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Abstract
Techniques in neuroimaging such as functional magnetic resonance
imaging (fMRI) have helped to provide insights into the role of
supraspinal mechanisms in pain perception. This review focuses on
studies that have applied fMRI in an attempt to gain a better
understanding of the mechanisms involved in the processing of pain
associated with fibromyalgia. This article provides an overview of
the nociceptive system as it functions normally, reviews functional
brain imaging methods, and integrates the existing literature utilizing
fMRI to study central pain mechanisms in fibromyalgia.

Introduction
Fibromyalgia (FM) affects six to ten million Americans, [1] and
the incidence is estimated to be one to four percent in the
general population [2]. The symptoms associated with FM
significantly affect patients’ quality of life [3] and can lead to
extensive use of health care services [4]. Fibromyalgia is
experienced as a chronic, widespread pain condition
accompanied by fatigue, tenderness, sleep disturbance,
decrements in physical functioning, and disruptions in
psychological functioning (for example, memory problems,
diminished mental clarity, mood disturbances, and lack of
well-being) [5,6]. To date, a precise cause of FM is unknown.

The diagnostic criteria for FM are, in part, based upon a
demonstration of tenderness in 11 of 18 defined muscular
sites [7]. Recent evidence, however, suggests the tender-
ness is not confined to these sites in FM, but can be
observed throughout the body, including non-muscular sites
such as the thumb [8]. The general and widespread nature of
pain in fibromyalgia strongly suggests the involvement of
central mechanisms that facilitate bodily spontaneous pain

and that increase sensitivity to painful blunt pressure. These
central mechanisms may involve spinal or supraspinal
modulation of normal peripheral input, or efferent mecha-
nisms that alter pain sensitivity at the periphery. These
underlying central mechanisms of FM are likely to be reflected
in altered supraspinal processing and may originate, in part,
at supraspinal sites.

The ability to evaluate human supraspinal processing has
been enhanced greatly by major advances in brain imaging
techniques. These methods vary in invasiveness, and in
temporal and spatial resolution. These procedures evaluate
neural activity from cerebral blood flow or glucose meta-
bolism, neurochemistry from resonance spectroscopy tech-
niques, changes in the volume of anatomical structures, and
the amount of receptor binding by specific ligands. The focus
of this paper is to describe the recent use of functional brain
imaging techniques in studies of FM. It begins with a
description of the nociceptive system as it functions normally,
follows with an overview of functional brain imaging methods,
and concludes with a synopsis of functional magnetic
resonance imaging (fMRI) findings, shedding light on aberrant
central mechanisms responsible for the pain of FM.

The nociceptive system
The nociceptive system is a warning system of actual or
imminent damage to the body. It is a self-contained sensory
system composed of peripheral sensory fibers (primary
afferents) connected to multiple spinal tracts and brain regions.
Normally, relatively intense noxious stimuli are required to
activate this system, a feature most likely associated with
promoting, rather than hindering, adaptive behavior.
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Peripheral nociceptors
Sensory fibers modulating pain sensations innervate all body
tissues in order to respond to the most compelling dangers
(for example, heat, cold, mechanical pressure, chemical, and
metabolic stimuli such as low pH). These sensory fibers are
composed of two types: thinly myelinated Aδ fibers and
unmyelinated C fibers. Aδ fibers are rapidly conducting and
transmit signals that produce perceptions of relatively sharp,
incapacitating pain. Aδ pain has been referred to as ‘first
pain’, consistent with its ability to rapidly warn and motivate
avoidance of tissue-damaging stimuli. In contrast, C fiber
afferents conduct more slowly and tend to produce
perceptions of aching or burning pain referred to as ‘second
pain’. Second pain is diffuse, prolonged and aversive, and is
the main component of pain associated with chronic medical
conditions [9].

Spinal cord secondary projections
Nociceptor afferents enter the spinal cord via the dorsal roots
and terminate in lamina I, II, and V of the superficial dorsal
horn. Activity in these nociceptors releases excitatory neuro-
transmitters at their terminals that activate secondary projec-
tion neurons. Excitatory transmitters include glutamate, which
activates post-synaptic N-methyl-D-aspartate receptors,
Substance P, and neurokinin A, which in turn activate post-
synaptic neurokinin A receptors.

