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Abstract

The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all bio-

logical processes, but is especially important for studies of biological events, such as regen-

eration, which occur late in ontogenesis or in adult life. We have constructed and tested a

fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of lar-

val and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability

of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an

essential role in the transcriptional program of heart regeneration.

Introduction

Conditional induction of loss-of-function mutations using the Cre-lox system has enabled

thorough mechanistic studies of all biological processes, from development to organ homeo-

stasis and behavior, in the mouse model system [1,2,3,4]. Inability to reliably insert loxP sites

into desired locations in the genome, despite recent progress [5,6], has hampered conditional

loss-of-function studies in zebrafish. Instead, scientists have to rely on inducible overexpres-

sion of active and dominant negative proteins to study development and regeneration [7,8,9].

Organisms vary greatly in their regenerative capacity. Among vertebrates, many ana-

mniotes, including the axolotl and the zebrafish, can regenerate a variety of organs, tissues and

cell types (reviewed in[10]). Humans are on the other end of the regenerative spectrum, as

injury typically results in scar formation. Until recently it was thought that laboratory mice

also have limited regenerative capacity. Two recent findings challenge that notion: observation

that newborn mice can heal ventricular injury [11], and that a related mouse species, the Afri-

can spiny mouse, can regenerate skin lesions [12]. These observations suggest that with

detailed mechanistic knowledge of the process, it may be possible to re-activate dormant

regenerative programs in other mammals as well.

Signaling through classical developmental pathways including Wnt, Sonic Hedgehog, BMP,

Retinoic Acid, and TGF is essential during regeneration ([10,13,14,15] and references therein).
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These observations support the notion of a significant overlap between genetic mechanisms

governing development and regeneration, necessitating the use of conditional mutants to

study regeneration. However, conditional loss of function mutants can only be robustly gener-

ated in the laboratory mouse, which has poor regenerative capacity. Conversely, in vertebrate

model systems with extensive regenerative capacity such as the salamander or the zebrafish

only inducible dominant negative approaches in conjunction with small molecule exposure

and morpholino knockdowns have been used to study regeneration [15].

In this report, we have constructed and tested fully conditional, highly mutagenic gene trap

vectors. They combine high mutagenicity of GBT vectors [16,17,18,19] with the ability to con-

ditionally revert and re-induce gene inactivation by turning the gene trap cassette around. In

further contrast to other conditional gene trap vectors [20,21,22], we employ simple +10/-10

mutant loxP and FRT sites instead of using the more cumbersome FLEx switch (reviewed in

[23]). Using tbx5atpl58 as the model gene trap locus, we demonstrate that these +10/-10 loxP

and FRT sites can be readily used to stably invert the gene trap cassette in larval and adult zeb-

rafish, and observe that tbx5a is required for cardiac regeneration.

Results and discussion

To facilitate genetic analysis of pleiotropic genes and biological processes which occur late in

ontogenesis, we have developed a highly mutagenic and fully conditional 5’ gene trap with

Gal4-VP16 as the primary gene trap reporter. Our approach is similar to the one employed by

the mouse gene trap consortium [24] and previous reports in zebrafish [21,25] with two key

differences. First, while previous reports used the FLEx switch based on linker mutant site-spe-

cific recombinase (SSR) sites, we took advantage of the much more compact nature of LE/RE

mutant SSR sites to achieve the same goal. Second, we used components which have been pre-

viously validated to be very effective at inducing null mutations upon integration into introns

of genes [16,17,18,19,26,27].

