genetic cluster. Only SNPs without missing data were recognized as poly-

morphisms and all the remaining sites were treated as monomorphic sites. To avoid high Mu

statistics calculated for windows with considerable missing data, we excluded RAiSD-defined

sequence windows that overlapped with long (>1 kb in length) no-record regions or included

short (100–1000 bp) no-record regions more than 20% of the total window length. After the

filtering, 4,603,611, 2,495,674, and 2,195,041 windows were retained for the glaberrima, incana

and polymorpha cluster, respectively. Mu statistics more than 20 standard deviation from the

mean was defined as significant outliers.

Local deviation of genetic differentiation from genome-wide one was evaluated by FST out-

lier scan. We characterized each 20-kb window with an FST vector, which is composed of three

pairwise FST values and embedded within a three-dimensional numerical space. The local devi-

ation of each window was measured based on k-nearest neighbor (kNN) method [88]. To

exclude the bias of low frequent alleles, SNPs with less than four minor allele counts in each

cluster pair were removed for calculation (3,090,901, 2,912,614, and 2,843,930 SNPs were used

to calculate FST between the gaberrima and incana, glaberrima and polymorpha, and inacna

and polymorpha clusters, respectively) and windows with less than 20 such SNPs were

removed. Pairwise FST [89] were calculated using VCFtools and negative or missing values

were converted into zero. With a weighted kNN method [90], the degree of local deviation

(hereafter, kNN outlier score) is measured for each window by the sum of dissimilarity
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between the other nearest k windows, where k = 6993 was determined based on the diagnostic

plot provided by Pfeifer et al. [88]. Windows within the top 0.5% kNN outlier scores and more

than 0.5 of delta FST, which is the difference between an FST vector and the medoid of the all

pairwise FST vectors [88], were recognized as outliers.

We further computed nucleotide diversity within clusters (π), Tajima’s D, and the absolute

genetic differentiation between clusters (DXY) in 20-kb sliding windows using pixy [84] and

VCFtools [83]. Windows within the bottom or top 5% of the whole-genome distribution were

recognized as outlier regions (bottom 5% for π and Tajima’s D; top 5% for DXY).

The results from the four approaches were combined and EHH regions with at least one

significant evidence from other methodologies were further discussed. We examined whether

each EHH region was enriched with outlier windows of DXY, FST, π, and Tajima’s D using

Fisher’s exact test.

To find genomic signatures of antagonistic pleiotropy, we screened FST outlier windows.

Windows in which allele frequency differed> 0.95 in a cluster pair at more than half of SNPs

were recognized as candidate regions with signatures of antagonistic pleiotropy.

Demographic history

The historical change in the effective population size and gene flow was first inferred using a

model-free approach. The coalescent times of haplotypes within and across genetic clusters

were computed using MSMC (ver. 2.1.1) [30] with eight and four haplotypes, respectively, from

each genetic cluster. Output estimates were converted to their real size and time with an

assumed generation time of 30 years and a mutation rate of 7.0 × 10−9 per site per generation.

The generation time of 30 years could be a conservative estimate, as M. polymorpha is a pioneer

species colonizing early successional substrates and a previous study assumed the generation

time to be 10–20 years [16]. It is reported that the mutation rate per generation in woody species

could be similar or slower compared with annual plant species [91], while a faster mutation rate

of 3.75 × 10−8 per site per generation is assumed for Populus [92]. These uncertainties in genera-

tion time and mutation rate were considered following Sakojärvi et al. [93]. Briefly, after com-

puting a range of mutation rate per site per year of A. thaliana based on relevant reports [31,94–

96], the values were divided by six as Tuskan et al. [97], and then multiplied by the plausible

generation times of M. polymorpha (10 and 30 years). This calculation led a range of mutation

rate of 2.9–9.5 × 10−9 and 8.8–28.5 × 10−9 for a generation time of 10 and 30 years, respectively.