Neurons in lamina I and II respond to specific noxious stimuli
within small receptive fields (for example, in muscle or joint).
These second order neurons are termed ‘nociceptive-
specific’ and are dominated by Aδ fiber input. Nociceptive
neurons in lamina V respond to both noxious and non-noxious
mechanical stimuli and are termed ‘wide dynamic range’
neurons.

Ascending pathways and brain networks
The secondary neurons originating within the dorsal horn
ascend in three primary contralateral tracts projecting to the
thalamus and reticular formation. The largest tract is the
spinothalamic tract, providing nociceptive information to
thalamic nuclei [10] as well as to the primary (SI) and
secondary (SII) somatosensory cortices. SI and SII are
cortical regions believed to be involved in sensory-
discriminative aspects of pain as well as in the anticipation of
painful stimuli [11]. Spinothalamic tract projections also
facilitate nociceptive input to the insular cortex (IC), which
has interconnections with the amygdala, prefrontal cortex
(PFC), and anterior cingulate cortex (ACC). These regions
form a network involved in affective, cognitive, and autonomic
responses to nociception. Two of these regions (IC and PFC
cortices) may also integrate nociceptive signals with memory
of previous events, thus providing meaning and the
identification of potential threats associated with painful
stimuli [12,13]. In addition to the spinothalamic tract, there
are at least two other prominent ascending pathways from
the spinal cord to the brain [14-17]. Like aspects of the

spinothalamic tract, both of these pathways are thought to
mediate the interactions between nociceptive signals,
cognition, and emotional responses.

Consistent with the above, a meta-analytic review of acute
pain neuroimaging studies suggested that the six most
commonly activated brain regions for pain in healthy subjects
were SI, SII, IC, ACC, PFC and thalamus [18]. Interestingly,
simply the anticipation of pain activates similar regions (PFC,
anterior insula, ACC). These regions are involved in the
formation of cognitive and affective representations of pain
involving memories of past events and understandings of the
present and future implications of events signaled by pain [19].
Chronic pain states on the other hand have been more difficult
to study; but summary impressions suggest that relative to
acute pain processing, chronic pain processing reflects
decreased sensory processing (for example, SI, SII) in favor of
enhanced activation of regions associated with cognitive,
emotional, and introspective processing of events [18].

Neuroimaging: a summary of methods
Several neuroimaging methodologies exist, each providing a
slightly different temporal window for understanding the
central processing of pain. The assessment of temporal
characteristics is best performed through the use of the
electroencephalogram or with the more advanced application
of magnetoencephalography, which offers the ability to
record the timing of brain events on the order of milliseconds.
These methods are best used with stimuli having temporally
precise onsets, such as provided by electrical, laser and
acoustic sources, or by well controlled mechanical
stimulation. These methods have not been very useful for
stimuli that do not have such characteristics, such as the
blunt pressure used in the assessment of tenderness in FM.
While good for assessing temporal characteristics, the spatial
resolution of these methods is relatively poor in comparison
to other methods and is aided by the use of the modalities
described below.

Assessment of spatial characteristics often uses methods
that do not measure neural activity directly but, instead, use
specialized equipment to infer neural activity from highly
localized increases in regional cerebral blood flow (rCBF)
occurring in response to anticipated neural metabolic
demand. The local increase in rCBF can be imaged by
infusion of radioactive tracers with methods such as single
photon emission computed tomography (SPECT) or positron
emission tomography (PET). In the case of fMRI, the different
magnetic properties of oxygenated and deoxygenated blood
serve as an intrinsic tracer (that is, the blood oxygen level
dependent (BOLD) fMRI signal).

The various imaging methods differ in the ability to assess
baseline rCBF, and in temporal and spatial resolution. One
advantage of the early methods of SPECT and PET is that
they could assess static rCBF; for example, comparing the
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baseline neural activity among different patient populations.
Relative disadvantages were the need to infuse radioactive
tracers, and modest temporal and spatial resolution. The time
needed for a single image of the entire brain was
approximately 30 minutes with SPECT, 1 minute with PET,
and 2 seconds with fMRI. Localization also improves accor-
dingly; fMRI methods now allow visualization of activity in
discrete regions, such as thalamic nuclei, with resolutions as
small as 1 to 2 mm. A potential disadvantage of the fMRI
BOLD, however, is that such designs must repeatedly switch
between stimulus ‘on’ and ‘off’ conditions, making imaging of
static or long-lasting drug effects (for example, before and
after treatment) more difficult.