We constructed a miniTol2 vector, GBT-S1, with the Gal4-VP16 gene trap cassette flanked

by LE/RE modified loxP (lox66, lox72) and FRT (FRT+10, FRT-10) SSR sites (Fig 1A). Since

overexpression of Gal4-VP16 has been shown to lead to toxicity [28,29], we considered using a

less transcriptionally potent derivative Gal4-FF. We tested Gal4-FF [28] in the context of

GBT-B1 gene trap vector [19] but failed to recover any gene trap lines (Balciunas et al., unpub-

lished). Even though this negative observation is insufficient to draw firm conclusions, we

implied that Gal4-FF may be insufficiently potent to function in a highly stringent gene trap

and elected to continue using Gal4-VP16. A lens-specific BFP expression cassette was added to

expedite identification of embryos which inherit the gene trap. Plasmid containing the gene

trap (25 pg) was injected along with 25 pg of Tol2 transposase mRNA into the yolks of zebra-

fish embryos at 1-cell stage. Lens BFP-positive embryos were raised and screened by crossing

to the Tg(UAS:mRFP)tpl2 reporter line [19,30].

Out of 115 potential F0 fish screened, twelve produced RFP-positive progeny. We focused

on seven lines with the most distinct mRFP expression patterns and identified insertionally

mutated genes in six of them: crip2, dnah5, lztfl1, ankrd12, tbx5a and sybp. We observed that in

many gene trap lines, BFP expression was too weak to reliably identify trap-positive fish, and

therefore constructed a second vector, GBT-S8, with a longer gamma-crystalline promoter

driving BFP, and with the marker cassette cloned in reverse orientation. A small screen

focused on the cardiovascular system produced two additional gene trap lines, rbpms2b and

fli1b (Fig 1B and 1C).

Incrosses of fish heterozygous for six gene traps (crip2, dnahc5, lztfl1, ankrd12, sybp and

fli1b) resulted in phenotypically normal embryos. Crossing fish heterozygous for rbpms2b gene
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trap resulted in approximately 25% of progeny developing pericardial edema at 3 days post fer-

tilization (data not shown). We performed quantitative RT-PCR to assess levels of read-

through transcripts crip2, ankrd12 and sybp homozygotes (Fig 1D). Transcript levels in all

three lines were below 1%, indicating that mutagenicity of pGBT-S1, similarly to that of paren-

tal vector pGBT-B1 [19], is close to that of the extremely mutagenic GBT-RP2 [18] and higher

than that of other previously published conditional gene traps [21,25].

We chose to focus our attention on the tbx5atpl58 gene trap line. Tbx5 is a highly conserved

transcription factor known to be required for heart and upper limb development in different

vertebrate species, and TBX5 haploinsufficiency causes Holt-Oram syndrome in humans

[31,32,33,34,35]. Accordingly, we noted that embryos heterozygous for tbx5atpl58 have abnor-

mal pectoral fins (n = 241) (Fig 2). The majority (60%) of examined tbx5atpl58/+ embryos had

equally affected pectoral fins. One third of the tbx5atpl58/+ (29%) had the left pectoral fin more

affected than a right. Only 11% of the tbx5atpl58/+ showed more affected right pectoral fin. We

noticed that similarly to observations in human patients with Holt-Oram syndrome, the left

upper limb was more likely to be more severely affected than the right (compare Figs 2A–2D

to 1 in [36]). We observed poor and highly variable survival of tbx5atpl58/+ embryos to

Fig 1. Tol2-based On/Off/On (“Switchblade”, GBT-S1/S8) vectors for insertional mutagenesis and characterized gene trap lines. A. Diagram of the vector and

conditional regulation. The gene trap cassette is flanked by lox71, FRT-10, FRT+10 and lox66 sites. Components responsible for high degree of mutagenicity are shown

in red. SA, carp beta actin splice acceptor, ^Gal-VP16, AUG-less Gal4-VP16, zp(A), zebrafish beta actin 3’ UTR and transcriptional termination sequences, cry, X.

laevis gamma crystalline promoter, p(A), SV40 poly(A). The gene trap cassette is identical to that used in GBT-B1 gene trap vector (Balciuniene et al., 2013). Expression

