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Introduction. Acute exposure to high altitude induces inflammation. However, the relationship between inflammation and high
altitude related illness such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS) is poorly understood.
We tested if soluble urokinase-type plasminogen activator receptor (suPAR) plasma concentration, a prognostic factor for
cardiovascular disease and marker for low grade activation of leukocytes, will predict susceptibility to HAPE and AMS. Methods.
41 healthy mountaineers were examined at sea level (SL, 446m) and 24 h after rapid ascent to 4559m (HA). 24/41 subjects had a
history of HAPE and were thus considered HAPE-susceptible (HAPE-s). Out of the latter, 10/24 HAPE-s subjects were randomly
chosen to suppress the inflammatory cascade with dexamethasone 8mg bid 24 h prior to ascent. Results. Acute hypoxic exposure
led to an acute inflammatory reaction represented by an increase in suPAR (1.9 ± 0.4 at SL versus 2.3 ± 0.5 at HA, 𝑝 < 0.01), CRP
(0.7 ± 0.5 at SL versus 3.6 ± 4.6 at HA, 𝑝 < 0.01), and IL-6 (0.8 ± 0.4 at SL versus 3.3 ± 4.9 at HA, 𝑝 < 0.01) in all subjects except
those receiving dexamethasone. The ascent associated decrease in PaO

2
correlated with the increase in IL-6 (𝑟 = 0.46, 𝑝 < 0.001),

but not suPAR (𝑟 = 0.27, 𝑝 = 0.08); the increase in IL-6 was not correlated with suPAR (𝑟 = 0.16, 𝑝 = 0.24). Baseline suPAR plasma
concentration was higher in the HAPE-s group (2.0 ± 0.4 versus 1.8 ± 0.4, 𝑝 = 0.04); no difference was found for CRP and IL-6
and for subjects developing AMS. Conclusion. High altitude exposure leads to an increase in suPAR plasma concentration, with
the missing correlation between suPAR and IL-6 suggesting a cytokine independent, leukocyte mediated mechanism of low grade
inflammation.The correlation between IL-6 and PaO

2
suggests a direct effect of hypoxia, which is not the case for suPAR. However,

suPAR plasma concentration measured before hypoxic exposure may predict HAPE susceptibility.

1. Introduction

High altitude related diseases such as high altitude pulmonary
edema (HAPE) and acute mountain sickness (AMS) play an
important role for an increasing number of mountaineers
and workforce operating at high altitude. Preventive efforts
include limiting the rate of ascent to 300–600m/day [1, 2] and
administering medication before ascent such as nifedipine or
tadalafil to prevent HAPE [3, 4] or acetazolamide to prevent
AMS [5] in persons at risk. However, identification of risk
factors has been proven difficult. Measurements taken during

hypoxic exposure such as low hypoxic ventilatory response
[6] and accentuated hypoxic pulmonary vasoconstriction [7]
are only loosely associated with HAPE risk. No relation has
been found to baseline factors such as age [8], gender [9] or
genetic predisposition [10, 11] and only loose association of
small lung volume and body mass index in the case of HAPE
[12] or AMS [9]. Thus, HAPE susceptibility (HAPE-s) is
currently considered in the presence of previous occurrence
based on a recurrence rate of around 60% per further rapid
ascent [13]. To a lesser degree the same holds true for AMS
[14].
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Inflammatory response to acute hypoxic stimulus, repre-
sented by increased blood concentration of eicosanoids [15],
c-reactive protein (CRP), and cytokines such as tumor necro-
sis factor a (TNF-a) and interleukins 1, 2, and 6 (IL-1, IL-2, and
IL-6) [16, 17], as well as the urinary concentration of eicosan-
oids [18], seems to play a role in the pathophysiology of high
altitude illness. Higher levels of these inflammatory markers
are seen in subjects developing AMS as compared to healthy
controls at high altitude although no direct correlation
between inflammatory markers and the magnitude of AMS
has been established so far [16, 18].Whilemechanical damage
to the alveolar capillaries has been identified as the primary
etiologic mechanism of the development and progression of
HAPE, a secondary local inflammatory response is triggered
[19]. Furthermore, preexisting subclinical inflammation dur-
ing viral upper airway infection is associated with acquired
HAPE susceptibility in children [20, 21] and in rats [22].
The former and the latter demonstrate a modulation of the
mechanisms underlying HAPE by inflammatory processes.