Evaluation of pain processing in fibromyalgia
Early SPECT studies
The pioneering application of brain functional imaging to
patients with FM used the SPECT method. Mountz [20] used
SPECT to evaluate baseline levels of rCBF in ten patients
with fibromyalgia and in seven healthy control subjects. In this
initial study, patients received infusions of approximately
25 mCi of 99mTc-HMPAO, a radioactive tracer that facilitated
the imaging of rCBF. After the infusion, the subjects
underwent a 32 minute SPECT scan. This method resulted in
a semi-quantitative measure of rCBF with a resolution of
about 8.5 mm. The analysis examined overall activity in large
regions of interest corresponding to the right and left
thalamus and the right and left head of the caudate nucleus.
Results from this early study suggested that patients with FM
had lower rCBF (that is, lower neural activity) than healthy
control subjects during a quiescent resting state. Reduced
neural activity was found both in the right and left thalamus
and in the right and left caudate nucleus.

Another group followed this initial investigation with a similar
study. Kwiatek [21] used SPECT to assess resting rCBF in
17 patients with FM and in 22 healthy control subjects. These
investigators observed decreased rCBF in the right thalamus,
the inferior pontine tegementum and near the right lentiform
nucleus but, unlike the initial study, no decreases in either the
left thalamus or in the caudate nuclei were noted.

The consistent finding of reduced rCBF in the right thalamus
was also observed in a second study by the Mountz group
[22], who examined the influence of historical factors on the
SPECT results. These authors divided the sample of patients
with fibromyalgia into those with a traumatic etiology (n = 11)
and those with a more gradual onset (n = 21). Both patient
groups, compared to 29 healthy controls, showed signifi-
cantly decreased rCBF in the left and right thalamus.
However, only patients with a gradual atraumatic etiology
showed reduced rCBF in the left and right caudate.

The findings of decreased rCBF in the thalamus and in the
caudate nucleus are not unique to FM. Low rCBF has been
observed in patients with pain due to traumatic peripheral

neuropathy [23] and to metastatic breast cancer [24].
Abnormally low rCBF levels in the caudate nucleus have been
documented in patients with pain related to spinal cord injury
[25], and in restless leg syndrome [26]. The caudate nucleus
receives a large nociceptive input from spinal pain pathways,
including both nociceptive-specific neurons that signal the
presence of pain, and wide-dynamic-range neurons that
provide graded responses throughout the range of innocuous
and painful stimulation [27-29].

The caudate nucleus may also be involved in intrinsic
analgesia systems [30,31]. Although the cause of thalamic
and caudate decreases in rCBF is unknown, inhibition of
activity in these regions is associated with, and may result
from, prolonged excitatory nociceptive input [23]. The present
findings of lowered resting rCBF in these structures in FM
patients are consistent with a mechanism of tonic inhibition
maintained by persistent excitatory input associated with
ongoing and spontaneous pain. That is, the widespread pain
in FM is sufficient to activate pain inhibitory mechanisms, and
one consequence of this inhibition is reduced resting and
evoked activity in the thalamus.

Methodological considerations for using the improved
spatial resolution of fMRI
Before fMRI could be used to explore underlying pain
mechanisms in FM, several methodological hurdles needed to
be resolved. Unlike acute or surgical pain, where the nature
and timing of the pain stimulus can be controlled, imaging FM
pain is more challenging given that neither the experimenter
nor the patient has the ability to systematically manipulate the
characteristics of the condition [18]. Thus, methodological
advances for delivering and removing a standardized pain
stimulus needed to be made that would permit: the rapid
onset and off-set of the evoked-pain stimuli; the delivery of
stimuli that were relatively unbiased by psychosocial factors;
and the use of a pain stimulus that was meaningful and
relevant to the condition of FM.