Flp recombinase will result in inversion of the gene trap cassette and one wild type (FRT) and one double mutant, inactive (FRT+10/-10, two red dots) site. Expression

of the Cre recombinase will result in second inversion of the cassette conditionally mutating the gene. B. GBT-S1 and GBT-S8 gene trap lines. First column, gene trap

line. Second column, sequence adjacent to the 3’ end of the gene trap integration. The capital CTG are the last three nucleotides of Tol2. Third column, location of the

gene trap integration on the GRCz10 zebrafish genome assembly. Fourth column, insertionally mutated gene (IMG). Fifth column, sequence of the IMG-Gal4-VP16

fusion protein, IMG sequence is highlighted in aqua, Gal4 sequence is highlighted in magenta. The “linker” sequence is encoded by the linker between splice acceptor

and Gal4 in GBT-S1 and GBT-S8. C. Diagram of gene trap loci. Gene trap integration site is shown as a triangle, with mutated gene’s exons depicted as squares: grey for

non-coding, black for 5’ of integration site and white for 3’ of integration site. D. Assessment of transcript levels by quantitative RT-PCR. Three non-phenotypic lines

were chosen for analysis. Quantitative RT PCR was performed on pools of RNA from wild type and homozygous mutant 5 dpf embryos, and normalized to beta actin.

Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0197293.g001
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adulthood. All examined adults (n = 48) lacked pectoral fins. We also noted that all hearts dis-

sected from tbx5atpl58/+ fish (n = 13) had enlarged atria and bluntly shaped ventricles (Fig 2G

and 2H), similar to the hearts of mice heterozygous for tbx5 deletion [33]. Crosses of fin-less

males and females heterozygous for tbx5atpl58 failed to produce embryos. We therefore used

the sperm of tbx5atpl58/+ males to in vitro fertilize the eggs of tbx5atpl58/+ females, and observed

25% of embryos with linear heart phenotype (Fig 2E, n = 7 genotyped). This phenotype closely

resembles the more severe version of the heartstrings phenotype caused by the hst allele of

tbx5a [35]. Notably, our gene trap truncates the Tbx5a protein after the first 50 amino acids

while tbx5ahst introduces a stop codon in the second to last exon, at the amino acid 316, after

the T-box DNA binding domain. The observations that amino acids 1–239 are sufficient to

bind DNA and form a structural dimer with Nkx2.5 [37], suggest that the protein encoded by

tbx5ahst may be a hypomorph. Other explanations such as alternative splicing or nonsense

read-through of tbx5ahst are possible as well [38,39]. A particularly intriguing possibility would

be that point mutant tbx5ahst but not gene trap mutant tbx5atpl58 may induce genetic compen-

sation [40,41]. Alternatively, the more severe phenotypes of tbx5atpl58, despite striking similar-

ity to the mouse and human Tbx5 haploinsufficiency phenotypes, could be attributed to

toxicity of Gal4-VP16 [28,29].

Fig 2. tbx5atpl58 mutant phenotypes. A-D. Larvae heterozygous for tbx5atpl58 gene trap allele display severe but variable fin defects at 5 days post fertilization. Compared

to wild type siblings (a), heterozygous mutants display bilaterally equal fin truncation (b), or unequal fin truncation with left (c) or right (d) pectoral fin more severely

affected. E. Gene trap homozygotes display a phenotype similar to the more severe version of heartstrings phenotype described previously (Fig 1D and 1E in Garrity et al.,
2002). F-H. All adults heterozygous for the gene trap had hearts with enlarged atria and mis-shapen (blunt) ventricles (n = 13). a, atrium, v, ventricle, ba, bulbus arteriosus.

https://doi.org/10.1371/journal.pone.0197293.g002
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Tbx5 is an essential component of transcription factor cocktails capable of trans-differenti-

ating fibroblasts into cardiomyocytes [42,43,44]. Together with the fact that Tbx5 is essential

for heart development, this suggests that Tbx5 may be required for cardiac regeneration. On

the other hand, de novo differentiation of cardiomyocytes from stem cells does not appear to

play a major role in cardiac regeneration in zebrafish or neonatal mice [9,11,45]. It is also not

clear if tbx5a is upregulated in response to cardiac injury in adult zebrafish [7,45,46], although

it is induced in injured embryonic hearts [47]. We therefore decided to use our gene trap

mutant to test if tbx5a may be required for cardiac regeneration in adult zebrafish.