With soluble urokinase-type plasminogen activator
receptor a novel biomarker has been identified which pro-
vides a cellular centric view on the activation of the inflam-
matory cascade. suPAR is the cleaved and bloodborne form
of the glycosylated membrane protein urokinase-type plas-
minogen activator receptor (uPAR) which is expressed on the
cellular membrane mainly of leukocytes [23, 24].Themecha-
nisms triggering the expression of uPAR in different cell types
and the cleavage of the membrane-bound protein to form
soluble uPAR (suPAR) are still largely unknown [23]. suPAR
plasma concentration has been found to serve as a diagnostic,
prognostic, and treatment response parameter in various
infectious and inflammatory diseases including sepsis [25] as
well as a marker for chronic low grade inflammation. In the
latter setting suPAR has been identified as a reliable predictor
of cardiovascular risk in a general population [26, 27].

Given the involvement of inflammation in HAPE and
AMS the aim of the present study is to test the hypothesis
whether exposure to acute hypobaric hypoxia leads to an
increase in suPAR plasma concentration comparable to that
in CRP and IL-6 and whether suPAR as a marker of low level
leukocyte activation predicts susceptibility to HAPE or AMS.
To test our hypothesis, blood samples obtained in a previous
study [28] from healthy mountaineers during rapid ascent to
4559m were analyzed. suPAR plasma concentration at base-
line and its development were then compared to the suscep-
tibility to HAPE as determined by the subjects’ history of
exposure to high altitude and to the incidence of AMS during
hypoxic exposure during the course of the study.

2. Methods

The data and the blood samples analyzed in this study origi-
nate from a research project evaluating early and late dexam-
ethasone administration as HAPE prophylaxis. Three groups
of mountaineers received either dexamethasone 8mg bidaily
starting twenty-four hours before or after ascent or nodexam-
ethasone at all. Subjects were all confined to the same altitude
profile and ascendedwithin 24 hours to 4559m and remained

at altitude for four days. Thus in the twenty subjects having
received dexamethasone prophylaxis starting after the first
24 hours at altitude further development of HAPE incidence,
clinical presentation and biomarkers after the first 24 hours
at altitude were influenced by the intervention. In order to
avoid these confounders, the observation period at altitude
in the present study is limited to 24 hours. The ten subjects
having received dexamethasone prophylaxis before ascent
serve to describe the effects of dexamethasone prophylaxis
in this study. The study has been approved by the ethics
committee of the University of Zurich (EK-1677) and was
conducted in accordance with the declaration of Helsinki.

2.1. Study Population and Design. Forty-one healthy moun-
taineers with climbing experience in the Alps (aged 44.8 ±
9.0 years, weight 72.7 ± 10.3 kg, height 174 ± 8 cm, BMI
24.1 ± 2.8 kg/m2, 29 (71%) males) were included in this
study. Twenty-four of all subjects were HAPE-susceptible
based on previous occurrence and were included in the
“HAPE-s” group (𝑛 = 24), while the remaining seventeen
subjects without history of HAPE were included in the
“Non-HAPE-s” group (𝑛 = 17). Ten subjects belonging to
the “HAPE-s” group were randomly selected to receive oral
administration of dexamethasone 8mg bidaily beginning
twenty-four hours before ascent to form the “dexamethasone
prophylaxis” group (𝑛 = 10), enabling comparison to
the remaining subjects forming the “No prophylaxis” group
(𝑛 = 31) (Figure 1). There were no differences in age,
BMI, or gender distribution between either of the groups. All
subjects underwent clinical examination and arterial blood
sampling at the University of Zurich (sea level, SL; 446m).
Subjects were required to have spent less than three nights
above 2500m within a month preceding SL examinations in
order to preclude acclimatization at the time of inclusion.
Thereafter, within one week, all subjects ascended by foot in
<24 hours to a mountain hut located on Signalkuppe peak
on the Swiss-Italian border, theMargherita hut (high altitude,
HA; 4559m). They were observed at altitude for 24 hours.