Many studies of FM pain apply pressure to specific FM tender
points. This is commonly done using ‘ascending’ testing
methods, such as tender point counts or dolorimetry, where
each subsequent stimulus is predictable in its intensity. These
methods are easy to apply clinically, but can be influenced by
response biases originating from both the subject and
examiner. Improved methods that present stimuli in a random,
unpredictable fashion (for example, Multiple Random
Staircase) tend to minimize the influence of these factors
[32].

fMRI studies have the added methodological hurdle of
needing to apply standardized pressure to regions of the
body accessible during scanning and with methods that can
be accommodated within the scanning environment. Thus,
methods were devised that applied blunt pressure (1 cm
diameter hard rubber probe) to the thumbnail. This site was
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chosen for the dense innervation of the thumb, and the large
representation of the thumb in the primary somatosensory
cortex. In addition, this site implicitly acknowledges that the
tenderness observed in FM is not confined to classic tender
points; tenderpoints, rather, are regions in which everyone is
more tender and are thus more convenient for manual testing.
The use of the thumb also implicitly implies that the
tenderness observed in FM is neither due to muscle
sensitivity nor confined to muscles but, rather, is a property of
deep tissue, with the tenderness of FM being generally
expressed over the entire body.

Another extremely important methodological consideration
addressed the fact that patients and controls differed not only
with respect to the presence of clinical pain but also to the
fact that the presence of concomitant clinical pain could alter
their perception of the evoked pain stimuli. Thus, responses to
stimuli needed to be evaluated in the context of equal stimulus
intensities for patients and controls and under conditions of
equal perceptual intensities. This approach permitted
comparisons of neural activations between FM patients and
normal controls associated with pain processing when either
perceived pain intensity or stimulus intensities  were constant.

Central pain augmentation in fibromyalgia
Using pressure-based Multiple Random Staircase to equate
evoked pain perception between patients and normal
controls, one of the first fMRI studies of FM applied blunt
pressure to the left thumbnail bed of 16 right-handed patients
with FM and 16 right-handed matched controls [33]. Each
FM patient underwent fMRI while moderately painful pressure
was being applied. The functional activation patterns in FM
patients were compared with patterns in normal controls. The
results show that equal perceived pain intensity (achieved
with significantly less pressure in the patients than controls),
produced similar increases in neural activity in a network of
brain structures implicated in pain processing (Figure 1).
These increases were observed in structures involved in
sensory discriminative processing (contralateral SI, SII),
sensory association (contralateral superior temporal gyrus,
inferior parietal lobule), motor responses (contralateral putamen
and ipsilateral cerebellum) and affective processing
(contralateral insula). Patients and controls also shared a
similar region of decreased neural activation in the ipsilateral SI.

In contrast to the extensive common activations observed in
both patients and controls when subjective pain perception
was equated, there were no common activations when the
actual pressure stimulus intensity was equated. Applying a
low stimulus pressure to both healthy controls and FM
patients resulted in 13 regions showing statistically greater
activation for patients (that is, contralateral SI, inferior parietal
lobule, insula, ACC and posterior cingulate cortex; ipsilateral
SII cortex; bilateral superior temporal gyrus, and cerebellum)
whereas only one region (ipsilateral medial frontal gyrus)
demonstrated greater activation in controls.

These findings suggest that the greater perceived intensity of
standardized low pressure stimuli by persons with FM is
consistent with a model of centrally augmented pain proces-
sing. These results also suggest that the brain activations in
patients and controls are consistent with their verbal reports
of pain magnitude. In addition, these results demonstrate that,
in the caudate nucleus and the thalamus, patients with FM
showed reduced activation in comparison to controls. This
lack of response is, at first glance, consistent with the finding
of reduced basal activity in these structures [20-22].
However, it is important to note that the finding of basal levels
could indicate either lack of evoked pain responsivity
(inhibited system) or be responsible for increased pain
sensitivity (greater response range; that is, activity can
increase further before encountering a physiological ‘ceiling’).
Thus, this apparently consistent result is not necessarily
expected and the implications of these results will depend on
the results of further studies [33].