We first tested if fish heterozygous for the tbx5atpl58 gene trap are able to regenerate their

hearts after ventricular resection. We found that while the hearts of wild type fish were

completely healed 30 days after ventricular resection (n = 6), the hearts of tbx5atpl58 heterozy-

gotes retained a significant amount of scar tissue (n = 3) (data not shown), which indicates a

regeneration defect. However, the observed regeneration defect may be an indirect conse-

quence of morphological abnormalities described above (Fig 2G and 2H).

To determine if tbx5a is directly involved in regeneration we took advantage of the condi-

tional inversion components built into our gene trap vector. We first tested if inversion of the

gene trap cassette using Flp recombinase will result in abrogation of all mutant phenotypes.

Embryos obtained from a cross between tbx5atpl58 heterozygotes and (UAS:mRFP)tpl2 homo-

zygotes and were injected with in vitro transcribed Flpo recombinase mRNA. Embryos with

reduced mRFP expression were selected and raised to adulthood. One of the adult fish was

outcrossed and in the first clutch produced three RFP-positive and 13 RFP-negative embryos.

We analyzed all 16 embryos by PCR and confirmed that all three RFP-positive embryos have

non-inverted gene trap, and of the 13 RFP-negative embryos, three were positive for the

inverted gene trap (S1 Fig). Siblings of the tested embryos were raised to adulthood and the

reverted gene trap line tbx5atpl58R was established. Presence of inverted gene trap was con-

firmed by PCR and sequencing (S2 Fig). Most importantly, tbx5atpl58R/tbx5atpl58R homozy-

gotes are viable and do not display any overt phenotypes. Thus, presence of the inverted gene

trap cassette and gamma-crystalline-BFP expression cassette in the intron does not appear to

significantly negatively impact the expression of tbx5a.

Two experiments were performed to test if the gene trap cassette flanked by LE/RE mutant

loxP sites can be inverted again to re-trap the gene in larval zebrafish. First, tbx5atpl58R/+; UAS:

mRFP heterozygotes were outcrossed and embryos were injected with Cre mRNA, resulting in

mosaic mRFP expression in the hearts, pectoral fins and dorsal retina (data not shown). Sec-

ond, to ascertain feasibility of conditional re-trapping, tbx5atpl58R/+; UAS:mRFP heterozygotes

were crossed to a line expressing the tamoxifen-inducible Cre under the control of a ubiqui-

tous promoter, Tg(-3.5ubb:CreERT2, myl7:EGFP)cz1702 transgenic line [48]. Two-day old

embryos were incubated in embryo water containing 0.5 μM 4-hydroxytamoxifen (4-HT here-

after) for 24 hours as described previously [48,49]. Embryos were scored for mosaic mRFP

expression, and DNA was prepared from 5 dpf RFP-positive embryos. Inversion of the gene

trap cassette was confirmed by sequencing of PCR fragments (S2 Fig).

For cardiomyocyte-specific expression of CreERT2, we established a Tg(-3.6tnnt2:CreERT2,

gcrygc:RFP)tpl48 (tnnt2:CreERT2 henceforth) transgenic line and demonstrated that Cre activ-

ity in this line is both tamoxifen-inducible and heart-specific (S3 Fig). We generated fish het-

erozygous for tnnt2:CreERT2, UAS:mRFP and tbx5atpl58R. Embryos were exposed to

4-hydroxytamoxifen (4-HT) for 24 hours starting at 2 days post-fertilization. Mosaic heart-

specific mRFP expression (from Tg(UAS:mRFP)tpl2 reporter transgene) was observed in the