2.2. Clinical and Laboratory Examination. Blood sampling
as well as assessment for HAPE, including chest X-ray and
clinical examination, and for AMS was performed at SL and
repeated on the morning after arrival at HA. The occurrence
of AMS was assessed using the Lake Louise Score for acute
mountain sickness (LLS-AMS) with a cutoff value for the
presence of AMS being defined as LLS-AMS ≥ 5 [29, 30].
Arterial blood was sampled for on-site analysis of blood gases
(ABL800 Flex, Radiometer, Copenhagen, Denmark), partic-
ularly oxygen saturated hemoglobin fraction (SaO

2
) and

oxygen partial pressure (PaO
2
), and for immediate centrifu-

gation and freezing at −80∘C. CRP, IL-6, and suPAR plasma
concentration were then determined from the frozen sam-
ples, the latter using the suPARnostic� double monoclonal
antibody sandwich enzyme-linked immunosorbent assay
(Virogates, Copenhagen, Denmark). ELISA measurements
were performed in duplicate; themean of bothmeasurements
is reported.
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Figure 1: Study protocol. SL: sea level, HA: high altitude, HAPE: high altitude pulmonary edema, HAPE-s: high altitude pulmonary edema
susceptibility, AMS: acute mountain sickness, and bid: two times per day.

2.3. Statistical Analysis. Comparison of population charac-
teristics and inflammatory markers at SL versus HA was
performed using the Wilcoxon signed rank test. Receiver
operating characteristics analysis and a comparison between
properties of “HAPE-s” and “Non-HAPE-s” groups at base-
line byMann-Whitney𝑈 test were used for assessment of the
inflammatorymarkers’ predictive properties for development
of high altitude illness. Comparisons between “AMS” and
“No AMS” groups at HA and retrospected to SL were also
performed using the Mann-Whitney𝑈 test. Categorical pop-
ulation attributes were compared using Fisher’s exact test. For
correlation of inflammatory marker concentrations Pearson’s
product-moment correlation coefficient was used. A two-
sided 𝑝 < 0.05 was considered statistically significant. For all
statistical analysis a fully scripted data management pathway
was created within the R environment for statistical com-
puting, version 2.15.2 [31]. Receiver operating characteristics
analysis was performed using the R library ROCR version
1.0.5 [32]; graphical output was generated using the R library
ggplot2, version 0.9.3.1 [33]. Values are given as mean ± SD.

3. Results

3.1. Measurements at Sea Level and Acute Exposure to Hypo-
baric Hypoxia. All subjects had similar values for arterial
blood oxygenation, heart rate, LLS-AMS, suPAR, CRP, and

IL-6 at SL (Table 1). In subjects not receiving dexamethasone
prophylaxis acute exposure to hypobaric hypoxia led to a
decrease in SaO

2
and PaO

2
, as well as an increase in heart

rate, LLS-AMS, suPAR, CRP, and IL-6 from SL to twenty-four
hours after arrival at HA (Table 1). As the most direct marker
for hypoxia the ascent associated decrease in PaO

2
correlated

with the increase in IL-6 (𝑟 = 0.46, 𝑝 < 0.001) and CRP
(𝑟 = 0.43,𝑝 < 0.001) but not suPAR (𝑟 = 0.27,𝑝 = 0.08). Fur-
thermore, the increase in IL-6 correlated with the increase in
CRP (𝑟 = 0.63,𝑝 < 0.001), but not suPARwith IL-6 (𝑟 = 0.16,
𝑝 = 0.24) or CRP (𝑟 = 0.12,𝑝 = 0.37). In the “dexamethasone
prophylaxis” group the decrease in SaO

2
and PaO

2
was

attenuated but still present, while the high altitude mediated
increase in heart rate, suPAR, and CRP was altogether inhib-
ited. The increase in total LLS-AMS remained unchanged
while the increase in the self-assessment subscore for
headache (SA-HA) and global functionality (SA-FN), as well
as all clinical assessment subscores, was inhibited (Table 1).