The findings of the Gracely and colleagues [33] study have
been supported by a second study using a contact heat
stimulus. Cook and colleagues [34] showed that perceptually
matched heat pain stimuli (that is, matched subjective
perceptual pain ratings) applied to the left hand (evoked by
less heat in patients (mean 47.4°C) versus controls (48.3°C))
resulted in similar brain activation patterns between a group
of 9 female FM patients and 9 female healthy controls. In
contrast, when evoked-pain stimuli were matched on actual
stimulus intensity (that is, temperature), significantly greater
activations in contralateral IC were seen in FM patients. In
addition, these authors compared responses to non-painful
heat stimuli, and observed that random warm stimuli between
34°C and 42°C evoked significantly greater activity in FM
patients in bilateral PFC, supplemental motor areas, and in
contralateral ACC.

Mechanisms of hyperalgesia in fibromyalgia
Hyperalgesia refers to a condition where normally noxious
stimuli produce an exaggerated or prolonged pain response.
In an attempt to image a hyperalgesic response to evoked
pain, Grant and colleagues [35] used fMRI to compare the
effects of multiple stimulus pressures delivered to the left
thumb of 13 FM patients and 13 control subjects. During
scanning, the subjects received 25 seconds of no pressure
alternating with 25 seconds of pressure stimuli adjusted for
each subject to produce: a non-painful touch sensation;
painful pressure sensations rated as ‘faint’; sensations rated
as ‘very mild’; and sensations rated between ‘moderate’ and
‘slightly intense’ pain. In each scan the subjects received
each of the four stimulus pressures three times in a random
sequence. Similar to the study described above [33], the
amount of stimulus pressure needed to evoke the various
subjective levels of pain was significantly lower in the
patients; however, both patients and controls showed graded
responses to stimulus pressure in regions involved in
processing the sensory discriminative dimension of pain
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sensation, including contralateral (right) thalamus, SI and SII.
Control subjects showed graded responses in right insula
and anterior cingulate that were not found in the patients.
These results indicate common sensory discriminative
functions in both groups that occur with lower objective
stimulus intensities for FM patients. The reduced affective
response (that is, no activation in ACC or insula in FM
patients) suggests that FM patients may not find the evoked
pain stimulus affectively arousing due, possibly, to affective
adaptation associated with their prolonged pain.

Affective modulation of pain in fibromyalgia
Depressed mood often accompanies chronic pain, but
depressed mood may not augment the sensory aspects of
pain. Instead, mood may exert its own independent influence
on pain processing. Giesecke and colleagues [36] conduc-
ted a study that evaluated the effect of symptoms of
depression and/or clinically diagnosed major depressive

disorder on pain processing in patients with FM. In this study,
30 patients with FM received fMRI scans during adminis-
tration of painful blunt pressure to the left hand matched for
equally perceived painful pressure. Symptoms of depression
were measured with the Center for Epidemiological Studies
Depression Scale (CES-D). Neither the extent of depression
nor the presence of comorbid major depression modulated
the sensory-discriminative aspects of pain processing (that is,
localized imaging of sensory pain and reporting its level of
intensity). However, symptoms of depression and the
presence of major depressive disorder were associated with
the magnitude of evoked-pain neuronal activations in brain
regions associated with affective-motivational pain proces-
sing (that is, the bilateral amygdalae and contralateral anterior
insula). These data suggest that there are parallel, somewhat
independent neural pain-processing networks for sensory
and affective pain elements. The implication for treatment is
that addressing an individual’s depression (for example, by
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Figure 1