hearts of 3 dpf embryos, indicating successful inversion of the tbx5a gene trap into its mutant

form (S3 Fig). Embryos exposed to 4-HT and vehicle-exposed controls were raised to adult-

hood. Three adult fish were sacrificed to test if cardiomyocytes made heterozygous for the re-
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trapped gene trap (tbx5atpl58RT) at 2–3 dpf are able to successfully contribute to the adult myo-

cardium using fluorescence from UAS:mRFP as the readout. Examined hearts had variable

numbers of RFP-positive cells, indicating that heterozygous cells indeed are able to contribute

to the adult heart. Importantly, all examined hearts were morphologically normal (S3 Fig). We

then performed ventricular resection on siblings of these mosaic fish (n = 7). One month after

injury, only 2/7 examined hearts appeared to have undergone normal regeneration while 3/7

hearts and 2/7 hearts had medium and large amount of collagen deposition, respectively. Adja-

cent sections were stained for DAPI and visualized for RFP fluorescence. We noted very few

RFP-positive cells (and thus heterozygous for tbx5atpl58RM) in the regenerated myocardium

(tip of the ventricle). Further experiments are needed to determine if expression tbx5a is

switched off in the regenerated myocardium, or if cardiomyocytes with reduced tbx5a dosage

are less capable of contributing to the regenerating myocardium (Fig 3).

Although the experiment described above did indicate that tbx5a is likely to play a direct role

in cardiac regeneration, we could not exclude the possibility that there are subtle developmental,

physiological or cellular defects in hearts mosaic for tbx5atpl58RT mutation starting during

Fig 3. Cardiomyocytes heterozygous for tbx5atpl58 contribute to the adult heart but lead to impaired regeneration. Top, experimental outline. A-F. Representative
images of adjacent sections (A and B, C and D, E and F) of hearts (n = 7) stained for DAPI (A, C, E) and by Pico-Mallory stain (B, D, F).

https://doi.org/10.1371/journal.pone.0197293.g003
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development. Also, since Tbx5a is required for heart development, it was not feasible to gener-

ate homozygous mutant cells and test the ability of hearts containing such cells to regenerate.

To overcome these limitations, loss of function mutation had to be induced in the hearts of

adult zebrafish. To achieve this goal, we generated adult fish homozygous or heterozygous for

tbx5atpl58R in heterozygous tnnt2:CreERT2, UAS:mRFP background. To re-trap the tbx5a
locus, 2.5 month old fish were incubated in 5 μM 4-HT three times for 24 h with a one-day

resting period between each incubation (Fig 4). We then performed ventricular resection. As

expected, control fish incubated in vehicle displayed normal regeneration (n = 7), with only

one heart showing mild scarring (Fig 4A–4G). In contrast, tbx5atpl58R/+ incubated in 4-HT dis-

played mild regeneration defects (n = 2) (Fig 4H and 4I), while all tbx5atpl58R/tpl58R fish failed

to regenerate their hearts (n = 8) (Fig 4J–4Q). Apart from observing induction of mRFP fluo-

rescence in whole hearts (data not shown), we did not assess the efficiency of re-trapping. It

therefore remains to be determined if variable severity of the regeneration defect (compare Fig

4J, 4K and 4Q) can be attributed to different efficiencies of re-trapping, physical proximity of

re-trapped cardiomyocytes to injury site, or if it is entirely stochastic. Nonetheless, our data

clearly show that Tbx5a function is required for cardiac regeneration in zebrafish.

In summary, we demonstrated that a gene trap vector employing lox66/lox72 variant loxP

sites in conjunction with tissue specific, tamoxifen-inducible Cre recombinase can be used to

inactivate gene expression not only in embryonic, but also in adult zebrafish. We recovered

the tbx5atpl58 mutant from a gene trap screen, which is a random forward genetic approach.