3.2. Prediction of HAPE Susceptibility. At SL, subjects in the
“HAPE-susceptible” and “non-HAPE-susceptible” groups
presented with the same heart rate, PaO

2
, and LLS-AMS

as well as CRP and IL-6 plasma concentrations (Table 2).
There were no differences in age, BMI, or gender distribu-
tion between the two groups. However, HAPE-susceptible
subjects had a higher baseline suPAR plasma concentration,
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Table 1: The effect of acute hypoxic exposure on inflammatory markers and physiological parameters with and without dexamethasone
prophylaxis.

No high altitude illness
prophylaxis

𝑝

Dexamethasone
prophylaxis

𝑝

Δ (hypoxia − normoxia)
𝑝

Normoxia Hypoxia Normoxia Hypoxia No prophylaxis Dexamethasone
prophylaxis

𝑛 = 31 𝑛 = 31 𝑛 = 10 𝑛 = 10 𝑛 = 31 𝑛 = 10

Heart rate (1/min) 66 ± 10 82 ± 12 <0.001 74 ± 14 68 ± 16 0.65 16 ± 12 −7 ± 21 <0.01
SaO
2
(%) 96 ± 1 76 ± 6 <0.001 96 ± 1 87 ± 3 <0.01 −20 ± 6 −9 ± 3 <0.001

PaO
2
(kPa) 12.2 ± 1.6 5.3 ± 0.6 <0.001 11.4 ± 1.4 6.5 ± 0.7 <0.01 −7.1 ± 1.3 −4.9 ± 1.1 <0.001

LLS-AMS (1) 1 ± 1 5 ± 3 <0.001 1 ± 1 4 ± 2 <0.01 4 ± 3 3 ± 2 0.13
(i) SA-HA 0 ± 0 1 ± 1 <0.001 0 ± 0 0 ± 1 0.48 1 ± 1 0 ± 1 0.03
(ii) SA-GI 0 ± 0 0 ± 1 0.001 0 ± 0 0 ± 0 1 0 ± 1 0 ± 0 0.07
(iii) SA-FT 0 ± 0 1 ± 1 <0.001 0 ± 0 1 ± 1 0.13 1 ± 1 0 ± 1 0.14
(iv) SA-DZ 0 ± 0 1 ± 1 <0.001 0 ± 0 0 ± 0 0.35 1 ± 1 0 ± 0 0.11
(v) SA-SL 1 ± 1 2 ± 1 <0.001 0 ± 1 2 ± 1 0.005 1 ± 1 2 ± 1 0.08
(vi) SA-FN 0 ± 0 1 ± 1 <0.001 0 ± 0 0 ± 0 0.15 1 ± 1 0 ± 0 0.03
(vii) CA-MS 0 ± 0 0 ± 0 <0.001 0 ± 0 0 ± 0 0.65 0 ± 0 0 ± 0 0.002
(viii) CA-AT 0 ± 0 0 ± 0 <0.001 0 ± 0 0 ± 0 0.65 0 ± 0 0 ± 0 0.002
(ix) CA-ED 0 ± 0 0 ± 1 <0.001 0 ± 0 0 ± 0 0.65 0 ± 1 0 ± 0 0.002