Functional magnetic resonance imaging (fMRI) responses to painful pressure applied to the left thumb in patients with fibromyalgia and healthy
control subjects. The top left graph shows mean pain rating plotted against stimulus intensity for the experimental conditions. In the ‘patient’
condition, a relatively low stimulus pressure (2.4 kg/cm2) produced a high pain level (11.30 ± 0.90), shown by the red triangle. In the ‘stimulus
pressure control’ condition, shown by the blue square, administration of a similar stimulus pressure (2.33 kg/cm2) to control subjects produced a
very low level of rated pain (3.05 ± 0.85). In the ‘subjective pain control’ condition, shown by the green square, administration of significantly
greater stimulus pressures to the control subjects (4.16 kg/cm2) produced levels of pain (11.95 ± 0.94) similar to the levels produced in patients
by lower stimulus pressures. The remainder of the figure shows common regions of activation in patients (red) and in the ‘subjective pain control’
condition (green), in which the effects of pressure applied to the left thumb sufficient to evoke a pain rating of 11 (moderate) is compared to the
effects of innocuous pressure. Significant increases in the fMRI signal resulting from increases in regional cerebral blood flow are shown in
standard space superimposed on an anatomical image of a standard brain (MEDx, Medical Numerics, Inc. 20410 Observation Drive, Suite 210,
Germantown, Maryland 20876 USA). Images are shown in radiological view with the right brain shown on the left. Overlapping activations are
shown by yellow. The similar pain intensities, produced by significantly less pressure in the patients, resulted in overlapping or adjacent activations
in contralateral primary somatosensory cortex (SI), inferior parietal lobule (IPL), secondary somatosensory cortex (SII), superior temporal gyrus
(STG), insula, putamen, and in ipsilateral cerebellum. The fMRI signal was significantly decreased in a common region in ipsilateral SI. Modified
from Gracely and colleagues [33].



prescribing an antidepressant medication that has no
analgesic properties) will not necessarily have an impact on
the sensory dimension of pain.

Cognitive modulation of pain in fibromyalgia
Locus of control
Locus of control for pain refers to patients’ perceptions about
their personal ability to control pain. In studies of patients with
chronic rheumatological pain conditions, a stronger belief in
internal locus of control for pain has been associated with
lower levels of physical and psychological symptoms, and
better response to therapy [37-45]. In studies of patients with
FM, internal locus of control has been associated with better
affect, reduced symptom severity, and less disability in upper
and lower extremity function [46] and generally improved
levels of functional status [47]. Most patients with FM,
however, are more external in their locus of control compared
to other rheumatological conditions or patients with chronic
pain generally [46,48,49]. Several of these studies have
concluded that increasing internal locus of control in patients
with FM should increase the likelihood of improving function
and decreasing impairment (for example, McCarberg and
colleagues [47]). In a study designed to explore the neural
substrates of locus of control, a sample of 20 females and 1
male meeting American College of Rheumatology criteria for
FM were selected [50]. Each patient received fMRI scans
during administration of painful blunt pressure to the left hand
matched for equally perceived painful pressure. Locus of pain
control was assessed using the Beliefs in Pain Control
Questionnaire [51]. Results of this study found that stronger
beliefs in an internal locus of control were significantly
correlated with neuronal activations in the contralateral SII
(r = 0.84, p < 0.05) in response to evoked pain. These results
support the hypothesis that greater levels of internal locus of
control are associated with greater magnitude of neuronal
activation in this region associated with sensory discrimina-
tion and pain intensity encoding.

Catastrophizing
Another common cognitive factor known to modulate pain
reports is catastrophizing, an attributional style/behavior in
which pain is characterized as awful, horrible and unbearable.
Catastrophizing appears to play a substantial role in the
development of pain chronicity. Burton and colleagues [52]
found that catastrophizing accounted for over half (57%) of
the variance in predicting the onset of a chronic pain
condition from an acute pain event. Catastrophizing was once
thought to be a symptom of depression but is now recognized
as an independent factor that is only partially associated with
depression. Catastrophizing has been suggested to augment
pain perception via enhanced attention to painful stimuli and
through heightened emotional responses to pain. This study
hypothesized that catastrophizing would, therefore, influence
activation of neural structures implicated in pain processing.
Blunt pressure pain was applied to 29 FM patients while
controlling for depression statistically. Independent of

depression, catastrophizing modulated evoked-pain activity in
a number of brain structures related to the anticipation of pain
(contralateral medial frontal cortex, ipsilateral cerebellum),
attention to pain (contralateral anterior cingulate gyrus,
bilateral dorsolateral prefrontal cortex), and to both emotional
(ipsilateral claustrum, interconnected to the amygdala) and
motor (contralateral lentiform nuclei) responses [53]. These
findings suggest that pain catastrophizing exerts influence on
pain processing that is independent of the influence of
depression and supports the hypothesis that catastrophizing
influences pain perception through altering attention and
anticipation, and heightening emotional responses to pain.
Like locus of control, therapies targeting the modification of
catastrophizing might be useful in preventing the transition
from acute to chronic pain in susceptible individuals.