However, several recent publications clearly establish the feasibility of integrating transgenes,

including fluorescent reporters and a Cre-inducible gene trap cassette, into double strand

breaks induced by targeted nucleases [6,50,51,52,53,54]. Non-repetitive nature of lox66/72

sites, in contrast to repetitive nature of the FLeX system, makes our gene trap especially suit-

able for one-step generation of conditional mutants using reverse genetic approaches.

Fig 4. Loss of tbx5a in adult zebrafish leads to severe regeneration defects. Top, experimental outline. Bottom, sections of zebrafish hearts stained by Picro-Mallory

stain. A-G. Hearts of zebrafish (n = 7) homozygous for the reverted tbx5a allele, and heterozygous for tnnt2:CreERT2, treated with ethanol (solvent for 4-HT). H, I.

Hearts of zebrafish (n = 2) heterozygous for the reverted tbx5a allele, and heterozygous for tnnt2:CreERT2, treated with 4-HT. J-Q. Hearts of zebrafish (n = 8)

homozygous for the reverted tbx5a allele, and heterozygous for tnnt2:CreERT2, treated with 4-HT.

https://doi.org/10.1371/journal.pone.0197293.g004
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Materials and methods

Animal experiments

All experiments described in this manuscript were approved by Temple University’s Institu-

tional Animal Care and Use Committee (IACUC). Anesthesia was performed by immersion

into fish water containing tricaine (MS-222, Sigma-Aldrich). Euthanasia was performed either

by tricaine overdose or by rapid chilling.

Gene trap mutagenesis

Plasmids containing gene trap constructs GBT-S1 and GBT-S8 were purified using the Qiagen

miniprep protocol. Plasmid DNA was co-injected with Tol2 mRNA into 1-cell wildtype zebra-

fish embryos as described [55]. At 3 dpf, embryos were screened for high levels of BFP fluores-

cence using Zeiss Axioscope, and positive embryos were raised to adulthood. Adult F0 founders

were crossed to tg(UAS:mRFP)tpl2 reporter line [19,30]. The F1 progeny was screened for

mRFP and BFP expression at 1 and 3 dpf. Adult F1 fish were again outcrossed to establish gene

trap lines and to obtain embryos for molecular identification of gene trap events.

Sequences of conditional gene trap vectors have been submitted to GenBank and are avail-

able under accession numbers MH450095 (GBT-S1) and MH450096 (GBT-S8).

Identification of insertionally mutated genes

For inverse PCR, genomic DNA was prepared from batches of 20 RFP-positive and 20 RFP neg-

ative embryos, collected at 3–5 dpf. Genomic DNA was then digested with NlaIII, TaqI, NheI/

SpeI/XbaI/XmaJI or BamHI/BclI/BglII, then diluted and ligated overnight as described in [56].

Nested inverse PCR reactions were performed with primers Tol2-F8 and S1/5’No1, then

Tol2-F10 and S1/3’No2a for the 5’ end of the gene trap, and primers Tol2-R4 and S1/3’No3,

then Tol2-R5 then S1/3’No4 for the 3’ end of the gene trap (see S1 Table for primer sequences).

Bands unique to RFP-positive batches were excised from agarose gel and sequenced with appro-

priate Tol2 primer (Tol2-F10 for 5’ end, Tol2-R5 for 3’ end). Sequences of PCR fragments were

used to perform BLAST searches in NCBI, UCSC and Ensembl databases.

Based on sequencing results, we designed primers in the adjacent genomic DNA and per-

formed PCRs on additional batches of 20 embryos to confirm presence of a particular integra-

tion in RFP-positive and but not in RFP-negative embryos.

To further confirm gene trap events, RT PCR was performed using reverse primers in Gal4

and forward primers in an exon 5’ to gene trap integration, on batches of 10–20 RFP-positive

and RFP-negative embryos, as described previously [19]. Bands were excised from an agarose

gel and sequenced.