suPAR (ng/mL) 1.9 ± 0.4 2.3 ± 0.5 <0.001 2.0 ± 0.3 2.0 ± 0.3 0.61 0.3 ± 0.3 0.0 ± 0.3 0.001
CRP (mg/L) 0.7 ± 0.5 3.6 ± 4.6 <0.001 2.4 ± 3.1 1.9 ± 2.6 0.21 3.0 ± 4.5 −0.5 ± 1.1 <0.001
IL-6 (ng/L) 0.8 ± 0.4 3.3 ± 4.9 <0.001 1.0 ± 0.7 0.6 ± 0.6 0.32 2.7 ± 5.0 −0.4 ± 1.1 <0.001
Values are given as mean ± SD. SaO2: oxygen saturated hemoglobin fraction and LLS-AMS: Lake Louise score for acute mountain sickness; the cutoff value for
the presence of AMS is defined as LLS-AMS ≥ 5 [29, 30]; LLS-AMS self-assessment subscores (scale from 0 to 3): SA-HA: self-assessment headache subscore,
SA-GI: self-assessment gastrointestinal subscore, SA-FT: self-assessment fatigue subscore, SA-DZ: self-assessment dizziness subscore, SA-SL: self-assessment
sleep quality subscore, and SA-FN: self-assessment global functionality subscore; LLS-AMS clinical assessment subscores: CA-MS: clinical assessment mental
status subscore (scale from 0 to 4), CA-AT: clinical assessment ataxia subscore (scale from 0 to 4), and CA-ED: clinical assessment edema subscore (scale from
0 to 2).

Table 2: Inflammatorymarkers and physiologic parameters of HAPE-susceptible and non-HAPE-susceptible persons at sea level (normoxia)
and during acute hypoxic exposure.

Normoxia
𝑝

Hypoxia
𝑝Non-HAPE-s HAPE-s Non-HAPE-s HAPE-s

𝑛 = 17 𝑛 = 24 𝑛 = 17 𝑛 = 14

Heart rate (1/min) 64 ± 10 71 ± 12 0.07 79 ± 10 86 ± 13 0.13
SaO
2
(%) 96 ± 1 97 ± 1 0.01 76 ± 4 76 ± 8 0.74

PaO
2
(kPa) 11.8 ± 1.8 12.1 ± 1.4 0.81 5.3 ± 0.3 5.3 ± 0.8 1.00

LLS-AMS (1) 1 ± 1 1 ± 1 0.64 5 ± 3 5 ± 2 0.97
suPAR (ng/ml) 1.8 ± 0.4 2.0 ± 0.4 0.04 2.2 ± 0.4 2.3 ± 0.6 0.66
CRP (mg/L) 0.7 ± 0.5 1.4 ± 2.2 0.93 2.2 ± 1.7 5.0 ± 6.3 0.25
IL-6 (ng/L) 0.9 ± 0.4 0.9 ± 0.6 0.53 2.5 ± 1.7 4.1 ± 6.9 0.62
Values are given as mean ± SD. SaO2: oxygen saturated hemoglobin fraction and LLS-AMS: Lake Louise score for acute mountain sickness; the cutoff value for
the presence of AMS is defined as LLS-AMS ≥ 5 [29, 30].

as well as a higher SaO
2
(Figure 2). Receiver operating char-

acteristics analysis for the prediction of HAPE susceptibility
yields an area under the curve of 0.69 for suPAR, 0.51 for CRP,
and 0.56 for IL-6 (Figure 3). At HA, however, there was no
difference in suPAR as well as any of the other parameters
between the “HAPE-susceptible” and “non-HAPE-suscepti-
ble” groups. In the 24-hour observation period at altitude, no
HAPE was detected.

3.3. Incidence of AMS and Prediction of AMS Susceptibility.
Based on the presence of AMS atHA all subjects that have not
received dexamethasone (all subjects in the “No prophylaxis”
group) were reassigned either to the “AMS” group (𝑛 = 10)
or the “No AMS” group (𝑛 = 21). There were no differences
in age, BMI, or gender distribution between the two groups.
9/10 subjects (90%) having developedAMSatHAbelonged to
the Non-HAPE-s group. LLS-AMS at HA was approximately
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Figure 2: suPAR (a) and IL-6 (b) plasma concentrations in normoxia and hypoxia, in HAPE-susceptible versus non-HAPE-susceptible
persons. (∗) denotes a difference in HAPE versus HAPE-susceptible subjects (𝑝 < 0.05). Boxplots represent median, interquartile range,
and range. Horizontal scattering is applied to the individual data points in order to avoid superimposition. HAPE: high altitude pulmonary
edema, suPAR: soluble urokinase-type plasminogen activator receptor, and IL-6: interleukin 6.