We then hypothesized 24 demographic models to estimate demographic parameters using

SFS (Fig 6A). The parameters included effective population sizes (N0, N1, N2, NA, and NB),

time points of population divergence (T1 and T2), a time point when migration rates changed

(TC) and migration rates between genetic clusters (k01, k02, k12, m01, m02, m12, and m3). The

models M1–12 hypothesized that the divergence among the three genetic clusters occurred rel-

atively recently, thus the search range for T2 was set to be less than 15,000 generations before

present (450,000 years with an assumed generation time of 30 years). This corresponds to the

scenario that the three genetic clusters diverged after the colonization of the island of Hawaii.

On the other hand, the models M13–24 hypothesized that the divergence had occurred before

the colonization of the island and the migration rates between genetic clusters changed after

that, thus the search range for T2 and TC was set as>15,000 and<15,000 generations, respec-

tively. We simplified the models by assuming constant effective population sizes and unidirec-

tional migration rates to reduce computational effort. Using fastsimcoal2 (ver. 2.6) [33], the

parameters were estimated based on the 3D-site-frequency spectrum (SFS) of the minor allele

frequency observed in the three genetic clusters (S6 Fig). The SFS measures were calculated

using a random set of 500,000 intergenic sites that were located>10 kb from exons and did
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not include missing data in the 40 samples. The 500,000 sites included 35,656 bi-allelic SNPs

(7.10%). In each model, 40 independent runs of 100,000 coalescent simulations, with a maxi-

mum of 40 cycles of the likelihood maximization, were conducted. The most likely scenario

was determined based on the AIC. The observed and expected SFSs under the best model were

compared using a script provided in @a@i [98]. For the best fit model, the 95% confidence

interval of parameters was estimated with the 100 parametrically bootstrapped SFSs. The

mutation rate was set as 7.0 × 10−9 per site per generation [31].

Supporting information

S1 Table. Summary of 70 Metrosideros polymorpha samples in this study. Sample identifica-

tions, localities (including GPS coordination), leaf trait data, and variety classification are

shown.

(XLSX)

S2 Table. List of genes overlapping with the candidate genomic regions under selection

(G1–G2, I1–I4, and P1–P3).

(XLSX)

S3 Table. Population migration rates based on migration rates and effective population

sizes estimated in the coalescent modeling.

(XLSX)

S1 Fig. Population clustering inferred with ADMIXTURE assuming 2–6 ancestries. G, I, P,

NW, ND, and Un indicate var. glabrrrima, var. incana, var. polymorpha, var. newelii, var.

nuda, and unclassified respectively. Letters in parenthesis indicate volcanos where samples

were collected (KL: Kilauea, ML: Mauna Loa, MK: Mauna Kea, HL: Hualalai, KH: Kohala).

Samples used for the coalescent simulations and selection scans are indicated with an asterisk.

(EPS)

S2 Fig. Cross-validation errors in the ADMIXTURE analyses with K = 1–10.

(EPS)

S3 Fig. Manhattan plot of Mu statistics calculated in RAiSD. Horizontal dashed lines indi-

cate the thresholds for outlier SNPs (Mean + 20 SD).

(TIFF)

S4 Fig. Manhattan plot of FST between (A) the glaberrima and incana clusters, (B) the gla-

berrima and polymorpha clusters, and (C) the incana and polymorpha clusters. Signifi-

cantly deviated FST from the genome-wide distributions were indicated in red.

(TIF)

S5 Fig. Genetic diversity and differentiation parameters around a candidate region for

antagonistic pleiotropy found between the incana and polymorpha cluster. Allele frequency

of non-reference allele (frq(ALT)), π, Tajima’s D, FST, and DXY around the three genes over-

lapped with an outlier 20-kb window were shown.

(EPS)

S6 Fig. Observed and expected site-frequency spectrum (SFS) under the best demographic

model of three Metrosideros polymopha genetic clusters on the island of Hawaii. (A)

Observed and (B) expected two dimensional SFSs for each pair of the three genetic clusters.

(C) Residuals between the expected and the observed SFS. (D) Histograms of residuals.

(EPS)
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S7 Fig. MSMC plots with different generation times and mutation rates.

(EPS)
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