Quantitative RT-PCR

Gene trap heterozygotes were incrossed and embryos with no/high RFP expression were

sorted at 1–3 dpf. At 5 dpf, DNA and RNA was prepared from single embryos using the Trizol

reagent as previously described [19]. Three-primer PCR (two genomic primers and one gene

trap-specific primer) was performed on genomic DNA to identify embryos homozygous for

either wild type or the gene trap allele. mRNA from at 3–5 homozygous embryos was pooled,

and cDNA was synthesized using Invitrogen Superscript II cDNA synthesis kit. Quantitative

PCR was performed in triplicates using Roche LightCycler 480 SYBR Green I kit, with beta-

Actin as the reference mRNA. Results of the qPCR were recorded and analyzed using LightCy-

cler 480 software.
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Ventricular resection

Three months old fish were anesthetized in 0.9 mM tricaine (MS222) solution. After exactly 3

min fish were removed from tricaine solution, placed on a wet sponge ventral side up, and ven-

tricular resection was performed as described by Poss and colleagues [57]. A small incision in

the area of the heart was made using a pair of small fine scissors. Pericardial sac was opened

with fine forceps. About 20% of ventricular apex was carefully removed with small scissors.

Upon injury fish was transferred to a recovery tank that was filled with fresh fish system water

and had an additional air supply. Recovering fish were maintained at low density (1–5 fish in a

2L tank) on the main water system. All fish were sacrificed at 30 dpa by tricaine overdose or

chilling in ice water.

Histology

Hearts were fixed in 4% PFA, washed in 1x PBS, dehydrated and embedded in paraffin. Eight

nm heart sections were made using Leitz 1512 Rotary Microtome. To stain nuclei of the cells,

sections were incubated in standard DAPI solution for 10 min, and mounted with water-based

mounting media. To detect collagen deposition, sections were rehydrated, stained using Picro-

Mallory procedure [58], dehydrated and covered with Vectashield mounting medium.

Reversion of tbx5atpl58 gene trap allele using Flpo mRNA

The plasmid coding for Flpo recombinase was a kind gift of Dr. Philippe Soriano [59]. Recom-

binase coding sequence was cloned into the pT3TS vector [60] to generate pDC50. In vitro
transcription was performed as described for pT3TS-Tol2 [55]. 75pg of Flpo mRNA was

injected into the yolks of embryos obtained from tbx5atpl58/+, Tg(UAS:mRFP)tpl2 fish. F0

embryos were screened for mosaic mRFP expression and raised. Mosaic adults were out-

crossed to Tg(UAS:mRFP)tpl2 homozygotes, and F1 (R1) embryos were screened for mRFP

expression. The batch that showed the lowest number of mRFP-positive embryos (13%) as

compared to the number of mRFP-negative siblings (87%) was used for genotyping. Successful

recombination events in F1 embryos and adults were detected via three-primer PCR with

tbx5a-F1, tbx5a-R1 and zpa-F2, and confirmed by sequencing. Sequence of pT3TS-Flpo plas-

mid will be deposited in GenBank.

Re-trapping of tbx5atpl58R locus

Cre mRNA was in vitro transcribed and prepared as described previously [17,19] was injected

into one-cell embryos from tbx5atpl58R/+; UAS:mRFP heterozygous outcross. Embryos were scored

for mosaic mRFP expression in the hearts, pectoral fins and dorsal retina (data not shown).

For temporally-controlled re-trapping, tbx5atpl58R/+; UAS:mRFP heterozygotes were crossed

to the Ubi:CreERT2 ubiquitous CreERT2 driver line [48]. At 2 dpf, embryos were transferred

into 0.5 μM 4-hydroxytamoxifen (4-HT hereafter) solution and incubated in the dark for 24 h.

At 5 dpf, DNA was prepared from embryos and PCR was performed using primer pairs

tbx5aEx1-F1/Gal4-R1 (5’ end) and zpA-F2/eGBYFP-R (3’ end) (S1 Table). Obtained bands

were excised from agarose gel, purified and sequenced.