twice as severe in subjects assigned to the “AMS” group due to
manifested AMS as compared to the control group (Table 3).
However, there was no difference in any of the other param-
eters such as heart rate, SaO

2
, and PaO

2
, as well as suPAR,

CRP, and IL-6 plasma concentrations. Also in retrospective
analysis of the examination at SL there was no differentiation
between the “AMS” group and the “No AMS” group in heart
rate, SaO

2
, PaO
2,
and LLS-AMS, as well as suPAR, CRP, and

IL-6 plasma concentrations (Table 3). The overall LLS-AMS
score increased regardless of dexamethasone prophylaxis
from SL toHA by about four points (Table 1); the incidence of
LLS-AMS ≥ 5 was 10/31 (32%) in the “No prophylaxis” group
and 1/10 (10%) in the “dexamethasone prophylaxis” group
(𝑝 = 0.33). The high altitude mediated increase in the LLS-
AMS self-assessment subscore for headache (SA-HA) and
global functionality (SA-FN), as well as all clinical assessment
subscores, was inhibited by dexamethasone prophylaxis.

4. Discussion

The novel finding in the present study is that elevated suPAR
at baseline may be a marker of HAPE susceptibility by
differentiating HAPE and HAPE-s populations but does not
identify subjects developing AMS during hypoxic exposure.
Furthermore, the hypoxia mediated increase in suPAR is not
related to acute inflammatory markers such as IL-6 and CRP.

Our study confirms the previously described [16, 17]
increase in CRP and IL-6 plasma concentrations during acute
hypoxic exposure and shows a correlation between the two. It
further demonstrates an increase in suPAR plasma concen-
tration; however it neither correlated to the increase in CRP
nor correlated to the increase in IL-6. A possible explanation
for this could be that the mechanism leading to cleavage
of suPAR is different from generally understood processes
leading to inflammation as reflected by CRP and IL-6.This is
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Table 3: Inflammatory markers and physiologic parameters of persons developing AMS versus those not developing AMS during acute
hypoxic exposure and retrospectively at sea level (normoxia).

Normoxia
𝑝

Hypoxia
𝑝No AMS AMS No AMS AMS

𝑛 = 21 𝑛 = 10 𝑛 = 21 𝑛 = 10

Heart rate (1/min) 65 ± 11 67 ± 10 0.75 83 ± 12 80 ± 11 0.47
SaO
2
(%) 96 ± 1 96 ± 1 0.70 77 ± 5 73 ± 7 0.16

PaO
2
(kPa) 12.4 ± 1.0 11.9 ± 2.4 0.73 5.4 ± 0.6 5.0 ± 0.5 0.12

LLS-AMS (1) 1 ± 1 2 ± 1 0.25 4 ± 2 8 ± 2 0.001
suPAR (ng/mL) 1.9 ± 0.5 2.0 ± 0.3 0.10 2.3 ± 0.6 2.3 ± 0.2 0.49
CRP (mg/L) 0.6 ± 0.5 0.8 ± 0.4 0.38 3.7 ± 5.3 3.4 ± 2.6 0.67
IL-6 (ng/L) 0.8 ± 0.5 0.8 ± 0.3 0.84 3.6 ± 5.8 2.6 ± 1.9 0.77
Values are given as mean ± SD. SaO2: oxygen saturated hemoglobin fraction and LLS-AMS: Lake Louise score for acute mountain sickness; the cutoff value for
the presence of AMS is defined as LLS-AMS ≥ 5 [29, 30].
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Figure 3: Receiver operating characteristics analysis for prediction
of high altitude illness versus control group assignment by baseline
measurements. AUC: area under the curve; in parentheses: 95%
confidence interval.