Fibro-fog
While cognition appears to modulate the experience of pain,
it is also likely that pain interferes with the ability to think and
process information. A well-known complaint of patients with
FM is that of an overall impaired cognitive state that has been
referred to as ‘fibro fog’.

The cognitive deficits observed in FM resemble those found
in aging. For example, patients with FM tend to complete
measures of working memory with a proficiency that is similar
to healthy controls who are 20 years older [54,55]. Neuro-
imaging studies of working memory in aged populations
suggest that older subjects can show levels of performance
that approach the levels of younger control subjects but must
use relatively more cognitive resources. Bangert and
colleagues [55] used fMRI to assess brain activity during a
working memory task in 12 FM patients and 9 age and
education-matched control subjects. The results show that
both FM patients and healthy controls were able to achieve
similar performances on the tasks. The imaging results,
however, revealed that, in order to achieve this similar level of
performance, FM patients needed to use far greater brain
resources. FM patients showed more extensive neural
activation in frontal and parietal regions, including bilateral
activation in the middle frontal gyrus and right-side activation
in medial frontal gyrus, superior parietal lobe, and precentral
gyrus. These results support the hypothesis that FM patients
show an aging effect that is using increasing cognitive
resources to maintain comparable levels of performance as
their same-aged peers.

Conclusions and future directions
At the present time, functional brain imaging in FM has
revealed the following insights. First, FM patients differ from
healthy controls in baseline levels of neural activity,
specifically in the caudate nucleus. Second, administration of
a noxious pressure or heat stimulus results in changes in
brain activity consistent with the verbal reports of patients’
pain intensity. Third, like healthy controls, FM patients
normally detect and experience a full range of perceived pain
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magnitude; but sensations become unpleasant at stimulus
intensities that are significantly lower than those observed in
healthy controls. Fourth, while commonly associated with
chronic pain, depression does not appear to influence the
sensory-discriminative dimension of pain in FM. Fifth,
attitudes and beliefs such as locus of control and catastro-
phizing appear to be influential in the processing of sensory-
discriminative aspects of pain. Sixth, FM patients utilize more
extensive brain resources than do same-aged peers in order
to achieve comparable performance on cognitive tasks.

Limitations and future potential of fMRI in fibromyalgia
Currently, most fMRI activation studies can only assess the
effects of short interventions that can be turned ‘on’ and ‘off’
repeatedly within seconds to a minute. Thus, conventional
fMRI cannot directly assess the effect of an oral analgesic on
the clinical pain of FM but can assess the interaction of the
analgesic with a repeated brief stimulus such as painful heat
or pressure. Newer MRI methodologies are changing this
limitation and expanding the types of physiological variables
that can be evaluated by functional brain imaging. Magnetic
resonance perfusion can assess cerebral blood flow and
cerebral blood volume, providing measures of baseline
differences similar to that currently provided by PET. Diffusion
tensor imaging, another variant of fMRI, provides a non-
invasive, in vivo assessment of water molecular diffusion that
reflects tissue configuration at a microscopic level in white
matter regions. Quantification of water diffusion will improve
the neuro-radiological assessment of a variety of gray and
white matter disorders, including those involved in pain
processing. Yet another new approach, magnetic resonance
spectroscopy, obtains spectra of multiple selected regions
and determines the ratio of concentrations of metabolites
such as N-acetyl-aspartate, creatine, choline, lactate, glucose
and glutamate. Usually, a particular stable metabolite (for
example, creatine) is used as a standard and the
concentration of the test metabolites are expressed as a ratio
to this standard. Abnormalities in the levels of these
metabolites are associated with a number of pathological
changes in brain tissue. This method has been applied to
patients with chronic low back pain, showing reductions of N-
acetyl-aspartate and glucose in dorsolateral prefrontal cortex
compared to control subjects [56].

These recent applications of functional neuroimaging have
provided evidence for a centralized pain augmentation in FM

and identified brain regions that may be involved in this
augmentation. Advances in design and new imaging
technologies promise to further increase our understanding
of the mechanisms that initiate and maintain this disorder, and
can lead to improved diagnosis and treatment.
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