For conditional re-trapping in larvae, tbx5atpl58R/+; UAS:mRFP heterozygotes were crossed

to Tg(tnnt2a:CreERT2, crygc:mRFP)tpl48. At 2 dpf, embryos were transferred into embryo

water containing 0.5 μM 4-hydroxytamoxifen and incubated in the dark for 24 h. At 3 dpf,

embryos were scored for heart-specific mRFP expression.

To re- trap tbx5atpl58R locus specifically in the adult heart, 2.5 months old tbx5atpl58R/+;
tnnt2a:CreERT2 and tbx5atpl58R/tpl58R; tnnt2a:CreERT2 fish were incubated in 5 μM 4-HT
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solution three times for 24 h with one-day recovery period between treatments. One week

after the last incubation, hearts were dissected and screened for mRFP expression. Ventricular

resections were performed one week after the last incubation in 4-HT.

Supporting information

S1 Fig. Reversion of tbx5atpl58 mutant phenotypes by inverting the gene trap cassette. A, B.

Embryos injected with Flpo mRNA (A) highly reduced mRFP expression (left) and/or recovery

of pectoral fins (right) compared to un-injected siblings (B). C. Screening of R1 (F1) embryos

for a reverted allele (tbx5atpl58R) by three primer PCR. Embryos in the first three lanes were

RFP positive and therefore were expected to carry the non-modified allele (tbx5atpl58).
Embryos in lanes 4–16 were RFP negative and therefore were expected to be either wild-type

(tbx5a+) or positive for the inverted allele (tbx5atpl58R). D. Fish homozygous for the reverted

allele have normal hearts, compared to fish heterozygous for the gene trap. E. Enlarged atrium

and blunt, mis-shapen ventricle comparable to the one shown in Fig 2 are indicated by red

arrows.

(PPTX)

S2 Fig. Sequence analysis of the tbx5atpl58 gene trap locus (A), Flp-reverted tbx5atpl58R

locus (B), and re-mutation after cross to Tg(ubb:CreERT2) (C). A. Sequencing of PCR frag-

ments obtained using primer pairs tbx5aEx1-F1/Gal4-R1 (left) and zpA-F2/eGBYFP-R (right)

on 5 dpf embryos heterozygous for tbx5atpl58. B. Sequencing of PCR fragments obtained using

primer pairs tbx5aEx1-F1/zpA-F2 (left) and Gal4-R1/tbx5aGen-R (right) on a tail clip of a sta-

bly reverted tbx5atpl58R heterozygote. C. Sequencing of PCR fragments obtained using primer

pairs tbx5aEx1-F1/Gal4-R1 (left) and zpA-F2/eGBYFP-R (right) on 5 dpf embryos heterozy-

gous for tbx5atpl58R and Tg(ubb:CreERT2), incubated in 0.5 mM 4-HT for 24 hours starting at

2 dpf.

(PPTX)

S3 Fig. Tamoxifen-dependent and heart-specific tg(tnnt2:CreERT2)tpl48 driver can re-

mutate tbx5atpl58R cardiomyocytes, which are then retained in adult hearts. Top, diagram

of the miniTol2/tnnt2:CreERT2; crygc:mRFP) transgene. Left, diagram of a Cre-inducible

mRFP (flox-mRFP) reporter and heart-specific mRFP expression in 4-HT-treated double

transgenic fish. Middle panel, Cre-inducible GFP reporter (flox-GFP) and heart-specific GFP

expression in double transgenic fish treated with 4-HT. Right, re-mutation of the gene trap in

the cardiomyocytes at 3 dpf. Right bottom, heart of an adult fish which was treated with 4-HT

between 2–3 dpf displays mosaic mRFP expression in the atrium and the ventricle, indicating

mosaicism for tbx5atpl58 gene trap re-mutation.

(PPTX)

S1 Table. Primer sequences. Sequences of primers mentioned in the text of the manuscript.

(DOCX)
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