supported by the fact that suPAR cleavage is closely related to
leukocyte migration as opposed to the on-demand synthesis
of other inflammatory markers [23]. Furthermore, while the
hypoxia-induced increase in CRP and IL-6 plasma concen-
trations correlated with the decrease in PaO

2
, this was not the

case for suPAR, suggesting a different trigger for suPAR cleav-
age than a direct effect of hypoxia. Both the hypoxia-induced
increase in CRP and the hypoxia-induced increase in suPAR
were inhibited by dexamethasone prophylaxis along with the
development of headache as the main symptom of AMS, as
well as global functionality and the clinical assessment of

mental status, ataxia, and peripheral edema, in concordance
with previous data [34]. The lack of a statistically significant
effect of dexamethasone prophylaxis on total LLS-AMS stems
from the similar self-assessment of fatigue and dizziness
between subjects with and without dexamethasone prophy-
laxis, as well as the only implied effect of the prophylaxis on
the self-assessment of gastrointestinal symptoms and quality
of sleep. The latter may be due to the relatively small number
of subjects in the “dexamethasone prophylaxis” group and the
possible bias introduced by a self-assessment score in general.

The difference in suPAR plasma concentration at sea level
found in this study supports that HAPE susceptibles are a
group of persons with a low grade inflammation that may
encourage the development of HAPE once exposed to the
stimulus of hypoxia. It is thus implied that HAPE susceptibil-
ity may be predicted without previous high altitude exposure
by determining suPAR plasma concentration as a measure of
such low grade inflammation, though with a limited sensitiv-
ity and specificity.This finding further suggests that low grade
leukocyte activation enhances lung capillary vulnerability to
hydrostatically induced leakage [19]. Such a low grade inflam-
matory condition may be a component of HAPE susceptibil-
ity, which is in agreement with observations of higher HAPE
incidence related to preexisting inflammatory conditions
[20–22].Thus, the mechanisms underlying HAPE seem to be
modulated, rather than caused, by inflammatory processes.
At high altitude such a difference is not discernible anymore,
possibly being inundated by the acute hypoxic stimulus.
Despite an increase during hypoxic exposure suPAR plasma
concentrations before ascent were not different between the
groups later developing AMS or not. This suggests that
cellular based inflammation does not play a role on the central
form of high altitude disease, comprising AMS and high
altitude cerebral edema.

Limitations of our study include being a field study and
noncontrollable changes in the environment at the Capanna
Margherita as opposed to the valley, such as temperature or
sun exposure. In the present study we have minimized these
influences by implementing a fast ascent profile and a strictly
controlled daily routine within the protected environment of
the Capanna and by obtaining HA measurements after a full
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night’s rest following ascent. However, the observation period
of 24 hours at altitudemay be insufficient to exclude a further
rise in inflammatory markers, especially CRP. Since HAPE
incidence could only be assessed in the first 24 hours after
hypoxic exposure as well, the analysis in the present study
wasmainly based on previous history. Furthermore, previous
data suggests that in a general population suPAR plasma
concentration seems to be higher in women than inmen [26].
It is unlikely however that this is of relevance for our data
since in the present study gender distribution is unrelated to
HAPE susceptibility. The evaluation of the presence of AMS
on the other hand, being based on a combination of self-
assessment and clinical assessment is in theory susceptible to
bias in self-assessment. A study in a larger population or at
greater altitude is needed to confirm the predictive value of
baseline suPAR measurements for HAPE susceptibility and
reassess it in the case of susceptibility to AMS.

In conclusion, high altitude exposure leads to an increase
in suPAR plasma concentration, with the missing correlation
between suPAR and IL-6 suggesting a cytokine independent,
leukocyte mediated mechanism of low grade inflammation.
The correlation between IL-6 andPaO

2
suggests a direct effect

of hypoxia, which is not the case for suPAR. However, suPAR
plasma concentration measured before hypoxic exposure
may predict HAPE susceptibility, suggesting the presence of
low grade inflammation as a predisposing factor for HAPE.
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